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Abstract— In this paper, a robust control technique (Sliding
Mode Control) is proposed to be used in order to perform
visual servoing for differential-drive mobile robots using the
classical teach-by-showing strategy. We propose a commuted
sliding mode control law that exploits the epipolar geometry.
The major contribution of the paper is the design of a control
law that solves the problem of passing through a singularity
induced by the epipoles maintaining bounded inputs. Moreover,
the designed control is able to drive the robot to the target even
when it just starts on the singularity. The proposed approach
does not need a precise camera calibration due to the robustness
of the control system under uncertainty in parameters. It also
ensures entire correction of both orientation and lateral error
even with noise in the image. The effectiveness of our approach
is tested via simulations.

I. INTRODUCTION

A vision system can provide a lot of information from the
environment and making use of this information cannot be
an easy task. The viability of using a vision system in control
of robots has been well studied [1]. Specially, incorporating
machine vision in mobile robots can improve their navigation
capabilities [2].

Nowadays the research on visual servoing tries about
applications on monocular vision. On this context, a good
way to extract useful information in order to control a robot
is by means of geometric constraints that relate two images.
Geometric constraints are imposed on images when there ex-
ist correspondences between features [3]. Two constraints are
well known: epipolar geometry and the homography model.
Their application, without their decomposition, is classified
as the so-called image-based visual servoing. Currently, this
approach has shown to be the best option in comparison
with the position-based visual servoing. In the image-based
approach the visual control is performed directly in the image
space. Examples of image-based methods are [4], [5], [6].
Some contributions combining position-based and image-
based approaches have been performed as well [7], [8], [9].

Epipolar geometry has been applied in some works [10],
[11], [12], [13]. These works deal with the teach-by-showing
problem, where a reference image is used to define the
desired pose (position and orientation) of an on-board cam-
era. This target pose should be reached using only image
data provided from the current and target images. In [10] is
reported a visual servoing based on epipolar geometry for
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manipulators. In [11] a epipolar-based visual servoing for
nonholonomic mobile robots is introduced. This approach
takes into account the nonholonomic nature of the robot
by driving the epipoles to zero in a smooth way; however,
the resulting motion steers the robot away from the target
while the lateral error is corrected and after that, the robot
moves forwards in an straight line to the target position.
[12] presents a more intuitive way to drive the robot directly
towards the target. The approach in [13] is an outgrowth of
[11]. In [13], zeroing the epipoles is viewed like an stabi-
lization problem of the epipolar system, unlike the tracking
problem in [11]. Epipolar geometry has the drawback that
degenerates with short baseline and becomes ill-conditioned
for planar scenes. This problem can be overcome by using
feature-based strategies or by switching to a homography-
based control once epipolar geometry begins to degenerate
[14].

Our work focuses in exploiting the epipolar geometry
on the basis of image-based visual servoing. We propose
a commuted sliding mode control law in order to steer
a differential-drive mobile robot using a teach-by-showing
strategy. The main contribution of the paper is that the
designed control law solves the problem of passing through
a singularity caused by the epipolar geometry using bounded
control inputs. Moreover, the visual control can be performed
even when the initial robot pose is just on the singular
point. The designed control law does not need a precise
calibration of the vision system due to its intrinsic robustness
under parameters uncertainty and matched disturbances. Our
approach ensures total correction of both orientation and
lateral error.

The paper is organized as follows. Section II introduces
some basic background of sliding mode control theory. Sec-
tion III specifies the mathematical modeling that is used for
the visual sensor and the mobile robot. Section IV details the
design procedure for the sliding mode control law. Section
V presents the stability and robustness analysis. Section VI
shows the performance of the closed-loop control system via
simulations and finally, Section VII provides the conclusions.

II. BASICS OF SLIDING MODE CONTROL

Sliding Mode Control (SMC) is gaining importance as
a universal design methodology for the robust control of
linear and nonlinear systems. It offers several redeeming
features from a control theory point of view [15], namely, an
inherent order reduction, direct incorporation of robustness
against system uncertainties and disturbances, and an implicit
stability proof.



