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Abstract— In this paper, we propose to exploit the epipolar a Kalman filtering approach on PBVS has been particularly
geometry for dynamic pose-estimation of mobile robots. T studied in [7]. In a previous work [8], we have introduced
is performed using a filtering approach with measurements  yhq jjeq of pose-estimation for mobile robots through the 1D

given by the epipoles. The contribution of the paper is a noue . .
observability analysis using nonlinear and linear tools tkat leads trifocal tensor as measurement, but the observability gntyp

to achieve an efficient position-based visual servoing (PESj  Of the system has been roughly analyzed.
approach. Additionally, the visibility constraint proble m is Given that a VS task with a mobile robot typically implies

solved for this type of approach by using any visual sensor g significative camera displacement, the use of omnidirec-
obeying a central projection model. This scheme does not neéea tional vision has turned out to be a very good option to keep

target model neither scene reconstruction nor the 3D struatre. . . . . .
The effectiveness of the proposed estimation scheme is avated the target in the field of view [9]. This can be achieved by

via simulations in servoing tasks including obstacles andsing  USing catadioptric imaging systems. The imaging process of
omnidirectional vision. these systems is represented by a unified model [10], since

they have a single center of projection. This has allowed to
|. INTRODUCTION extend some VS schemes based on a geometric constraint to

In the field of visual servoing [1], most of the efforts havebe used with omnidirectional vision. For instance, redeesc
been focused on the enhancement or proposal of imageave exploited the epipolar geometry [11], the homography
based (IB) approaches and less attention has been givBRdel [12] and the trifocal tensor [13] in IB approaches.
to the position-based (PB) ones. Thus, the advantages of! hiS paper proposes to exploit the epipolar geometry for
carrying out a servoing task in the Cartesian space ha@ynamic pose-estimation of mobile robots. This is carried
been wasted, namely, the possibility to define a motion paftit through an EKF-based scheme, which recovers the
in accordance to the geometry of the environment and #§Pot pose (position and orientation) using the kinematic
reduce the dependence on the visual information. motion model of the onboard camera and the epipoles as

Some works have introduced the notion of dynamic estmeasurements. The contribution of the paper is a novel
mation in the control loop for visual servoing (VS) purpasesPPservability analysis using both nonlinear and lineaothe
e.g., [2] and [3]. The former proposes a particular nonlinedVhich leads to achieve an efficient PBVS approach. An
observer to track an object using a two-link planar robo@dditional benefit is that our approach solves the visjbilit
The second paper proposes a filtering approach to estim&@nstraint problem by using any visual sensor obeying a
the pose in 6 DOF of a robot manipulator. Both of the PEFentral projection model. The sch_eme does not need a target
approaches of these papers require a model of the target 4R@del neither scene reconstruction nor 3D structure. The
use the image point coordinates directly as measurement validity of_the e_stlmat|0n is shown through simulations of

In the context of mobile robots, on one hand, an approach tasks including obstacles. _ _
that recovers the robot pose has been proposed using struc! '€ Paper is organized as follows. Section Il describes the
ture from motion in [4]. The authors use the estimated pose [f{nématic motion model of the camera-robot and introduces
a feedback control law to follow a predefined path, while alsg'¢ modeling and the epipolar constraint for generic camera
the 3D structure of the scene is reconstructed. On the othefction Il details the observability analysis from thepepi
hand, dynamic estimation has been also used to recover {Re 9€ometry and presents the estimation scheme. Section
pose of a mobile robot. The authors of [5] propose a KalmalY Shows the performance of the estimation for VS tasks
filtering approach to match a set of landmarks to a priothough simulations and Section V states the conclusions.
map and then to estimate the robot pose from these visual II. MATHEMATICAL MODELING
observations. Different control tasks can be carried oungus A Camera-Robot Model

this scheme: wall following, leader following and position i o
regulation. The Extended Kalman Filter has been used to TNis paper focuses on the problem of estimating the state

recover the pose of a mobile robot and the 3D structure f&f @ differential-drive mobile robot using visual inforn

a homing application in [6]. The effectiveness of app|ymd3_rovided by an onboard camera. Fig. 1 depicts the configura-
tion of the camera-robot system. We assume that the camera
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Fig. 2. Generic model of the image formation and epipolamgetoy (EG)

Fig. 1. Kinematic configuration of the robot with an on-boarehtral  between generic central cameras.
camera.

