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Abstract— In this paper, we propose to exploit the epipolar
geometry for dynamic pose-estimation of mobile robots. This
is performed using a filtering approach with measurements
given by the epipoles. The contribution of the paper is a novel
observability analysis using nonlinear and linear tools that leads
to achieve an efficient position-based visual servoing (PBVS)
approach. Additionally, the visibility constraint proble m is
solved for this type of approach by using any visual sensor
obeying a central projection model. This scheme does not need a
target model neither scene reconstruction nor the 3D structure.
The effectiveness of the proposed estimation scheme is evaluated
via simulations in servoing tasks including obstacles and using
omnidirectional vision.

I. INTRODUCTION

In the field of visual servoing [1], most of the efforts have
been focused on the enhancement or proposal of image-
based (IB) approaches and less attention has been given
to the position-based (PB) ones. Thus, the advantages of
carrying out a servoing task in the Cartesian space have
been wasted, namely, the possibility to define a motion path
in accordance to the geometry of the environment and to
reduce the dependence on the visual information.

Some works have introduced the notion of dynamic esti-
mation in the control loop for visual servoing (VS) purposes,
e.g., [2] and [3]. The former proposes a particular nonlinear
observer to track an object using a two-link planar robot.
The second paper proposes a filtering approach to estimate
the pose in 6 DOF of a robot manipulator. Both of the PB
approaches of these papers require a model of the target and
use the image point coordinates directly as measurement.

In the context of mobile robots, on one hand, an approach
that recovers the robot pose has been proposed using struc-
ture from motion in [4]. The authors use the estimated pose in
a feedback control law to follow a predefined path, while also
the 3D structure of the scene is reconstructed. On the other
hand, dynamic estimation has been also used to recover the
pose of a mobile robot. The authors of [5] propose a Kalman
filtering approach to match a set of landmarks to a prior
map and then to estimate the robot pose from these visual
observations. Different control tasks can be carried out using
this scheme: wall following, leader following and position
regulation. The Extended Kalman Filter has been used to
recover the pose of a mobile robot and the 3D structure for
a homing application in [6]. The effectiveness of applying
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a Kalman filtering approach on PBVS has been particularly
studied in [7]. In a previous work [8], we have introduced
the idea of pose-estimation for mobile robots through the 1D
trifocal tensor as measurement, but the observability property
of the system has been roughly analyzed.

Given that a VS task with a mobile robot typically implies
a significative camera displacement, the use of omnidirec-
tional vision has turned out to be a very good option to keep
the target in the field of view [9]. This can be achieved by
using catadioptric imaging systems. The imaging process of
these systems is represented by a unified model [10], since
they have a single center of projection. This has allowed to
extend some VS schemes based on a geometric constraint to
be used with omnidirectional vision. For instance, researches
have exploited the epipolar geometry [11], the homography
model [12] and the trifocal tensor [13] in IB approaches.

This paper proposes to exploit the epipolar geometry for
dynamic pose-estimation of mobile robots. This is carried
out through an EKF-based scheme, which recovers the
robot pose (position and orientation) using the kinematic
motion model of the onboard camera and the epipoles as
measurements. The contribution of the paper is a novel
observability analysis using both nonlinear and linear theory,
which leads to achieve an efficient PBVS approach. An
additional benefit is that our approach solves the visibility
constraint problem by using any visual sensor obeying a
central projection model. The scheme does not need a target
model neither scene reconstruction nor 3D structure. The
validity of the estimation is shown through simulations of
VS tasks including obstacles.

The paper is organized as follows. Section II describes the
kinematic motion model of the camera-robot and introduces
the modeling and the epipolar constraint for generic cameras.
Section III details the observability analysis from the epipo-
lar geometry and presents the estimation scheme. Section
IV shows the performance of the estimation for VS tasks
through simulations and Section V states the conclusions.

II. MATHEMATICAL MODELING

A. Camera-Robot Model

This paper focuses on the problem of estimating the state
of a differential-drive mobile robot using visual information
provided by an onboard camera. Fig. 1 depicts the configura-
tion of the camera-robot system. We assume that the camera
is translated a distanceℓ along the longitudinal axis~yR.
The dynamics of the system’s statex = [x, y, φ]

T with input
vectoru = [υ, ω]

T and outputγ can be written as the affine
system
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Fig. 1. Kinematic configuration of the robot with an on-boardcentral
camera.