Basically, SMC makes use of a high-speed switching
control law to drive the nonlinear state trajectory of the
system onto a specified and user-chosen surface in the state
space (called the sliding or switching surface) in a finite
time, and to keep the state trajectory on this surface for
all subsequent time. The plant dynamics constrained to this
surface represent the controlled system’s behavior, which
is independent of matched uncertainties and disturbances.
Matched uncertainties are those that belong to the range
space of the input vector. This is the so-called matching
condition.

Sliding modes are well studied in a class of systems having
a state model nonlinear in the state vector x(·) and linear in
the control vector u(·) (affine systems) of the form

ẋ = f(t,x,u) = f(t,x) + B(t,x)u (1)

where the state vector x(t) ∈ <n, the control vector u(t) ∈
<m, f(t,x) ∈ <n, and B(t,x) ∈ <n×m.

The switching surface is so called because if the state
trajectory of the system is “above” the surface, then the
control input has one gain, and a different gain is applied
if the trajectory drops “below” the surface. Thus, each entry
ui(t) of the switched control u(t) ∈ <m has the form

ui (t,x) =
{

u+
i (t,x) if si(x) > 0

u−i (t,x) if si(x) < 0

}
, i = 1, ..., m (2)

where si = 0 is the i-th switching surface associated with
s (x) =

[
s1 (x) · · · sm (x)

]T = 0, the (n − m)-
dimensional switching surface.

SMC design breaks down into two phases. Phase one
implies constructing switching surfaces so that the system re-
stricted to these surfaces produces a desired behavior. Phase
two involves constructing switched feedback gains which
drive the state trajectory to the sliding surface maintaining it
there.

An undesirable phenomenon presented in SMC systems is
the chattering. This is an oscillation within a neighborhood
of the switching surface such that s(x) = 0 is not satisfied
for all time after the switching surface is reached. If the
frequency of the switching is very high compared with the
dynamic response of the system the chattering problem is
often but not always negligible.

III. MATHEMATICAL MODELING

A. Visual Sensing

Consider the geometry of the camera to be modeled by
perspective projection, where the internal camera calibration
matrix is as follows

K =




αx s x0

0 αy y0

0 0 1


 (3)

where αx and αy represent the focal length of the camera
in terms of pixel dimensions in the x and y direction
respectively, s is the skew parameter and (x0, y0) are the

coordinates of the principal point. We have that αx = fmx

and αy = fmy , where f is the focal length in distance units
and mx, my are the pixels per distance unit. We assume that
the principal point is in the center of the image (x0 = 0,
y0 = 0) and there is no skew (s = 0).

B. Robot Kinematics

The system to be controlled is a differential-drive robot,
whose kinematic model is consistent with the general affine
system in (1). The differential kinematics of the robot
expressed in state space is as follows




ẋ
ż

φ̇


 =



− sin φ 0
cos φ 0

0 1




[
v
ω

]
. (4)

Thus, x = (x, z, φ)T represents the state of the robot
system, where x(t) and z(t) are the robot position in the
plane, φ(t) is the robot orientation, expressed as the angle
between the robot body-fixed z-axis and the world z-axis,
and v(t) and ω(t) are the translational and angular input
velocities, respectively. v is in the direction of the robot
body-fixed z-axis and ω is about the robot y-axis, i.e. rotation
in the plane.

According to the general affine system in (1), the model
(4) presents the particularity that f(t,x) = 0 and con-
sequently, this is a driftless system. Furthermore, the cor-
responding linear approximation in any point x(t) ∈ <n

is uncontrollable. However, it fulfills the Lie Algebra rank
condition [16], in such a way that controllability can be
demonstrated.

Let us define the outputs of the system using the x-
coordinates of the epipoles for the current (ecx) and target
(etx) images. The epipoles can be expressed as a function of
the state of the robot

ecx = αx
x cosφ + z sin φ

z cos φ− x sin φ
, (5)

etx = αx
x

z
.

Then, the two-dimensional output of the system is

y = h (x) =
[

ecx etx

]T
. (6)

Cartesian coordinates x and z can be expressed as a
function of the polar coordinates d and ψ as

x = −d sin ψ, z = d cos ψ, (7)

with ψ = − arctan (etx/αx), φ− ψ = arctan(ecx/αx) and
d2 = x2 + z2.