Let X, and X; be the coordinates of the 3D point
X projected onto the unit spheres of the currdfit and
% = [91(x), g2(x)] u, v = h(x), (1) target frameF,. The epipolar plane contains the effective
. ) T viewpoints of the imaging systent. andC;, the 3D point
being g1(x) = T[_ sing,cos¢,0]" and g2(x) = x a4 the pointst, andX,. The coplanarity of these points
[£cos ¢, —Csin ¢, 1]" smooth input vector fields. The non- leads to the well known epipolar constraint
linear functionh(x) models a vector of measurements that

will be described later. The discrete version of the system X" E X; =0, (5)

1) is the followin . . . . . .
(@) wing being E the essential matrix relating the pair of normalized

Tpy1 = Tk — 0 (Wil cos oy + v singy), virtual cameras. Normalized means that the effect of the
Yrs1 = yk — 0 (wplsingy — vy cos d), known calibration matrix has been removed and eventually,

the cameras can be represented as virtual perspective, Thus
Pr1 = Ok + Owk ) P persp

the epipoles are computed as the right null space of the
where § is the sampling time. In the sequel, we use the@ssential matrix.
notations¢ = sin¢, co = cos¢. The discrete system (2) Fig. 2(b) shows the configuration of a pair of virtual
can be expressed as follows perspective cameras constrained to planar motion withecent
of projection C. and C; respectively. A global reference
frame centered in the origi®©; = (0,0,0) of the target
where the nonlinear functiorf is the smooth vector field viewpoint is defined, so that the current camera location is
given by the right hand terms of (2). It is assumed that th€. = (z,y, ¢). Thez-coordinate of the epipoles relating the
robot state and the measurements are affected by Gausgigirent and target views can be written as a function of the
noisesmy, and n;, respectively. These noises accomplistfamera-robot state as follows

Xpt1 = f (Xg,u) +mg, oy =h(xk) +ne (3)

Mg ~ N(O’Mk)’ Dy~ N (O’Nk) and £ |:mk"in£-,j} = O’ e - « rcotysp — €cn
with M, the state noise covariance alNg, the measurement cur Pyep—asé Teca’
noise covariance. €tar = Qa7 (6)

whereq, is the focal length of the camera in terms of pixel
dimensions in ther-direction. For the case of normalized

~ A generic camera has a single center of projection and igamerasy, = 1. Henceforth, we define the following vector
image formation process can be modeled as a compositiongff measurements

B. Epipolar Geometry (EG) for Generic Cameras

two central projections [10]. The first is a central projenti B (%) = [I1 = Coursh = € ]T @
of a 3D point onto a virtual unitary sphere and the second is a b Fewrs T2 7 Stard

perspective projection onto the image plane. In this work, w [Il. OBSERVABILITY WITH THE EPIPOLES AS
assume the use of generic calibrated cameras, which allows MEASUREMENTS

us to exploit thg repres.entation of the points on the urjit Observability is a structural property of a system that

sphere. Regarding to Fig. 2(a), let us denote a 3D poiRtay affect the convergence of an estimation scheme. This
asX, and its corresponding coordinates Xs Thus, point property specifies if two states are distinguishable by mea-
coordinates on the sphel. can be computed from point gring the output, i.ex; # x2 = h(x1) # h (x2). In

coordinates on the normalized image planand the sensor s section, we aim for showing that distinguishability of

parametet, as follows the state of the system (1) can be achieved by using the
-1 < with % r 1 17 measurement model (7).
Xe=(n"" +£)%, with x = [X ’ 1+£n} : ) There are few works concerning about the state observ-

—t(z244%) ability of mobile robots. On one hand, some of them take
wheren = wram—1 .0 = V14 (1—€2) (22 + y2). advantage of linearized models to analyze the obserwabilit



of the SLAM problem [14]. On the other hand, there also To verify the dimension of the space spanned by these
exist some contributions where a nonlinear observabilitiunctions, the gradient operator is applied to obtain the
analysis is carried out for localization [15] or SLAM [16]. matrix O.,. (9). Given the complexity of the entries of this
Some basic results on the observability from visual measurmatrix, only four rows are shown, however, it can be verified
ment provided by a geometric constraint (the 1D TT) ar¢hat the complete matrix is of rank two. It is required that
reported in [8]. In that work, a linear analysis is used anthe gradient of the Lie derivatives obtained from the target
observability is ensured with three elements of the tensapipole as measuremerita(= e;4,-) provide one additional

In the subsequent, we present a novel and comprehensies linearly independent to achieve observability. These n
observability analysis with a minimum set of measurementsie derivatives are

and appropriate nonlinear tools.

