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Abstract— This paper presents an image-based approach to  We propose in this paper an image-based approach to
perform visual control for differential-drive robots. We u se for perform visual servoing for differential-drive robots. &h
the first time the elements of the 1D trifocal tensor directly visual control is performed using the value of the elements

in the control law. The visual control utilizes the usual te@h- . . .
by showing strategy without requiring any a prior knowledge of the 1D trifocal tensor directly in the control law. The

of the scene and does not need any auxiliary image. The main @pproach utilizes the usual teach-by showing strategyowith
contribution of the paper is that the proposed two-steps cotiol  requiring any a prior knowledge of the scene and does not
law ensures total correction of both position and orientaton  peed any auxiliary image. We propose a two-steps control
without switching to any other visual constraint rather than law, the first step performs position correction and the sdco

the 1D trifocal tensor. The paper exploits the sliding mode : . . .
control technique in a square system, ensuring stability ad ~ °N€ corrects orientation. In the first step a tracking pnoble

robustness for the closed loop. The good performance of the IS Solved by using sliding mode control. This controller is
control system is proven via simulations. designed using the well known methodology for a square

| INTRODUCTION system, which allows to develop a_(_:lear stab|I|_ty proof for
the closed loop system. Once position correction has been

An interesting research field is concerned about Visu%ached, we use a single element of the tensor to perform
servoing for mobile robots, which can allow them to improvgyientation correction. Our approach ensures total ctiorec
their navigation capabilities in a single robot task or inyf the robot location even for initial locations where epyo
cooperative tasks. A way to face the problem of extractingeometry or homography based approaches fail.
information from images is by using a geometric constraint The paper is organized as follows. Section I specifies the

relating features from such images. Nowadays, two geomelaihematical modeling of the camera, the mobile robot and
ric constraints have been well exploited to control mobilghe geometric constraint. Section Il details the desigor pr
robots, epipolar geometry and the homography model. Sorpgqre for the control law. Section IV presents the stabilit
examples of epipolar visual control are [1], [2], [3] and.[4] 5nalysis. Section V shows the performance of the closed-

The homography model has been used in several works, i3, control system via simulations and finally, Section VI
instance [5], [6]. However, these geometric constraintseha provides the conclusions.

both serious drawbacks. Epipolar geometry is ill-conditid

with short baseline and with planar scenes. The homography Il. MATHEMATICAL MODELING
model is not well defined if there is no dominant planes in
the scene or with large baselines. A. Camera Model

In order to overcome the drawbacks of the typical ge- \we consider the internal camera calibration matrix as
ometric constraints, we propose a novel approach basgflows

on the 1D trifocal tensor. This tensor completely describes

the relative geometry of three views and it is independent ar s o
of the observed scene [7]. The effectiveness of applying K=| 0 o u (1)
the trifocal tensor to recover location information hasrbee 0o o0 1

proved in [8] and [9]. The first work uses conventional

cameras and artificial landmarks on a plane while the secomderea,. and o, represent the focal length of the camera
one uses both conventional and omnidirectional cameras. terms of pixel dimensions in the: and y direction
Both of these works propose the trifocal tensor to be usg@spectively,s is the skew parameter ard,, yo) are the

for initialization of bearing-only SLAM algorithms. A reae  coordinates of the principal point. We have that= fm,
work [10] presents a visual control for mobile robots basednda, = fm,, wheref is the focal length in distance units
on the elements of a 2D trifocal tensor constrained to andm,, m, are the pixels per distance unit. We assume that
planar motion. This work shows good performance reachirigje principal point is in the center of the image, = 0,

the target location, however the stability properties & thyo = 0) and there is no skews = 0). If we denote the
controller are not very clear. extrinsic parameters b§, an image is denoted hy(K, C).
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C; as the moving camera. When location of cam€rma=

z —sing 0 v C., this is (z2, 20, ¢2) = (21,21, ¢1), the relative location
zZ 1= cosg 0 [ w } - (2)  between these cameragjs = t,,, t., = t.,, and the values
¢ 0 1 of the tensor elements produce the following relationships
Thus, x = (z,2,¢)T represents the state of the robot
x (z,2,0) P Ti11 = 0, T112 =0, Ti21 +To11 =0, (4)

system, wherer and z are the coordinates of the robot
position in the planeg is the robot orientation, expressed Tz = 0, Toz2 =0, Tizz + T212 = 0.