IV. SLIDING MODE CONTROL LAW DESIGN

The objective is to perform the navigation by using the
feedback information provided by the x-coordinate of the
epipoles. Like in previous works in the area ([11], [12]), the
visual servoing problem is transformed in a tracking problem
for a nonlinear system, where the reference trajectories
for the epipoles are defined. Unlike these works, a robust
tracking under uncertainty of parameters is an issue to be



improved. We propose to perform a smooth motion towards
the target position by using sinusoidal desired trajectories
to drive the epipoles to zero. The main concern is to face
the singularity problem that in [13] is evaded regardless,
and in [14] they avoid to compute control inputs at the
singular point. The singularity appears due to the decoupling
matrix of the system becomes singular in a point of the state
trajectory. Particularly, the singularity causes the translational
velocity growing up without a limit when the system evolves
near to the singular point. We solve it by switching to a
bounded SMC law to pass through the singularity.

Let us define the tracking error system (ξ-system) using
the change of variables ξc = ecx − ed

cx, ξt = etx − ed
tx and

the polar coordinates in (7).

[
ξ̇c

ξ̇t

]
=

[
−αx sin(φ−ψ)

d cos2(φ−ψ)
αx

cos2(φ−ψ)

−αx sin(φ−ψ)
d cos2(ψ) 0

] [
υ
ω

]
−

[
ėd
cx

ėd
tx

]
.

(8)
The system (8) has the form ξ̇ = M(φ, ψ)u − ėd,

where M(φ, ψ) corresponds to the decoupling matrix and
ėd represents a known disturbance. It is evident that the
decoupling matrix loses rank if φ−ψ = nπ with n ∈ Z. For
all the rest of the state space this matrix is invertible, with
inverse matrix

M−1(φ, ψ) =
1
αx

[
0 − d cos2(ψ)

sin(φ−ψ)

cos2 (φ− ψ) − cos2 (ψ)

]
. (9)

We faced the tracking problem as an stabilization problem
of the error system (8).

A. Decoupling-based Control Law

1) First Stage: The simplest form to define sliding sur-
faces in the ξ-system is directly to take the errors as sliding
surfaces, in such a way that if there exist switched feedback
gains that make the states to evolve in s = 0, then the
tracking problem is solved.

s =
[

sc

st

]
=

[
ξc

ξt

]
=

[
ecx − ed

cx

etx − ed
tx

]
. (10)

2) Second Stage: This stage uses the sliding surfaces
already defined and the equivalent control method in order
to find switched feedback gains to drive the state trajectory
to s = 0 and maintain it there.

The equivalent control method consist of working out the
value of inputs from the equation ṡ = 0. The so-called
equivalent control is then

ueq = M−1(φ, ψ)ėd. (11)

A decoupling-based SMC law that ensures global stabi-
lization of the ξ-system has the form usm = ueq + udisc,
where udisc is a two-dimensional vector containing switched
feedback gains. We propose the simplest form of these gains
as follows

udisc = M−1(φ, ψ)
[ −ksm

c sign (sc)
−ksm

t sign(st)

]
(12)

where ksm
c > 0 and ksm

t > 0 are control gains. In spite
of usm can achieve global stabilization of the ξ-system, it
needs high gains and it does not reach the sliding surfaces
in a smooth way. It can cause a non-smooth behavior in the
robot state that is not valid in real situations. To alleviate
this issue we add a pole placement term in the control law

upp = M−1(φ, ψ)
[ −kc 0

0 −kt

] [
ξc

ξt

]
(13)

where kc > 0 and kt > 0 are control gains. Finally, the
complete SMC law that achieves robust global stabilization
of the system (8) is as follows

udb =
[

υdb ωdb

]T = ueq + udisc + upp. (14)

B. Bounded Control Law

The control law in (14) utilizes the decoupling matrix
and it presents the singularity problem for the condition
ecx = 0 (φ − ψ = nπ with n ∈ Z), which means that
the camera axis of the robot at its current pose is aligned
with the baseline. We can note from (9) that the singularity
only affects the translational velocity computation. In order
to pass through this singularity we propose to commute to
a direct sliding mode controller when φ − ψ is near to nπ.
This kind of controller has been studied for output tracking
through singularities [17]. The direct sliding mode controller
is as follows

ub =
[

υb

ωb

]
=

[ −Msign (st b (φ, ψ))
−Nsign(sc)