. (6%
Ly ha = Vhy-g1= y—; [y, —2,0] - g1 = _y_;ecn

A. Nonlinear Observability ‘
: : : : Ll hy = th-gg:a—z[y—:vO}-ggz—azed
Firstly, the nonlinear theory for the analysis of continsou 92 g2 Y y2 ©

systems introduced in [17] is used. According to this theory 2 _ 1 _ 2ag
. . . . Lg ha = VLg ha g1 =—coeen
the following observability rank condition can be enunciated y
for the case under analysis. L2 hy = VL) hs-g2= &f (yeen — 2Usdeq)

Definition 1. A continuous-time nonlinear system of the _ _ Y _
form x = [g1(x), g2(x)] u with a measurement vector h(x) By applying the gradient operator, the mat@,, (10) is
is locally weakly observable if the observability matrix with ~ obtained, which effectively provides an additional lifgar

. . T T T
rows independent row to the matri® = [ Of,, OF, | .

A . . T Indeed, the matrix (10) is full rank by itself, which means
0= [VLZY‘-‘” hp(x) 13, p = 1,2 g € N} (®) that the rank condition of Definition 1 is satisfied by using
is of full rank n. the target epipole as unique measurement. In summary, the

The expressiori?, /, (x) denotes theth order Lie deriva- pamera—robot system (1) with both epipoles as m_easurgments
tive of the scalar functiort,, along the vector field;. Thus, S locally weakly observable and this property is achieved
the matrix (8) is formed by the gradient vectord.? h,,(x) even by using only the target epipole as measurement.

that span a space containing all the possible Lie derivative! Nerefore, the three state variables constituting the came

Although the matrix (8) could have infinite number of rows,rObOt pose can be estimated from these two measurements.
it suffices to find a set of rows linearly independent in order ] o ) _ u

to fulfill the rank condition. Locally weak observability is ~1he previous proof implicitly considers the action of both

a concept stronger than observability, which states that oN€locCities, however, we can analyze the effect for each
can instantaneously distinguish each point of the stateespa®n€ Of them. For simplicity, this is done using the current
from its neighbors, without necessity to travel a consitlera €PiPOle as measurement. On one hand, it can be shown from

distance, as admitted by the observability concept. Nbig, t (10) thatdet ([th, VL, hy, VL2 hg]T) = =20,y €cn,
definition is used to verify the following lemma. which means that, when only a translational velocity is gein
Lemma 1. The continuous camera-robot system (1) with ~ @pplied, the matrix loses rank ., = 0. In other words,
both epipoles as measurements (7) is a locally weakly —Observability is lost if the robot is moving forward alongeth
observable system. Moreover, this property is maintained line joining the projection center of the cameras becauge

even by using only the target epipole as measurement. remains unc_hanged. OFherv.vise, observability is guardntee
Proof: This proof is done by finding the space spannegy a translatlonTaI vellochy dn‘fe;er;t tThan ZEro. ?nQ the othe
by all possible Lie derivatives and verifying its dimension hand, det ([Vh2 ,VLg,h3 , VLE,h3 ] = aplfytd(x),
This space is given as with d (x) # 0 for all x # 0. This means that the rotational
- velocity provides observability iff the camera is shiftedrh
Q = (hp, Ly, hp, Ly, hp, LY hp, LY b, ) p=1,2 the axis of rotation { # 0, as assumed), given that in this

First, the Lie derivatives given by the current epipole agituation,etar change§ as the robot rofcates. Tr_lus_, the control
measurement(; — e,,,) are presented. As a good approachstrategy should provide the appropriate excitation, astlea

the search of functions in the Lie group is constrained fo'?on'nu” rotafu.onal velocity, in order to ensure obseriigpi
n — 1, wheren = 3 in our case. for any condition.

B. Dynamic Pose-Estimation Scheme

Lihi = Vhi-gi=oF[y,—0,22+y?] g1 = —an o . o .
€ed €d A discrete Kalman filtering approach is proposed %o be
2 2 _y . . n
Li,hi = Vhi-ga= az% used in order to estimate the robot pase= Lik,gk, Ok
el from the epipoles. An Extended Kalman Filter (EKF) is an
L2 hy = VL! hy-g91 =20s . : : Lo
g1 g1 “ed, effective way to solve this nonlinear estimation problem.
2 b = UL b o — oS0 (2 (22 + y?) — 3leca) The EKF hgs been applied pre_viously in the VS proplem
g2’ = 921192 = Qe 3 [3], [5], [7] without further analysis. This approach prdeis
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. VLll h1 Qg - (y + 5¢ecn) /ecd (Z‘ + C¢8cn) /ecd - (552 + y2 + ezn) /ecd
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generality to the proposed scheme in comparison to nonlinea The linearization can be seen as a piece-wise constant
observers designed for a particular system. So, the wellystem (PWCS) for each instant tinie The observability
known basic form of the EKF is used [20]. The requirecdof PWCS can be studied using the so-called stripped ob-
matrices from the linearization of the camera-robot modedervability matrix (SOM) for a number of instant times,