as the angle between the robot body-fixedxis and the  \yhen |ocationsC, = Cj, this is (z2, 22, ¢2) = (0,0,0),
world z-axis, andv andw are the translational and angularine rejative location between these camerassis= 0, ¢, —
input velocities, respectively. is in the direction of the robot ) an( it gives the following relationships
body-fixedz-axis andw is about the robaog-axis, i.e. rotation

in the plane. From now on, we use the notatigh= sin (3, Tii = 0, Thoe =0, Tiio+ Tho1 =0, (5)
of = cos 3. To1n = 0, Tooo =0, To12 + T01 = 0.
C. The 1D Trifocal Tensor In order to design a controller to drive the robot to a

The trifocal tensor relates geometrically three views. Itarget location, we have to consider the corresponding final
only depends on the relative locations of the observed scetensor values as a control objective. Also, we have to take
in the three views. Let us define a global reference systeimto account that the control cannot be initiated with no
as depicted in Fig. 1(a) with the origin in the third cam-information from the tensor.
era. Then, the camera locations with respect to that globg,l D ical f he 1D trifocal
reference areCi — (z1,21,61), Co — (23,29, d2) and . Dynamical system from the 1D trifocal tensor
Cs = (x3,23,¢3) = (0,0,0). We assume that the motion This dynamical system involves the robot model and
is constrained to be planar. The relative locations betwedflates the change of the tensor elements given by a change

cameras is defined by a local reference frame in each camétathe velocities of the robot. It is obtained getting the
as is shown in Fig. 1(b). derivatives of the tensor elements in (3). In practice, the

trifocal tensor has an unknown scale factor and it varies

5 ¢.—L3 as the robot moves. To define a common scale during
x  m| x e ] = the navigation, each element of the tensor is divided by a
P I c I Gy normalizing factor as follows
I I | 4 s
F A ot Tijk = 7 (6)
Z z | N7 .
1i | ! Z: where T, are the trifocal tensor elements computed from
ﬁi C; j& C o metric information of the camera location$;;, are the
| Uz normalized elements aridy is a suitable normalizing factor
t also computed from metric values. Then, the normalized
C, O dynamical system is the following
(a-) (b) Tlll = %U + T'121(,()7 (7)
Fig. 1. a) Global reference definition, (b) Relative looatibetween :
Cagmeras_ ( ) ( ) T112 - _5"?\% v+ T122w7
. . . . T = —Tihw,
The expression of the tensor as it is obtained from metric 2 e
information of the three views is Tm - ;Tll?wv
i - Tor1 = Fav+Thaw,
T — Tinn T 3) : STg
! | Th21 Thoe | Tz = 7uv+Timw,
_ [ tasde —tasdr —tachr +toh } Ty = —Tonw,
L tz1 C¢2 + th‘?(bl tz1s¢2 - th C(bl ’ T222 — _T212w.
_ Torr Toiz . . .
T, = Tyo1  Thoo It is worth noting that the normalizing factor can be seen
u - as a gain for the translational velocity inpu) @nd therefore,
| Ttmsf2 —tpchr fa 02 —tp50n } the normalization may be substituted by a suited gain in the
| —terCP2 Ftoy 0P —ta, 502 +tay 5 v input channel. It allows to avoid the problem of having
wheret,,, = —z;c;—2i8¢;, t,, = 1;5¢;—zico; fori =1,2. Ty = 0 if the normalizing factor is not well chosen. In (7)
] . ] . there are four elements that do not depend oih means that
D. Values of the Trifocal Tensor in Particular Locations a change inv does not produce a variation in these tensor

We consider camera two((;) as the one that moves, elements and consequently, only orientation correctian ca
however, similar overall results can be obtained congigeri be performed using such elements.



