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Abstract—This paper presents a solution to the problem of
optimizing parameters (gains) of a walking control scheme of a
biped robot with feet. The problem is addressed using Differential
Evolution, a generic optimization method not dependent on math-
ematical properties of the fitness function. For the optimization
of control parameters, we propose and compare three different
mono-objective fitness functions and two different encodings of
optimization variables that were evaluated in simulation. We have
introduced an explicit management of important constraints like
joint limits, center of pressure and energy consumption, in a
mono-objective formulation. The explicit management of these
constraints has allowed to obtain improved results than those
obtained by an expert.

Index Terms—biped robot, walking control optimization, Dif-
ferential Evolution.

I. INTRODUCTION

Within the field of robotics, there is a wide variety of ways
to make a robot move on a surface. Common ways are by
means of wheels, chains and legs. The locomotion of systems
that use legs to move is, in general, very complex [1]. We will
focus on the study of biped robots, which are characterized by
their mobility from two legs. One of the challenges of this kind
of robots, due to the complexity of mathematical model; is to
generate a controller that is efficient and robust [2]. An issue
with biped robots control is the inherent instability of the two
legged motion. The biped robot walking control consists in
enforcing a cycle of two phases: a single-support phase where
one leg is fixed in contact with the ground and the other leg
swings from behind to the front until an instantaneous double-
support phase occurs where both legs touch the ground. The
stability of this walking pattern depends on the appropriate
convergence to desired values of some control variables, for
instance, the swing foot position must describe a parabolic
motion [3]. The convergence in turn depends on the control
strategy and the good tuning of control parameters (gains).

In the literature, several models of mechanisms assumed
to move in a plane (planar bipeds) have been considered
with feet [4], and without feet [5]. The first models are
more realistic since important effects of the reaction force
on the ground can be considered when the feet are included.
Through the years several control techniques have been used
to control the biped gait. Among them, one of the most helpful
is sliding mode control [6]. This control technique stabilize
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electromechanical systems subject to external perturbations.
Classical sliding mode control has been used in [5] but with
the issue of yielding discontinuous control signals. In the
literature the called second-order sliding mode control [7]
has been proposed to solve this issue. These control techniques
require a tunning of their parameters to achieve their control
objectives. Usually, this tunning is performed by an expert by
trial-and-error based on the performance of the convergence of
some important variables. This task is complicated and time
consuming; a bad tunning can yield that the robot is not able to
walk [3]. Thus, an automatic strategy to determine appropriate
control parameters is desirable in walking control.

In the field of optimization, in the last fifty years, several
different problem solving methods belonging to the group
of metaheuristics techniques have appeared. Metaheuristics
techniques are search procedures that are based on relatively
simple rules inspired in nature [8], that have presented great
performances in solving complex problems (e.g. multi-modal
or non-linear problems). These techniques try to leave from
local optima, orienting the search at every moment depending
on the evolution of the search process. In general, the use of
metaheuristics algorithms in humanoid robotics seems well
motivated, since these methods can be implemented even
in cases where a complete dynamic model of the system
under study is either not available or too complex to be
useful [9]. Comparing metaheuristics with classical optimiza-
tion processes in robotics [10], metaheuristics allow great
freedom when modeling a fitness function. One of the most
widely applied method in the field of continuous optimization
is Differential Evolution (DE), this is a simple yet efficient
population-based metaheuristic. Since its inception, it has
yielded remarkable results in several optimization competi-
tions [11]. In addition, it has been successfully applied to
demanding practical optimization problems [12]. DE has been
used successfully in the field of robotics. For example, it was
used to optimize the movement of a small bipedal robot in
locomotion on flat terrain [13], and in more complex routes,
e.g., crossing obstacles [14].