ẋ = [g1(x), g2(x)] u, γ = h(x), (1)

being g1(x) = [− sinφ, cos φ, 0]
T and g2(x) =

[−ℓ cosφ,−ℓ sinφ, 1]T smooth input vector fields. The non-
linear functionh(x) models a vector of measurements that
will be described later. The discrete version of the system
(1) is the following

xk+1 = xk − δ (ωkℓ cosφk + υk sinφk) ,

yk+1 = yk − δ (ωkℓ sinφk − υk cosφk) ,

φk+1 = φk + δωk (2)

where δ is the sampling time. In the sequel, we use the
notation sφ = sin φ, cφ = cosφ. The discrete system (2)
can be expressed as follows

xk+1 = f (xk,uk) + mk, γk = h (xk) + nk (3)

where the nonlinear functionf is the smooth vector field
given by the right hand terms of (2). It is assumed that the
robot state and the measurements are affected by Gaussian
noisesmk and nk, respectively. These noises accomplish
mk ∼ N (0,Mk), nk ∼ N (0,Nk) and E

[

mk,inT
k,j

]

= 0,
with Mk the state noise covariance andNk the measurement
noise covariance.

B. Epipolar Geometry (EG) for Generic Cameras

A generic camera has a single center of projection and its
image formation process can be modeled as a composition of
two central projections [10]. The first is a central projection
of a 3D point onto a virtual unitary sphere and the second is a
perspective projection onto the image plane. In this work, we
assume the use of generic calibrated cameras, which allows
us to exploit the representation of the points on the unit
sphere. Regarding to Fig. 2(a), let us denote a 3D point
as X, and its corresponding coordinates asX. Thus, point
coordinates on the sphereXc can be computed from point
coordinates on the normalized image planex and the sensor
parameterξ as follows

Xc =
(

η−1 + ξ
)

x̄, with x̄ =
[

xT , 1
1+ξη

]T

, (4)

whereη =
−γ−ξ(x2+y2)
ξ2(x2+y2)−1 , σ =

√

1 + (1 − ξ2) (x2 + y2).
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(a) EG between generic cameras (b) Planar EG

Fig. 2. Generic model of the image formation and epipolar geometry (EG)
between generic central cameras.

Let Xc and Xt be the coordinates of the 3D point
X projected onto the unit spheres of the currentFc and
target frameFt. The epipolar plane contains the effective
viewpoints of the imaging systemsCc andCt, the 3D point
X and the pointsXc andXt. The coplanarity of these points
leads to the well known epipolar constraint

XT
c E Xt = 0, (5)

beingE the essential matrix relating the pair of normalized
virtual cameras. Normalized means that the effect of the
known calibration matrix has been removed and eventually,
the cameras can be represented as virtual perspective. Thus,
the epipoles are computed as the right null space of the
essential matrix.

Fig. 2(b) shows the configuration of a pair of virtual
perspective cameras constrained to planar motion with center
of projection Cc and Ct respectively. A global reference
frame centered in the originCt = (0, 0, 0) of the target
viewpoint is defined, so that the current camera location is
Cc = (x, y, φ). Thex-coordinate of the epipoles relating the
current and target views can be written as a function of the
camera-robot state as follows

ecur = αx
xcφ+ysφ
ycφ−xsφ

= αx
ecn

ecd
,

etar = αx
x
y

(6)

whereαx is the focal length of the camera in terms of pixel
dimensions in thex-direction. For the case of normalized
camerasαx = 1. Henceforth, we define the following vector
of measurements

h (x) = [h1 = ecur, h2 = etar]
T

. (7)

III. OBSERVABILITY WITH THE EPIPOLES AS
MEASUREMENTS

Observability is a structural property of a system that
may affect the convergence of an estimation scheme. This
property specifies if two states are distinguishable by mea-
suring the output, i.e.,x1 6= x2 =⇒ h (x1) 6= h (x2). In
this section, we aim for showing that distinguishability of
the state of the system (1) can be achieved by using the
measurement model (7).