F. Selecting suited outputs This system has unique solutian, = 0, ¢, = 0 for

The problem of taking three variables to desired valuedy value of¢, (det(-) = —1). Thus, it is accomplished
(toy,tsy,sin o) = (0,0,0) can be completely solved with (fz2,tz2,sin¢2) = (0,0,sin¢y), which ensures position
at least three outputs. However, it is also possible to firal tweorrection ¢» = 0, 22 = 0). To take the value of both
equations to take two variables to their desired values af/fputs to zero in a smooth way we design a robust trgcklng
then a third one remains as a DOF. We propose to avoid tgentroller. bet us define the tracking error @s= y1 — yi,
first case because defining more than two outputs generaes= ¥2 — ¥5. Thus, the error system is given as
a non-square system, in which, its non-invertibility makes chr )

—7w T2 =T v yd
b, wl = ea |- ©
Y2

difficult to prove stability of the control system. { €1 ] - o3
Taking into account 1) the values of the tensor elementsL €2 _T;;'; Tazo — Ton
in the final location, 2) the solution of the homogeneous . . .
linear system that is generated when the outputs are equall\t/i)Th's system has the for@ = M (T, (bl.) u- yd’. where
zero and 3) the invertibility of the matrix relating the outp (T, 1) correspon(_js to the decoupling 'T”a”'x agd
dynamics with the inputs, we can state: _represents a knpwn d|sturba_\nce. We ne_ed to ||_1vert the_ system
. It is possible to design a square control system Whicw or_der to assign the desired dynamics using the inverse
) . ; matrix
can correct orientation and depth error, but it leaves the
lateral error as a DOF. This lateral error cannot be cor- .
sP1 co1

rected later considering the non-holonomic constraint M~ (T, ¢1) = Jot(M)
of the robot. Thus, this case does not have practical By T 10)

Tooo —To11 Ti11 —Thoo

interest. 1 !
« It is not possible to design a square control syster\r’1vhere 77 (D22 = Thnn) sén + (o —Tom)edn] - =
which allows to correct orientation and lateral errordet (M) and TR = \/(ngl)Q +(T1m,)°. At the final
leaving the depth error as a DOF. location Ty = —tz1, To12 = te1, Ti21 = to1, T2 = —t21

« It is feasible to design a square control system whichind the other elements are zero. The proposed normalizing
can correct depth and lateral error, leaving the orientdactor is never zero; howevedet(M) = 0 at the final
tion as a DOF. The orientation error can be correctefdcation. This entails the problem that the control inputs
in a second step considering that the robot uses iacrease to infinite as the target is reached. We face this
differential drive. We concentrate in exploiting thisproblem by switching to a bounded control law as is
possibility. described later.
. 1D TT-BASED CONTROLLER DESIGN We treat the tracking problem as the stabilization of the
error system in (9). We propose a robust control law to solve
We present the development of a two-steps control la

Whe tracking problem using sliding mode control [11], which
which firstly drives the robot to a desired position and theﬂas been glfeady applie(? in vis?JaI control [4] EA gyommon

corrects its orientation. Thg first step |s_based on solvmg\,'f}ay to define sliding surfaces in an error system is directly

tracking p_rc_>b|em for a nonlinear system In order to correct to take the errors as sliding surfaces, in such a way that, if
and 2 posr?ons. The second sf[ep uses direct feedback frOmere exist switched feedback gains that make the states to
a tensor element to correct orientation. evolve ins = 0, then the tracking problem is solved.

A. First Step Controller - Position Correction

d
From now on let us define the initial location of the robot s = [ o1 } = [ “ ] = { 1 ] . (11)
to be (z1, 21, ¢1), the target locatiorfzs, 23, ¢3) = (0,0, 0) 52 2 Y2 =
and(xs (t), 22 (t), ¢= (t)) the current location, which varies  We use these sliding surfaces and #ueivalent control
as the robot moves. The goal is to drive the robot to the targeiethod in order to find switched feedback gains to drive the
location, this is, to reaclizs, 22, ¢2) = (0,0,0). The robot state trajectory t& = 0 and maintaining it there. From the
starts at the particular condition given in (4), and it sloul equations = 0, the so-called equivalent control is
achieve the condition given in (5). The following sum of Uey = M~ y4 (12)
normalized tensor elements are selected as outputs “ '

A control law that ensures global stabilization of the error
system has the fornu,, = ueq + gisc, Whereug;s. is a

yi = Tuet T, (®) two-dimensional vector containing switched feedback gjain
y2 = Torz + Tz We propose these gains as follows
We can see from (5) that these outputs go to zero as the e
robot moves to the target, and when = 0, y, = 0 the Wyjee = M1 —ki"sign (s1) (13)

SM oo
following linear system is given —k3™sign(sz)

where k5™ > 0 and k5™ > 0 are control gains. Although
Tiio+Tio1 | | sp1 cér tew | | O ug,, can achieve global stabilization of the error system, high
Toro+Tho1 | | co1 —sor t., | | 0| gains may be needed, which can cause undesirable effects.