]
(15)

where M and N are suitable gains and b (φ, ψ) is a function
that describes the change in sign of the translational velocity
when the state trajectory crosses the singularity. We can find
out this function from (8) as follows

ξ̇c = b1 (φ, ψ) υ + b2 (φ, ψ) ω − ėd
cx, (16)

ξ̇t = b3 (φ, ψ) υ − ėd
tx

where b1 = −αx sin(φ−ψ)
d cos2(φ−ψ) , b2 = αx

cos2(φ−ψ) , b3 =

−αx sin(φ−ψ)
d cos2(ψ) . According to that, b2 is always positive, and

sign(b1) = sign(b3) = sign(− sin(φ− ψ)). Hence,

b (φ, ψ) = − sin(φ− ψ). (17)

The control law in (15) with b (φ, ψ) as in (17) locally
stabilizes the system (8) and is always bounded.

C. Desired Trajectories for the Epipoles

The desired trajectories must provide a smooth zeroing of
the epipoles from their initial values as main requirement.
We can see from Fig. 1 how a natural zeroing of epipoles
is produced when robot performs a smooth direct motion
from an initial pose where sign (ecx) 6= sign (etx) towards
the target, but not when robot has an initial pose where
sign (ecx) = sign (etx). In order to drive the epipoles to zero
from a pose where the last happens (Fig. 1(b)), the robot has
firstly to reach a pose where sign (ecx) 6= sign (etx) (Fig.
1(a)). Thus, we define desired trajectories which are always
opposite in sign each other.



(a) (b)

Fig. 1. (a) sign (etx) 6= sign (ecx) - direct motion towards the target,
(b) sign (etx) = sign (ecx) - reaching the same condition as in (a).

ed
cx (t) = S

ecx(0)
2

(
1 + cos

( π

T
t
))

, 0 ≤ t ≤ T (18)

ed
cx (t) = 0, T < t < ∞

ed
tx (t) =

etx(0)
2

(
1 + cos

( π

T
t
))

, 0 ≤ t ≤ T

ed
tx (t) = 0, T < t < ∞

where S = −sign (ecx(0)etx(0)) and T is the time to reach
epipoles to zero.

V. STABILITY AND ROBUSTNESS ANALYSIS

When epipoles reach to zero the so-called zero dynamics
in the robot system is achieved. Zero dynamics is described
by a subset of the state space which makes the output to
be identically zero [18]. In the particular case of the robot
system (4) with output vector (6), this set is given as follows

Z∗ =
{[

x z φ
]T | ecx = 0, etx = 0

}
(19)

=
{[

0 z 0
]T

, z ∈ R
}

.

Zero dynamics in this control system means that when
epipoles are zero, the x-coordinate and the orientation of the
robot are corrected, but depth may be different to zero. Once
the relationship between zeroing the epipoles and the robot
state is established, we focus on demonstrating stability and
robustness for the tracking control law.

Proposition 1. A commuted control law that combines
the decoupling-based control in (14) by switching to the
bounded control in (15) whenever |φ− ψ| < nπ + Th,
where Th is a suitable threshold value and n ∈ Z, achieves
global stabilization of the system in (8). Moreover, global
stabilization is achieved even with uncertainty in parameters.

Proof: Stabilization of (8) is proved by showing that
the sliding surfaces can be reached in a finite time (existence
conditions of sliding modes). Let be the natural Lyapunov
function for a sliding mode controller

V = V1 + V2, V1 =
1
2
s2

c , V2 =
1
2
s2

t (20)

which accomplish V (sc = 0, st = 0) = 0 and V > 0 for all
sc 6= 0, st 6= 0.

V̇ = V̇1 + V̇2 = scṡc + stṡt. (21)

We analyze each term of (21) for the decoupling-based
controller in (14)

V̇1 = sc

(
− αx

αxe

(ksm
c sign (sc) + kcsc) + A

)

= −
(

αx

αxe

(
ksm

c |sc|+ kcs
2
c

)− scA

)
,

V̇2 = st

(
−αxde

αxed
(ksm

t sign(st) + ktξt) + B

)

= −
(

αxde

αxe
d

(
ksm

t |st|+ kts
2
t

)− stB

)

where B =
(

αxde

αxed − 1
)

ėd
tx, A =

αx

αxe

(
de

d − 1
) (

ėd
tx − ksm

t sign(st)− ktst

) cos2(ψ)
cos2(φ−ψ) +(

αx

αxe
− 1

)
ėd
cx, and αxe

, de represent estimated values for
the corresponding system parameter. We can see that

V̇1 ≤ −
(

αx

αxe

(ksm
c + kc |sc|)− |A|

)
|sc| ,

V̇2 ≤ −
(

αxde

αxed
(ksm

t + kt |st|)− |B|
)
|st| .