There are few works concerning about the state observ-
ability of mobile robots. On one hand, some of them take
advantage of linearized models to analyze the observability



of the SLAM problem [14]. On the other hand, there also
exist some contributions where a nonlinear observability
analysis is carried out for localization [15] or SLAM [16].
Some basic results on the observability from visual measure-
ment provided by a geometric constraint (the 1D TT) are
reported in [8]. In that work, a linear analysis is used and
observability is ensured with three elements of the tensor.
In the subsequent, we present a novel and comprehensive
observability analysis with a minimum set of measurements
and appropriate nonlinear tools.

A. Nonlinear Observability

Firstly, the nonlinear theory for the analysis of continuous
systems introduced in [17] is used. According to this theory,
the followingobservability rank condition can be enunciated
for the case under analysis.

Definition 1. A continuous-time nonlinear system of the
form ẋ = [g1(x), g2(x)] u with a measurement vector h(x)
is locally weakly observable if the observability matrix with
rows

O ,

[

∇Lq
gigj

hp(x) p i, j, p = 1, 2; q ∈ N

]T

(8)

is of full rank n.

The expressionLq
gi

hp(x) denotes theqth order Lie deriva-
tive of the scalar functionhp along the vector fieldgi. Thus,
the matrix (8) is formed by the gradient vectors∇Lq

gi
hp(x)

that span a space containing all the possible Lie derivatives.
Although the matrix (8) could have infinite number of rows,
it suffices to find a set of rows linearly independent in order
to fulfill the rank condition. Locally weak observability is
a concept stronger than observability, which states that one
can instantaneously distinguish each point of the state space
from its neighbors, without necessity to travel a considerable
distance, as admitted by the observability concept. Next, this
definition is used to verify the following lemma.

Lemma 1. The continuous camera-robot system (1) with
both epipoles as measurements (7) is a locally weakly
observable system. Moreover, this property is maintained
even by using only the target epipole as measurement.

Proof: This proof is done by finding the space spanned
by all possible Lie derivatives and verifying its dimension.
This space is given as

Ω =
(

hp, L
1
g1

hp, L
1
g2

hp, L
2
g1

hp, L
2
g2

hp, ...
)T

, p = 1, 2

First, the Lie derivatives given by the current epipole as
measurement (h1 = ecur) are presented. As a good approach,
the search of functions in the Lie group is constrained for
n − 1, wheren = 3 in our case.

L1
g1

h1 = ∇h1 · g1 =
αx

e2
cd

[

y,−x, x2 + y2
]

· g1 = −αx
ecn

e2
cd

L1
g2

h1 = ∇h1 · g2 = αx
x2 + y2 − ℓecd

e2
cd

L2
g1

h1 = ∇L1
g1

h1 · g1 = 2αx
ecn

e3
cd

L2
g2

h1 = ∇L1
g2

h1 · g2 = αx

ecn

(

2
(

x2 + y2
)

− 3ℓecd

)

e3
cd

To verify the dimension of the space spanned by these
functions, the gradient operator is applied to obtain the
matrix Ocur (9). Given the complexity of the entries of this
matrix, only four rows are shown, however, it can be verified
that the complete matrix is of rank two. It is required that
the gradient of the Lie derivatives obtained from the target
epipole as measurement (h2 = etar) provide one additional
row linearly independent to achieve observability. These new
Lie derivatives are

L1
g1

h2 = ∇h2 · g1 =
αx

y2
[y,−x, 0] · g1 = −

αx

y2
ecn

L1
g2

h2 = ∇h2 · g2 =
αx

y2
[y,−x, 0] · g2 = −

αxℓ

y2
ecd

L2
g1

h2 = ∇L1
g1

h2 · g1 =
2αx

y3
cφecn

L2
g2

h2 = ∇L1
g2

h2 · g2 =
αxℓ

y3
(yecn − 2ℓsφecd)

By applying the gradient operator, the matrixOtar (10) is
obtained, which effectively provides an additional linearly
independent row to the matrixO =

[

OT
cur OT

tar

]T
.

Indeed, the matrix (10) is full rank by itself, which means
that the rank condition of Definition 1 is satisfied by using
the target epipole as unique measurement. In summary, the
camera-robot system (1) with both epipoles as measurements
is locally weakly observable and this property is achieved
even by using only the target epipole as measurement.
Therefore, the three state variables constituting the camera-
robot pose can be estimated from these two measurements.