To alleviate this issue we add a pole placement term in tH& Second Step Controller - Orientation correction

control law Once position correction have been reached>( 7),

k 0 < we can use any single tensor element whose dynamics
u, =M""! { 01 ke } [ ! } (14) depends onw and its final value being zero. We select the
2 52 dynamicsTiss = —Th1ow. A suitable inputw that yields
wherek; > 0 and k; > 0 are control gains. Finally, a 7122 exponentially stable is
decoupling-based control law that achieves robust global
stabilization of the system (9) is as follows w =k, %i;, t>T1 (18)

where k, > 0 is a control gain. This angular velocity

gy = [ Udb ] = Ueq + Ugise + Uy = M [ u1 ] (15) assigns the following dynamics t@)25, which is clearly
Wdb u2 exponentially stable
where uy = y? — kfmsign (81) — k181, and Uy = yg — T122 = —Ti1o (kw 5122) = —k,Tan. (19)
112

kS sign (s2) — kasa.
Note that this control law depends on the orientation of the Note that (18) never becomes singular becalisg =

fixed auxiliary camera. This orientation has to be computedt.; cos g, for ¢ = 7 and it tends tdl11o = —t,1 # 0 as

only in the initial location and can be obtained from thefinal value.

epipoles that relates the initial and the target images. Any

uncertainty in this orientation can be overcome by using the IV. STABILITY ANALYSIS

robust control law in (15). Moreover, a fix value can be used The first step controller is based on zeroing the defined

as is shown in Table | of the section V. outputs, so when these outputs reach to zero the so-called
1) Solving the Singularity: The control law in (15) utilizes zero dynamicsin the robot system is achieved. Zero dynamics

the decoupling matrix which presents a singularity probleris described by a subset of the state space which makes the

for the final condition. We can note from (10) that theoutput to be identically zero [13]. In the particular case of

singularity affects to the computation of both velocitiesthe robot system (2) with output vector (8), this set is given

howeverv tends to zero as the robot reaches the target. &s follows

keepw bounded and the outputs tracking their references, we

propose to commute to a direct sliding mode controller when . T

det(M) is near to zero. This kind of controller has been zm = {[ w22 G ] =0y = O}

studied for output tracking through singularities [12] and _ {[ 0 0 6 ]T bo € R}.

has been applied previously [4]. For this case, the bounded ’

sliding mode controller is as follows Zero dynamics in this control system means that when the

, chosen outputs are zero, theand z-coordinates of the robot
u, = [ Ub ] — [ M sign (s1) (16) are corrected, but orientation may be different to zero.The

Wh —N sign(sz g(T)) this zero dynamics yield%122 = ¢, sin ¢, and therefore,

whereM andN are suitable gains, angT) will be defined When we m,adeQQ =0 ther,“b? = nm With n € Z, and .the.
in the stability analysis (section IV). It is define by achirey orlentat_lon is corrected. It is clear the exponential ditgbi
the negativeness of a Lyapunov function derivative. Th8f Z122 in the second step (19) for ary, > 0 and we focus

control law in (16) locally stabilizes the system (9) and i€N Proving stability for the tracking control law.
always bounded. Proposition 1. A commuted control law that combines the