V̇1 and V̇2 are negative definite iff the following inequal-
ities are guaranteed for all sc 6= 0, st 6= 0

ksm
c + kc |sc| >

αxe

αx
|A| , (22)

ksm
t + kt |st| >

αxed

αxde
|B| .

Therefore, V̇ < 0 iff both inequalities in (22) are fulfilled.
Global convergence to the sliding surfaces can be achieved
regardless of uncertainty in parameters.

Now, let develop the existence conditions of sliding modes
for the bounded controller (15). The same Lyapunov function
in (20) is used. For each term of (21) after some basic
operations we have

V̇1 = −N
αx

cos2 (φ− ψ)
|sc| − scė

d
cx − scC,

V̇2 = −M
αx |b (φ, ψ)|
d cos2 (ψ)

|st| − stė
d
tx

where C = M αx|b(φ,ψ)|
d cos2(φ−ψ)sign(st) and b (φ, ψ) is given in

(17). We can see that

V̇1 ≤ −
(

N
αx

cos2 (φ− ψ)
−

∣∣ėd
cx

∣∣− |C|
)
|sc| ,

V̇2 ≤ −
(

M
αx |b (φ, ψ)|
d cos2 (ψ)

−
∣∣ėd

tx

∣∣
)
|st| .

V̇1 and V̇2 are negative definite iff the following inequal-
ities are assured for all sc 6= 0, st 6= 0

N >
cos2 (φ− ψ)

αx

(|C|+ ∣∣ėd
cx

∣∣) , (23)

M >
d cos2 (ψ)

αx |b (φ, ψ)|
∣∣ėd

tx

∣∣ .



Therefore, V̇ < 0 iff both inequalities in (23) are fulfilled.
The bounded controller does not need any information of
system parameters and thus, its robustness is implicit.

According to the existence conditions of sliding modes,
the bounded controller (15) is able to locally stabilize the
system (8); its region of attraction is bigger as long as
the control gains M and N are higher. Nevertheless, this
controller can not achieve the smooth behavior demanded
for real situations and it is only used to cross the singularity.
Due to the control strategy commutes between two switching
control laws and each one acts inside of its region of
attraction, respectively, the commutation between the control
laws does not affect the stability of the control system. The
decoupling-based controller ensures entering to the region of
attraction of the bounded one.

Once sliding surfaces are reached for any case of SMC
law, the system’s behavior is independent of matches un-
certainties and disturbances. It is clear that uncertainties in
the system (8) fulfill the matching condition and as a result,
robustness of the control system is accomplished.

VI. SIMULATION RESULTS

In this section, we present some simulations of the control
system as is established in the Proposition 1. Simulations
have been performed in Matlab/Simulink. Results show how
the main objective of driving the robot to a desired pose
((0,0,0o) in all the cases) is attained regardless of passing
through the singularity, and moreover, the task is accom-
plished even when the robot starts in a pose where singularity
occurs. Simulations also show the good performance of the
approach under uncertainty in parameters and image noise.

In the first simulations, it is assumed the camera is
calibrated in advance. We used a focal length (f ) of 6 mm,
an initial distance between the current and target positions
(d) of 12 m, a virtual image size of 640×480 pixels. Related
to the controllers, the time to reach the target (T ) is fixed to
100 s, the threshold to switch to the bounded control law (Th)
is fixed to 0.03 rad and the control gains are set to kc = 0.4,
kt = 0.6, ksm

c = 10, ksm
t = 2, M = 0.5, N = 0.4.

Fig. 2. Resultant paths and evolution of epipoles for three non-singular
initial poses. (a) Paths on the x− z plane. (b) Current and target epipoles.