The previous proof implicitly considers the action of both
velocities, however, we can analyze the effect for each
one of them. For simplicity, this is done using the current
epipole as measurement. On one hand, it can be shown from
(10) thatdet

(

[

∇hT
2 ,∇L1

g1
hT

2 ,∇L2
g1

hT
2

]T
)

= −2αxy2ecn,
which means that, when only a translational velocity is being
applied, the matrix loses rank ifecur = 0. In other words,
observability is lost if the robot is moving forward along the
line joining the projection center of the cameras becauseetar

remains unchanged. Otherwise, observability is guaranteed
by a translational velocity different than zero. On the other
hand, det

(

[

∇hT
2 ,∇L1

g2
hT

2 ,∇L2
g2

hT
2

]T
)

= αxℓ2y2d (x),

with d (x) 6= 0 for all x 6= 0. This means that the rotational
velocity provides observability iff the camera is shifted from
the axis of rotation (ℓ 6= 0, as assumed), given that in this
situation,etar changes as the robot rotates. Thus, the control
strategy should provide the appropriate excitation, at least
non-null rotational velocity, in order to ensure observability
for any condition.

B. Dynamic Pose-Estimation Scheme

A discrete Kalman filtering approach is proposed to be

used in order to estimate the robot posex̂k=
[

x̂k, ŷk, φ̂k

]T

from the epipoles. An Extended Kalman Filter (EKF) is an
effective way to solve this nonlinear estimation problem.
The EKF has been applied previously in the VS problem
[3], [5], [7] without further analysis. This approach provides

hector
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hector
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Ocur =









∇h1

∇L1
g1

h1

∇L1
g2

h1

∇L2
g1

h1









=
αx

e2
cd











y −x x2 + y2

− (y + sφecn) /ecd (x + cφecn) /ecd −
(

x2 + y2 + e2
cn

)

/ecd

− (ℓsφecd − 2yecn) /ecd (ℓcφecd − 2xecn) /ecd ecn

(

2
(

x2 + y2
)

− ℓecd

)

/ecd

(2cφecd + 6sφecn) /e2
cd

(2sφecd − 6cφecn) /e2
cd

(

2 (ycφ − xsφ)2 + 6e2
cn

)

/e2
cd











(9)

Otar =













∇h2

∇L1
g1

h2

∇L1
g2

h2

∇L2
g1

h2

∇L2
g2

h2













=
αx

y4











y3 −y2x 0
−y2cφ y (ysφ + 2xcφ) −y2 (ycφ − xsφ)
ℓy2sφ ℓy (ycφ − 2xsφ) ℓy2 (xcφ + ysφ)
2ycφ2 −2cφ (3xcφ + 2ysφ) 2y

(

y
(

cφ2 − sφ2
)

− 2xsφcφ
)

−ℓy
(

ycφ + 2ℓs2φ
)

−ℓ
(

y2sφ + ycφ (2x − 4ℓsφ) + 6ℓxs2φ
)

ℓy ((y − 2ℓcφ) ecd + 2ℓsφecn)











(10)

generality to the proposed scheme in comparison to nonlinear
observers designed for a particular system. So, the well-
known basic form of the EKF is used [20]. The required
matrices from the linearization of the camera-robot model
(2) and measurement (7) are as follows

Fk =

∣

∣

∣

∣

∂f

∂xk

∣

∣

∣

∣

xk=x̂
+

k
,

mk=0

=





1 0 ∆y,k

0 1 −∆x,k

0 0 1





φk=φ̂
+

k

,

Gk =

∣

∣

∣

∣

∂f

∂uk

∣

∣

∣

∣

xk=x̂
+

k

=





−sφk −ℓcφk

cφk −ℓsφk

0 1





φk=φ̂
+

k

,

Hk =

∣

∣

∣

∣

∂h

∂xk

∣

∣

∣

∣

xk=x̂
−

k
,

nk=0

=





αx

e2
cd,k

[

yk,−xk, x2
k

+ y2
k

]

αx

y2
k

[yk,−xk, 0]





xk=x̂
−

k

where ∆x,k = δ (ωkℓcφk + υksφk), ∆y,k =
δ (ωkℓsφk − υkcφk) and ecd,k = ykcφk − xksφk. Up
to now, we have proved the observability of the camera-
robot system with the epipoles as measurement from a
nonlinear point of view. However, since the EKF is based
on the previous linearization, an appropriate observability
analysis is presented in the following lemma for the linear
approximation (Fk,Gk,Hk).