2) Desired Trajectories: The objective of tracking a ref- decoupl_ing—based control in (15) by switching to the bowhde
erence is to take the outputs to zero in a smooth wagPntrol in (16) whenevefdet (M (T, ¢1))| < Th, whereT),

and consequently, the robot performs a smooth motion 5 a suitable threshold value, achieves global stabibnadif

a desired time. We propose the following simple referencetge system in (9). o
Proof: For a sliding mode controller we have to prove

o . the existence of sliding modes. This means to develop a
T % (1 + cos (—t)) ,0<t <7 (17) stability proof to know if the sliding surfaces can be reathe
T in a finite time and the state trajectory can be maintained

yd = 0 t>T1 . -
1 e - there. Let be the natural Lyapunov function for a sliding
y2d — T212;T221 (1 + cos (_t)) ,0<t< 7 mode controller
T
y‘j = 0, t>T1

V=Vi+Vy, Vi =3si, Vo=3s3 (20)
wherer is the time to reach the target. Note that althouQQ/hich accomplishV/(s1 = 0, s5 = 0) = 0 and V > 0 for
initially the current image is the same than the starting, ong . £0, 59 40 ! o2

there is enough information in the 1D trifocal tensor to have ! s '

well defined references (see (4)). V =Vi+ Va = 5181 + s280. (21)



Let analyze each term of (21) for the decoupling basedontrol gainsi’/ and N are higher. Due to the bounded
controller in (15). After some simple mathematical simplifi control law is also a switching one, the commutation from

cations we have

V1 = S (Ul - yf) )
Vio= s (98— kimsign (s1) — kisy — i),
vV, o= —k5™ 1| — K57
VQ = 2 (Uz - yg) )
Vo = so(9d—kimsign (s2) — kosa — 4),
Vo = k5™ |sal - hash
vV, and V, are negative definite<{ 0) iff the following

inequalities are guaranteed for all # 0, sy # 0.

sm
kl

sm
k2

> Oaklzoa
> 0, ks >0.

(22)

the decoupling-based to the bounded one does not affect
stability of the control system. The first controller ensure
entering to the attraction region of the second one. Once
sliding surfaces are reached for any case of control law, the
system’s behavior is independent of matched uncertainties
and disturbances [11]. Uncertainties in the system (9) due t
¢4 fulfill the matching condition, and as a result, robustness
of the control system is accomplished. ]

V. SIMULATION RESULTS

In this section, we present some simulations of the overall
control system as is established in the Proposition 1 for the
first step and using (18) for the second one. Simulations
have been performed in Matlab/Simulink. The results show
how the main objective of driving the robot to a desired pose
((0,0,0) in all the cases) is attained regardless of reaching the
singularity of the decoupling based control law, that isefhc

ThereforeV’ < 0 iff both inequalities in (22) are fulfilled. yp by switching to the bounded control law. The 1D trifocal
Global convergence to the sliding surfaces can be achieveghsor is computed from metric information; however, it may

Now, let develop the existence conditions of sliding modege done using a five-matches method as in [9]. For the
for the bounded controller (16). The same Lyapunov functiogontrollers, the time to reach the target positio) i6 fixed

in (20) is used, and for each term of (21) we have
Vl = —M%\;m |s1]
+51 ((Th22 — Tin1) (=N sign(sz g(T))) —4),
S92 (—M;‘—;V,]f” sign (s1) — yg)
=N |s2| (Ta22 — To11) sign (g(T)).

Let be A = —N (Tiz — Th11) sign(s2 g(T)) — y¢
and B = -39 sign (s;) — yd. In order to enforce

negativeness o, for some value ofV, the functiong(T)
have to bey(T) = Tee2 — T211. Hence, we have

‘./2:

Vi =
‘./2:

—M%&Sﬁm [s1] + s14,
—N |sa| |Tao2 — To11| + s2B.

We can see that

Vo< - (M ja)) s,
Vo < —(N |Taoo — Tons| — |B) |2l

Vi and V, are negative definite<( 0) iff the following
inequalities are assured for all # 0, s2 # 0.

|B|
N > [T222—T211]’ (23)
T'Vn‘A‘
M > —cgs o

ThereforeV < 0 iff both inequalities in (23) are fulfilled.

to 100 s, the threshold to switch to the bounded conffp) (
is fixed to 0.04, and control gains are sekto= 0.5, ks = 2,
k™ =0.02, k3™ =0.01, k, = 0.4, M =0.1, N = 0.05.