(2) and measurement (7) are as follows

1 0 A
0 y.k
Fr, = a—f A+:[o 1 —Agg
X | =%,
T I A P
9 —spr —Legy
G = 3L = s
=S L P
- oh e?d““k [y, =k, 23 + v7)
BT oxy, xXEp=%, , B 37:22 [ykv _"Ekvo]
n;,=0 k xp =%,
where A%k = 1) (wk€c¢k + Uks¢k), AyJC =

§(wk€s¢k —UkC(bk) and €cd,k ka(bk — xks¢k. Up

as introduced in [18]. The SOM is defined from the local
observability matricesQ, for different instant times as
follows

[ OF Of, I

T
OSOM,T Ok+7«

According to this theory, when it is satisfied tHatx; =

x, V xx € NULL(Oy), then the discrete PWCS is com-
pletely observable ifO g0, is Of rankn. This claims that
observability can be gained in a number of stepsven if
local observability is not ensured, as in this case. It can be
verified that the null space basis of the mat€, is any
statex, = A [ 2 yr O ]T, where)\ € R. This subset of
the state space satisfiBsx; = xi, S0 that, the observability

to now, we have proved the observability of the cameraan be determined througBson,- for somer. _
robot system with the epipoles as measurement from aln order to get a smaller SOM, we use the LOM obtained
nonlinear point of view. However, since the EKF is basedom the target epipole@,). This LOM for the next

on the previous linearization, an appropriate obserwgbili instant time is
analysis is presented in the following lemma for the linear

approximation ¥y, Gy, Hy).

Lemma 2. The linear approximation (Fj, G, Hy) of
the discrete nonlinear system (2) and measurements (7)
as required for the EKF-based estimation scheme is an
observable system. Moreover, observability is achieved by
using only the target epipole as measurement.

Proof: Firstly, we verify the property of local observ-
ability, which is given by the typical observability matrix
T 17
Oy = { HI (H.Fy) (HyFP ) }

This is a 6<3 matrix built by stacking the following local
observability matrices (LOM) for each measurement

o Yk Tk z3 +2y§ )
Ocurk = —5 Yk —Tp Tkt 1‘;?24- Y |
Cedk | yp —xp  28p+aidys
ow | Y T O
Otark = —5 | Y6 —Tk g
Ye |y —zp 2%

a Ye+1l —Th4l 0

x

Otarkt1 = — Yk+1 Tkl Dt
Yiet1 | yrt1  —Thy1  28pq1

The two-step stripped observability mati®gsor1 =

[ Ol Ol ]T can be reduced by Gaussian elim-
ination to a 33 triangular matrix whose determinant is
—QI%Az_’kAy_’k + 2IkykA?c,k - 2IkykA§,k + Qy%AzkAyk
Therefore, under the assumption of sampling time different
than zero, this matrix is full rank and the linear approxima-
tion (Fy, Gg, Hy) is observable iff non-null velocities are
applied at each instant time. Moreover, a rotational vé&joci
different than zero is enough to achieve observability iff
¢ # 0, which agrees with the comments after Lema 11

It is worth emphasizing that both previous Lemmas are
valid for any pair of images, which allows us to exploit
the benefit of changing the measurements online that is
provided by the Kalman filtering approach. In order to drive
a mobile robot to a desired target, we propose to use the
Cartesian controller introduced in our previousTpaper [8],

with feedback of the estimated pasg= | i, U, qbk given

whereXy, = yrAy k +2r A, k. It can be seen that the matrix py the scheme of the previous section. This controller is abl

O, = [ OL,., OF,: 1" is of rank 2 and the linear

approximation is not observable for each instant time.

to control the robot position tracking the following gereri
parabolic path
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Fig. 3. Simulation results for some visual servoing taskegifeedback of the estimated pose. The motion of the rolastssfrom three different initial
locations and for one of them, an obstacle appears and itdeaee in carried out.