Lemma 2. The linear approximation (Fk,Gk,Hk) of
the discrete nonlinear system (2) and measurements (7)
as required for the EKF-based estimation scheme is an
observable system. Moreover, observability is achieved by
using only the target epipole as measurement.

Proof: Firstly, we verify the property of local observ-
ability, which is given by the typical observability matrix

Ok =
[

HT
k (HkFk)T

· · ·
(

HkF
n−1
k

)T
]T

.

This is a 6×3 matrix built by stacking the following local
observability matrices (LOM) for each measurement

Ocur,k =
αx

e2
cd,k





yk −xk x2
k

+ y2
k

yk −xk Σk + x2
k

+ y2
k

yk −xk 2Σk+x2
k
+y2

k



 ,

Otar,k =
αx

y2
k





yk −xk 0
yk −xk Σk

yk −xk 2Σk





whereΣk = yk∆y,k +xk∆x,k. It can be seen that the matrix

Ok =
[

OT
cur,k OT

tar,k

]T
is of rank 2 and the linear

approximation is not observable for each instant time.

The linearization can be seen as a piece-wise constant
system (PWCS) for each instant timek. The observability
of PWCS can be studied using the so-called stripped ob-
servability matrix (SOM) for a numberr of instant times,
as introduced in [18]. The SOM is defined from the local
observability matricesQk for different instant times as
follows

OSOM,r =
[

OT
k OT

k+1 · · · OT
k+r

]T
.

According to this theory, when it is satisfied thatFkxk =
xk ∀ xk ∈ NULL (Ok), then the discrete PWCS is com-
pletely observable iffOSOM,r is of rankn. This claims that
observability can be gained in a number of stepsr even if
local observability is not ensured, as in this case. It can be
verified that the null space basis of the matrixOk is any
statexk = λ

[

xk yk 0
]T

, whereλ ∈ R. This subset of
the state space satisfiesFkxk = xk, so that, the observability
can be determined throughOSOM,r for somer.

In order to get a smaller SOM, we use the LOM obtained
from the target epipole (Otar,k). This LOM for the next
instant time is

Otar,k+1 =
αx

y2
k+1





yk+1 −xk+1 0
yk+1 −xk+1 Σk+1

yk+1 −xk+1 2Σk+1



 .

The two-step stripped observability matrixOSOM,1 =
[

OT
tar,k OT

tar,k+1

]T
can be reduced by Gaussian elim-

ination to a 3×3 triangular matrix whose determinant is
−2x2

k∆x,k∆y,k + 2xkyk∆2
x,k − 2xkyk∆2

y,k + 2y2
k∆x,k∆y,k.

Therefore, under the assumption of sampling time different
than zero, this matrix is full rank and the linear approxima-
tion (Fk,Gk,Hk) is observable iff non-null velocities are
applied at each instant time. Moreover, a rotational velocity
different than zero is enough to achieve observability iff
ℓ 6= 0, which agrees with the comments after Lema 1.

It is worth emphasizing that both previous Lemmas are
valid for any pair of images, which allows us to exploit
the benefit of changing the measurements online that is
provided by the Kalman filtering approach. In order to drive
a mobile robot to a desired target, we propose to use the
Cartesian controller introduced in our previous paper [8],

with feedback of the estimated posex̂k=
[

x̂k, ŷk, φ̂k

]T

given
by the scheme of the previous section. This controller is able
to control the robot position tracking the following generic
parabolic path
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Fig. 3. Simulation results for some visual servoing tasks using feedback of the estimated pose. The motion of the robot starts from three different initial
locations and for one of them, an obstacle appears and its avoidance in carried out.

yd
k = yi

−yf

2

(

1 + cos
(

π
τst

kδ
))

+ yf , (12)

xd
k = xi

−xf

(yi
−yf )2

(

yd
k − yf

)2
+ xf

where (xi, yi) and (xf , yf ) are the initial position and the
desired final position of the stage, respectively, which is
carried out inτst seconds. By using this path for the robot
position, we can define an intermediate aligned goal in order
to avoid the problem of short baseline when the robot is
reaching the target. In a second stage, the pose is estimated
from the epipoles relating the initial and the current images,
which behave adequately. In this stage only they-coordinate
obeys the sinusoidal reference andxd

k = 0. Notice that,
similarly to how the intermediate aligned location is defined,
we are able to set any other goal through (12). So, this
provides the possibility to avoid an obstacle detected over
the path toward the target, as shown in the next section.