Fig. 2 shows the paths traced by the robot and the state
variables evolution from four different initial location¥he
thick solid line begins from (-8,-12,-33.6Q the long dashed
line from (-4,-14,-24), the solid line from (0,-10,9, and
the short dashed line from (2,-19%)5In the paths of Fig.
2(a) we can differentiate between three kind of autononyousl|
performed robot motion. The solid lines correspond to a
rectilinear motion to the target, while the long dashed line
and the short dashed line both describe an inner curve and
an outer curve before to reach the target respectively. The
rectilinear motion is obtained when the initial rotation is
such thatt,; = t,2 = 0, which implies that the robot is
pointing toward the target. The inner curve is generatedwhe
the initial rotation is such that,; = ¢,» > 0 and the outer
curve when the initial rotation is such that; = ¢, < 0. In
both later cases the robot performs autonomously an inereas
in rotation, which is efficiently corrected in the secondpste
after 100 s, as can be seen in Fig. 2(b).

z(m
z o

4 (deg)

The bounded controller does not need any information of .| : & 5 — =

system parameters and thus, its robustness is implicit.
According to the existence conditions of sliding modes,

(@)

Time ()

(b)

the bounded controller (16) is able to locally stabilize theig. 2. Resultant paths and state evolution (a) Paths on: the: plane.

system (9). Its attraction region is bigger as long as thé) State variables of the robot.



We can see in Fig. 3(a) that both outputs are driven to zero We can compute the trifocal tensor from omnidirectional
in 100 s for all the cases. This is achieved by using boundedmeras [9], so, we can assume that we have no restriction
inputs, which are presented in Fig. 3(b) for the case (-4in the field of view, and consequently, the large rotatiort tha
14,-24). Both control inputs commute to a bounded valughe robot performs in the outer curve motion case can be
around 83 s due to the determinant of the decoupling matroarried out. Another option to keep the target in the field
is less than the fixed threshold. We can also see how tloé view is to perform a initial rotation in order to reach the
angular velocity presents an exponential decay after 100 gynditiont,; = ¢, = 0, and then, to execute the rectilinear
which takes the elemerif;o> to reach zero as can be seermmotion to the target. This condition is easily detectable by
in Fig. 4. This forces the orientation to decrease with a fixedheckingTs2; = 0 and T522 = 0.
exponential rate, whose settling time is approximatelyp12. A video showing the overall control system performance

s (6/ky).
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Fig. 3. Outputs for the four cases and an example of inputavbeh (a)
Outputs. (b) Inputs for initial location (-4,-14,-2%
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e w o w @ w v s 6w % W w
Fig. 4. Tensor elements evolution far;.
TABLE |
FINAL LOCATION FOR THE PATHS INFIG. 2.
(-8,-12,-33.7) | (-4,-14,-24) | (0,-10,0) | (2,-19,-5)
(m,my) (m,my) (mm?) | (mm?)
[ Final locations considering the initial orientatighas known. |
z (cm) | 0.0299 0.7873 0 0.7525
z (cm) | 0.0314 0.5758 -0.1454 | 1.6134
¢ (©) -0.7235 -1.1477 0 -0.3081
| Final Tocations fixingg = 0 in the controller. |
z (cm) | 0.0877 0.7041 0 0.5639
z (cm) | 0.1032 0.7197 -0.1454 | 1.6887
¢ () -0.8248 -0.9436 0 0.0254

8
Table | shows that the target location is reached with goocg ]

has been attached.

VI. CONCLUSIONS

In this paper we have presented a novel image-based
approach to perform visual control for differential-drive
robots using the elements of the 1D trifocal tensor directly
in the control law. To the authors’ knowledge, this is thetfirs
application of the 1D trifocal tensor in visual servoing.eTh
visual control utilizes the usual teach-by showing strateg
without requiring any a prior knowledge of the scene and
does not need any auxiliary image. Our main contribution is
that the proposed two-steps control law ensures total corre
tion of lateral error, depth and orientation without nedgss
of switching to any other visual constraint rather than tbe 1
trifocal tensor. In the first step, we solve a tracking prable
for a non-linear square system using sliding mode control.
This provides robustness against matched uncertaintigs an
disturbances. In the second step, a single tensor element is
used to perform orientation correction. The effectivenafss
our approach is tested via simulations.
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