This paper addresses the problem of optimizing control
parameters of a given walking control scheme for a planar
biped with feet. The optimization parameters correspond to
control gains of a torque control with auxiliary input given by
a continuous second order sliding-mode control. We propose
to use DE in order to have a generic optimization method
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not dependent on mathematical characteristics of the fitness
function, like differentiability. We have compare the results
for three different mono-objective fitness functions and two
different encodings of optimization variables. We have found
that our automatic selection of control gains have improved
the performance of the walking task with respect to a solution
given by an expert and reported in [3]. A contribution
with respect to other works on optimization of walking con-
trol is the explicit management of important constraints like
joint limits, center of pressure and energy consumption in
a mono-objective formulation. This management of physical
constraints has allowed to obtain better results than those
obtained by an expert without an arbitrary increment of the
energy consumption.

The paper is organized as follows. Section 2 summarizes the
robot model, physical constrains for walking, and the feedback
control used in this paper. Section 3 details the optimization
problem, defining both the fitness function and the proposed
optimization method. Section 4 shows results and statistics of
the optimized parameters and simulations of the best cases of
robot walking. Finally, in Section 5, we give conclusions.

II. ROBOT MODEL AND CONTROL

This paper is based on the previous results of [3], where
a complete model and walking control of a biped robot is
detailed. In this section, we summarize the important points
of that work to later specify the optimization aspects.

The biped robot considered in this work has the following
physical features and is depicted in Fig. 1:

• It consists of 7 links (a torso, 2 tibias, femurs, and feet)
• Its motion is constrained to the sagittal plane, which is

identified with a vertical xy-plane.
• It has 6 joints (2 ankles, 2 knees, and 2 hips), which are

one-degree-of-freedom rotational actuated joints.
This structure implies that we have a fully actuated robot,
meaning that each one of the joints has associated a torque τi
(control input) as shown in Fig. 1(a) and a configuration angle
qi (see Fig. 1(b)). The simulation of the robot model requires
to solve 6 second-order nonlinear differential equations.

A. Constraints for Walking

To guarantee the correct walking in all instants of time, the
following important constraints must be considered.

Joints Constraints: These constraints refers to the con-
figuration angles qi, which must be limited and accomplish
relationships between them to generate feasible robot config-
urations during walking. In [3] some joints constraints are
given for the swing foot, however it is also necessary to add
constraints for the angles of the support foot. Fig. 2 shows
feasible and non-feasible configurations for the support foot,
as well as the angles that are formed with these configurations.
Therefore, adding these constraints to those described in [3],
we obtain the following joint constraints that must be satisfied
to obtain feasible walking configurations:

| qi |<
π

2
, q4 < q3, q1 < 0, q2 > 0, q2 ≥ q1 (1)
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Fig. 1: Scheme of the 7-link biped robot. Taken from [3].
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Fig. 2: Different support foot configurations: (a) feasible and
(b) non-feasible.

Dynamic Constraint: The model detailed in [3] can be
validated by verifying the condition of the center of pressure
(CoP). The CoP represents the point at which the distributed
foot-ground reaction acts and must be bounded as follows:

CoP :=
τ1
Ry
s
∈ [−l0, l0] (2)

where l0 is the mean length of the support foot’s link, Ry
s is

the vertical component of the resultant ground reaction force,
and τ1 is the torque applied in the support foot’s ankle [3].

Energy Constraint: Additionally, we include an energy
constraint, because it is an important factor to take into
account. The energy can be calculated with the torque vector
τ , as:

energy := τT · τ (3)

where τ := {τ1, · · · , τ6}. We are interested in ensuring that
the energy does not exceed an upper limit.