IV. EVALUATION OF RESULTS

The validity of the proposed estimation scheme for servo-
ing tasks is shown via simulations performed in Matlab with
a sampling period of 0.5 s. The epipoles are estimated us-
ing an eight-point algorithm from synthetic omnidirectional
images of size 800×600, which are generated through the
generic camera model [10]. We use our controller proposed
in [8], with ℓ = 8 cm and adequate control gains. Related
to the Kalman filtering, we use small standard deviations
in Nk and Mk, so that good confidence is given to the
measurements. Image noise of standard deviation 0.5 pixel

has been added. We setP0 = diag(52 cm2, 52 cm2, 22

deg2). For efficiency, the simulations are carried out using
only one epipole as measurement.

A. Visual servoing from the estimated pose

Fig. 3(a) shows an upper view of the robot motion on
the plane for three different initial locations. In any casethe
robot is successfully driven to the target in 120 s. In one
case, a fixed obstacle is avoided by defining an adequate
subgoal using (12). We assume that the obstacle detection is
provided accordingly. In Fig. 3(b), it can be seen that in a first
stage the intermediate aligned location (0,-2,0o) is reached at
100 s. After that, the measurements are changed to avoid the
short baseline problem. The two stages can be appreciated in
the velocities of Fig. 3(c). The same translational velocity is
computed for the final rectilinear motion. Note that the veloc-
ities excite the system adequately ensuring observability. As
an example, Fig. 3(d) shows the motion of the image points
for the case with obstacle for a hypercatadioptric camera.
Similar overall results can be obtained with paracatadioptric.
The epipoles computed from twelve image points along the
sequence are shown in Fig. 3(e)-(f) for each case. The epipole
etar is used as measurement during 100 s and after that, when
it becomes unstable, theeini is used for 20 s. During this
time eini changes as the robot moves and observability is
achieved given that the translational velocity is non-null.

Table I shows the final error of the camera-robot pose
obtained as the average of the final pose from 100 Monte
Carlo runs. According to this, the VS task is accomplished
with good accuracy.



TABLE I

FINAL LOCATION REACHING THE TARGET (0,0,0o) FOR PATHS INFIG. 3.

(8m,-8m,0o) (2m,-12m,45o) (-6m,-16m,-20o)

xend (cm) 0.63 (σ =1.11) 0.90 (σ =1.03) -0.90 (σ =0.74)
yend (cm) -0.16 (σ =1.20) -0.54 (σ =0.18) -0.37 (σ =0.27)
φend (o) 0.10 (σ =0.51) -0.10 (σ =0.46) 0.05 (σ =0.12)

B. Performance of the Estimation Scheme

We evaluate the performance of the estimation for the task
with obstacle avoidance, however, similar results are obtained
in general. Fig. 4(a) presents the average state estimation
errors over all 100 Monte Carlo runs for each time step. The
computed error is the difference between the truth state given
by the robot model and the estimated state. It can be seen
that each one of the three estimation errors are maintained
within the2σ confidence bounds. Additionally, a consistency
test is carried out to determine if the computed covariances
match the actual estimation errors. Two consistency indexes
are used: the Normalized Estimate Error Square (NEES) and
the Normalized Innovation Squared (NIS) [20]. In any case,
if the index is less than the unity the estimation is consistent,
otherwise it is optimistic or inconsistent and the estimation
may diverge. Fig. 4(b) shows the average indexes over the
same 100 Monte Carlo runs. According to this, the EKF is
always consistent in spite of the nonlinearities of the state
model and measurement model.

V. CONCLUSIONS

In this paper, we have introduced the epipolar geometry
for dynamic pose-estimation of mobile robots. The robot
position and orientation is recovered using the epipoles as
measurements, with the benefit of a temporal filtering, in
comparison with a static approach, as the essential matrix
decomposition. As main interest of the paper, we present
a comprehensive observability analysis using nonlinear and
linear tools, which leads to propose an efficient position-
based control. Additionally, this is a generic approach that
solves the visibility constraint problem by using any visual
sensor obeying a central projection model. The scheme does
not need a target model neither scene reconstruction nor
depth information. Simulations have proved the good perfor-
mance of the proposed estimation scheme in visual servoing
tasks even when maneuvering for obstacle avoidance.
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