has been added. We sB, = diag(5% cm? 5% cm?, 22
ded). For efficiency, the simulations are carried out using

d _  y—=y ™ f .
v = = (1 +cos (r_tk‘s)) Ty (12)  only one epipole as measurement.
d _ _a'—af d_ .2 f
- =z - + : ,
Tk Gy W —y') A. Misual servoing from the estimated pose

where (z,y") and (z/,y/) are the initial position and the  Fig. 3(a) shows an upper view of the robot motion on
desired final position of the stage, respectively, which ighe plane for three different initial locations. In any case
carried out in7,; seconds. By using this path for the robotrobot is successfully driven to the target in 120 s. In one
position, we can define an intermediate aligned goal in ordease, a fixed obstacle is avoided by defining an adequate
to avoid the problem of short baseline when the robot isubgoal using (12). We assume that the obstacle detection is
reaching the target. In a second stage, the pose is estimajgévided accordingly. In Fig. 3(b), it can be seen that inst fir
from the epipoles relating the initial and the current in&ge stage the intermediate aligned location (0,22i6 reached at
which behave adequately. In this stage only ghepordinate 100 s. After that, the measurements are changed to avoid the
obeys the sinusoidal reference amfl = 0. Notice that, short baseline problem. The two stages can be appreciated in
similarly to how the intermediate aligned location is define the velocities of Fig. 3(c). The same translational velotst
we are able to set any other goal through (12). So, thisomputed for the final rectilinear motion. Note that the ¢elo
provides the possibility to avoid an obstacle detected ovéfes excite the system adequately ensuring observabiity
the path toward the target, as shown in the next section. an example, Fig. 3(d) shows the motion of the image points
for the case with obstacle for a hypercatadioptric camera.
IV. EVALUATION OF RESULTS Similar overall results can be obtained with paracatadiopt
The validity of the proposed estimation scheme for servdFhe epipoles computed from twelve image points along the
ing tasks is shown via simulations performed in Matlab wittsequence are shown in Fig. 3(e)-(f) for each case. The epipol
a sampling period of 0.5 s. The epipoles are estimated us, is used as measurement during 100 s and after that, when
ing an eight-point algorithm from synthetic omnidirectgdn it becomes unstable, theg,,; is used for 20 s. During this
images of size 809600, which are generated through thetime e;,,; changes as the robot moves and observability is
generic camera model [10]. We use our controller proposexthieved given that the translational velocity is non-null
in [8], with £ = 8 cm and adequate control gains. Related Table | shows the final error of the camera-robot pose
to the Kalman filtering, we use small standard deviationsbtained as the average of the final pose from 100 Monte
in N; and My, so that good confidence is given to theCarlo runs. According to this, the VS task is accomplished
measurements. Image noise of standard deviation 0.5 pixgith good accuracy.



TABLE |
FINAL LOCATION REACHING THE TARGET (0,0,(?) FOR PATHS INFIG. 3.

| | @m-8m0) [ (2m,-12m,48) [ (-6m,-16m,-20) |
Topg (€M) | 0.63 @ =1.11) | 0.90 ¢ =1.03) | -0.90 g =0.74)
Yena (CM) | -0.16 @ =1.20) | -0.54 @ =0.18) | -0.37 @ =0.27)
bena (°) | 0.10 @ =0.51) | -0.10 ¢ =0.46) | 0.05 g =0.12)

B. Performance of the Estimation Scheme

We evaluate the performance of the estimation for the task
with obstacle avoidance, however, similar results areinbth
in general. Fig. 4(a) presents the average state estimation
errors over all 100 Monte Carlo runs for each time step. The
computed error is the difference between the truth statengiv
by the robot model and the estimated state. It can be seen
that each one of the three estimation errors are maintained
within the 20 confidence bounds. Additionally, a consistency
test is carried out to determine if the computed covariances
match the actual estimation errors. Two consistency inslexe
are used: the Normalized Estimate Error Square (NEES) apg,
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the Normalized Innovation Squared (NIS) [20]. In any caseyver 100 Monte Carlo runs for the initial locatiqp-6, —16, —20°).

if the index is less than the unity the estimation is conatste
otherwise it is optimistic or inconsistent and the estiorati
may diverge. Fig. 4(b) shows the average indexes over thél
same 100 Monte Carlo runs. According to this, the EKF is
always consistent in spite of the nonlinearities of theestat [7]
model and measurement model.

V. CONCLUSIONS (8]

In this paper, we have introduced the epipolar geometry
for dynamic pose-estimation of mobile robots. The robot(®!
position and orientation is recovered using the epipoles as
measurements, with the benefit of a temporal filtering, ifLo]
comparison with a static approach, as the essential matrix
decomposition. As main interest of the paper, we presepy;
a comprehensive observability analysis using nonlinedr an
linear tools, which leads to propose an efficient positio 101
based control. Additionally, this is a generic approach th
solves the visibility constraint problem by using any visua
sensor obeying a central projection model. The scheme ddéd
not need a target model neither scene reconstruction nor
depth information. Simulations have proved the good perfof14]
mance of the proposed estimation scheme in visual servoing
tasks even when maneuvering for obstacle avoidance. ;5
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