B. Walking Control

A set of virtual constraints (VC) on the joint’s positions are
added to guaranty a stable gait [3]. A VC is considered as
the relationship between the joint’s variables that are added
through a feedback control [1]. The VC coordinate the
evolution of the joints/links throughout a step, i.e., reduce
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the degrees of freedom to generate a closed-loop mechanism
resulting in a desired periodic motion. The VC are imposed in
our case by means of state-feedback input-output linearization
[2]. These constraints have been designed in [3] in such a way
that the torso is maintained nearly upright, the hips remain
slightly in front of the midpoint between both feet, and the
swing foot’s ankle traces a parabolic trajectory. The VC are
encoded in an output function Y ∈ R6, defined as:

Y :=


y1
y2
y3
y4
y5
y6

 :=


Px5 − (px + s)
Py5 − ρ(Px5)

Px3 − (px + µs)
q2
q5
q6

 (4)

where P3 and P5 are the Cartesian coordinates of the hips
and the swing foot’s ankle, respectively. px represents the
horizontal coordinate of the support foot’s ankle, s and µ are
constants such that 0 < s < 2l1 and 0 < µ < 1, and the
function ρ : R→ R defines a parabolic trajectory as follows:

ρ(u) :=
d2

s2
(u− px)2 + d (5)

with d a constant such that 0 < d < 2l1, and l1 is the mean
distance of the support tibia. The parameters s, d, µ define
the walking pattern and they are the step size, the maximum
step height and a symmetry factor when both feet are on the
ground, respectively.

1) Control Law: The biped robot considered in this work
has a torque actuator at each joint. Computed torque control
has been widely used for biped robots walking control, for
instance in [15]. This kind of control allows canceling the
non-linear terms of the robot model, keeping a linear relation
between auxiliary control entries v and the outputs Y. In our
case, the computed torque linearizing control has the following
form:

τ := β−1(q, q̇)v + γ(q, q̇) (6)

where the auxiliary control v must be adequately assigned to
achieve convergence of the output vector Y and the nonlinear
functions β and γ cancel the nonlinearities of the model
(see [3] for more details). Applying this torque control, 6
decoupled linear systems of second-order with respect to the
output vector Y are obtained. Thus, the auxiliary control must
be design to yield convergence to zero of each element of the
output vector Y.

2) Auxiliary Control: We can use different options to
define the auxiliary control, however, second-order sliding
mode control [16] has the good property of achieving con-
vergence in finite-time (unlike the asymptotic convergence of
a proportional-derivative control) through continuous control
signals. The auxiliary control used in this work, called con-
tinuous twisting control in [3], is given by:

v = −K1 | Ẏ |σ sign(Ẏ)−K2 | Y |
σ

(2−σ) sign(Y) (7)

where K1 and K2 ∈ R6×6 are diagonal matrices formed
by gains associated to every joint and σ ∈ R. To guarantee

stability in finite-time, K2 > K1 (meaning that every entry of
K2 must be greater than its corresponding entry of K1) and
0 < σ < 1 must be accomplished according to [17]. Then, the
control gains encoded in K1,K2 correspond to 12 unknown
parameters that must be defined in some optimum sense to
generate a feasible walking pattern.

III. OPTIMIZATION METHOD FOR CONTROL PARAMETERS

Setting the control parameters to obtain a feasible robot
walking is not an easy task, even for an expert. Thus, we
focus on the automatic solution of the following problem:
Given some physical parameters that define the geometric
structure of the biped robot described in the previous section
(link’s lengths l0, ..., l6) and parameters that define the walking
pattern (s, d, µ), the problem is to find the control parameters
encoded in matrices K1,K2 that yield the best convergence
of the output vector Y to zero, subject to fulfill constraints
on joint’s angles, CoP and energy. It is understood by best
convergence a fast and uniform convergence of the outputs in
finite time. This is because in the case of biped robots, the
convergence of the outputs must be guaranteed in each step.

A. Encoding Optimization Parameters and Fitness Function

The optimization based on metaheuristics needs two ele-
ments, the first one is the encoding in real numbers of the
parameters to optimize, the second one is a fitness function to
know the performance of the solution obtained. Typically, in
unconstrained optimization problems such a function is just the
objective function. However, when dealing with constrained
optimization problems, the objective function is usually modi-
fied to take into account the constraints. Additionally, in some
cases the fitness function is altered to avoid some drawbacks
such as the appearance of many local optima.