Fig. 2 shows paths and epipoles evolution for initial poses
(-3,-8,-30o), (-4,-14,0o) and (7,-18,9o). In the two last cases,
the robot starts with sign (ecx) = sign (etx) and epipoles
are taken to the opposite-signed trajectories. In both cases

ecx changes its sign during the first seconds, which causes
a rotation to the robot, and then, it begins a direct motion
towards the target. Note that the state trajectory crosses the
singularity ecx = 0 for the initial cases (-4,-14,0o) and (7,-
18,9o). This is performed using bounded input velocities, as
can be seen in Fig. 3, where state variables evolution and
control inputs are shown for the initial pose (7,-18,9o). It is
worth noting that the control inputs are maintained bounded
even when the epipoles reach to zero after 100 s, which
ensures entire correction of orientation and lateral position.

Fig. 3. Evolution of the position and orientation of the robot and
control inputs for a case where the singularity is crossed. (a) Position and
orientation. (b) Control inputs.

In Fig. 4(a) we present paths for two special cases where
the state trajectory just starts on the singularity ecx = 0.
The drawn line from the robot initial position to the target
shows that the camera axis is aligned with the baseline for
that pose. In these cases, we assign a suitable amplitude to
the desired trajectory for the current epipole. Due to |φ− ψ|
is less than the threshold, the bounded controller takes the
system out of the singularity and then, the epipoles evolve
as is shown in Fig. 4(b).

Fig. 4. Resultant paths and evolution of epipoles for two singular initial
poses. (a) Paths on the x− z plane. (b) Current and target epipoles.

In order to show the robustness of the control law under
uncertainty in parameters f and d, we include Fig. 5 and
Table I. In the control law these parameters are fixed to
f = 6 mm and d = 12 m. Focal length is changed in
the computation of epipoles and different initial positions
are tested to change d. Table I presents the mean squared
tracking errors for different values of the parameters. As
well as tracking error is maintained in a small value, the
robot goes to the target in all the cases.

Finally, Fig. 6 shows the performance of the approach
under image noise for initial pose (-7,-20,-12o). The added
noise has a standard deviation of 1 pixel and the time to



Fig. 5. Resultant paths and evolution of epipoles with variation of
parameters f and d. (a) Paths on the x − z plane. (b) Current and target
epipoles.

TABLE I
MEAN SQUARED TRACKING ERRORS FOR DIFFERENT PARAMETERS.

f = 4 f = 6 f = 8 f = 6 f = 6
d = 8.54 d = 8.54 d = 8.54 d = 14.56 d = 19.92
(3,-8,30) (-3,-8,-30) (-3,-8,-30) (-4,-14,-25) (6,-19,22)

ξc 0.01 0.19 0.41 0.26 0.38
ξt 0.004 0.61 3.23 0.002 0.13

reach the target is set to 120 s. Orientation and x-position
are corrected effectively; however, the robot autonomously
performs a motion to attain the control objective (track the
desired trajectories for the epipoles). Therefore, orientation
and lateral errors can be always corrected successfully, but
depth may be different to zero. There exist methods that can
be used to eliminate the final depth error ([10], [14]).

Fig. 6. Resultant paths and epipoles evolution adding noise to a virtual
image. (a) Paths on the x− z plane. (b) Current and target epipoles.

VII. CONCLUSIONS

In this work, a robust control law is presented in order
to perform image-based visual servoing for differential-drive
mobile robots. The visual control utilizes the usual teach-by-
showing strategy. We propose a sliding mode control law,
which exploits the epipolar geometry between a current im-
age and a target one without requiring any a prior knowledge
of the scene or precise camera calibration due to the intrinsic
robustness of the control law against matched uncertainties
and disturbances.

Our major contribution is that the designed control law
solves the problem of passing through the singularity induced
by the epipoles maintaining bounded inputs. Furthermore,
the visual control accomplishes its goal even when the robot
starts on the singularity. We face the visual servoing task
as the problem of zeroing the epipoles by means of tracking
suited sinusoidal trajectories. The control law consists of two
sliding mode controllers; the first one is based on decoupling
the system, and acts when state trajectory is away from the
singularity, and the second one is a bounded control, which
acts near the singular point in order to pass through it or
to keep the control when the robot is reaching the target
pose. Simulations have proven the good performance of the
method to ensure orientation and lateral position correction
even with noise in the image.
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