As described above, we have 12 variables to optimize, 6
elements for each gain matrix. To decide the best encoding,
the solution proposed in [3] was analyzed. We noted that the
matrices K1 and K2 have a similar order of magnitude. To
accomplish the constraint K2 > K1, we proposed to write
K2 = (1 + α)K1 with 0 < α < 1. By doing this, two
possibilities can be considered. The first is to handle a single
α for the entire profit matrix K1. In this case, the problem
becomes simpler because the number of parameters to be
optimized is reduced. Then, the vector to optimize with a
single α can be written as:

K = {k1, k2, k3, k4, k5, k6, α} (8)

with k1 · · · k6 the elements of the diagonal of matrix K1. The
second option is to write each element of K2 as k2i = (1 +
αi)k1i with 0 < αi < 1. The vector to optimize with multiple
α’s can be written as:

K = {k1, k2, k3, k4, k5, k6, α1, α2, α3, α4, α5, α6} (9)

To verify if there is a significant difference between the
encodings, both were tested. Regarding the fitness function,
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it was modeled as the following constrained minimization
problem:

min f(K) =
1

N

N∑
i

‖ Y(i) ‖nn

subject to:
−l0 ≤ CoP ≤ l0
| qi | <

π

2
, q4 < q3, q1 < 0, q2 > 0, q2 ≥ q1

energy ≤ upper limit

(10)

where N is the number of times the measurement was made
throughout the walking, n refers to the degree of the norm,
and to the power of the error, and upper limit is the maximum
energy permitted. The objective function measures the norm
of the convergence of the outputs.

To work in a simple way the problem of Eq. 10 the
constraints were incorporated into the fitness function. We can
rewrite the fitness function as:

min f(K) =
1

N

N∑
i

‖ Y(i) ‖nn +g(K)CoP

+ g(K)joint + g(K)energy

where :

g(K)CoP = C1 ∗max(CoPind, 0)

g(K)joint = C2 ∗ Vind
g(K)energy = C3 ∗max (eind, 0)

(11)

with:
CoPind = max(max(CoP ), | min(CoP ) |)− l0.

Vind =

{
w is the number of joint violations
0 otherwise

eind = energy− upper limit
C1, C2, C3 = positive scalars

Three different variants of the fitness function were consid-
ered. The first was using the Euclidean norm (n = 2). Follow-
ing the hypothesis that the outputs of the system converge in
finite time, a fourth power was implemented (n = 4), looking
for the outputs to converge faster. Finally, in the last one, with
the aim of trying to make the outputs converge as uniformly as
possible, the infinite norm was implemented (∞-norm, n = 1).
We refer to uniform convergence to the action of the outputs
converging to the reference value at the same time, regardless
of their initial conditions.

B. Differential Evolution (DE)

DE [18] is a quick and simple technique that works well in a
wide variety of problems. Algorithm 1 describes the procedure
of DE. The different stages of DE are described below:

1) Initialization: A population Px,0 of NP D-dimensional
parameter vectors xi,0 =

[
x1i,0, · · · , xDi,0

]
, i = 1, · · · , NP is

randomly generated between a lower and upper bound bL =[
b1L, · · · , bDL

]
and bU =

[
b1U , · · · , bDU

]
.

2) Mutation: For each target vector xi,g in the gth genera-
tion, a mutant vector vi,g =

[
v1i,g, · · · , vDi,g

]
is created. Several

different ways of creating mutant vectors have been devised.
In this paper the rand/1 method, described in Eq. 12 is used.
In this process F ∈ (0, 1) is a positive scalar related to the
velocity of convergence and to the strength of perturbation,
whereas r0, r1, r2 are randomly chosen integers in [1, NP ]
such that r0 6= r1 6= r2 6= i.

vi,g = xr0,g + F · (xr2,g − xr1,g) (12)

3) Cross: After the mutation phase, a crossing operation is
applied between each target vector xi,g and its correspond-
ing mutant vector vi,g to generate a trial vector ui,g =[
u1i,g, · · · , uDi,G

]
. Eq. 13 shows the crossing process where

CR ∈ (0, 1) controls the fraction of the values of the
parameters copied from the mutant vector and jrand is a
randomly chosen integer in the interval [1, D] that ensures
that at least one variable is taken from the mutant vector.

uji,g =

{
vji,g if (rand(0, 1) ≤ CR) or (j = jrand)

xji,g otherwise
(13)

4) Selection: The performance of the vectors ui,g and xi,g
are compared with the purpose of knowing the individual that
will pass to the next generation by using the fitness function.
Eq. 14 shows this process.

xi,g+1 =

{
ui,g, if (f(ui,g) ≤ f(xi,g))
xi,g, otherwise (14)

IV. RESULTS

In this section we detail the experiments carried out to
validate the performance of our proposals. Results are obtained
from an implementation of the biped model and the DE
algorithm in Python. The robot’s parameters are the same as
those in [3]. Due to the time required for evaluation of the
fitness function (near to 2 minutes), we decided to carry out
executions with a small population. The stop condition was
established by number of generations, doing 30 generations
in each execution, and it was carried out 30 times. For the
fitness function described in Eq. 11, we used the following
values C1 = 1e3, C2 = 1, C3 = 10. As it was mentioned
in Section III, 2 encodings were implemented, and 3 fitness
functions, and thus, 6 configurations are obtained. The differ-
ent configurations are denoted by αquad, αmax, αpow4, αsquad,
αsmax, αspow4. Being α∗∗∗ the configurations with a single α
(Eq. 8), and αs∗∗∗ the configurations with multiple α’s (Eq. 9).
“quad” the configuration of quadratic error (n = 2), “max” the
configuration with infinity norm, and “pow4” the configuration
of the fourth power (n = 4).

In [3] a solution obtained by a human expert is presented
for the same control scheme. The control gains reported
in [3] for σ = 0.85 are K1 = diag(2,2,2.5,3.5,2,2) and
K2 = diag(2.01,2.1,2.51,3.6,2.5,2.5). Evaluating these
gains with our fitness function with n = 2, we obtain the
value 0.06506546 for the fitness function, with an energy
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Algorithm 1: Differential Evolution
Set g ← 0
Generate an initial population Px,0

repeat
Mutation Stage.
for i=1 to NP do

Generate a mutant vector vi,g

end
Crossing Stage.
for i=1 to NP do

jrand=rand(1, D)
for j=1 to D do

uj
i,g =

vj
i,g if(rand(0, 1) ≤ CR)

or (j = jrand)
xj
i,g otherwise

end
end
Selection Stage.
for i=1 to NP do

if f(ui,g) ≤ f(xi,g) then
xi,g+1 = ui,g

f(xi,g+1) = f(ui,g)
if f(ui,g) ≤ f(xbest,g) then

xbest,g = ui,G

f(xbest,g) = f(ui,g)
end

end
else

xi,g+1 = xi,g

end
end
g=g+1

until to stop criteria;
return xbest,G

consumption of 328899. This energy value was used as upper
limit for the variants of the fitness function in Eq. 11. This
solution was obtained by trial and error by the expert, and it
was used as reference solution. As aforementioned, a complete
execution of the optimization algorithm has a very high cost,
which led us to leave as future work a study on the control
parameters of the DE algorithm. Therefore, we decided to use
the values NP (population size)= 30, CR = 0.8 and F = 0.5.
The parameters CR, and F have an important effect on the
solution quality and the speed of convergence. Parameters
were chosen looking for a fast convergence without losing
quality of the optimization process. A standard value of CR
was chosen, and the value of F is a little low compared to the
usual ones.

Model Min Max Mean Median S.D
αquad 4.89e-2 5.53e-2 5.18e-2 5.16e-2 1.46e-3
αmax 4.98e-2 2.19 1.29e-1 5.22e-2 3.96e-1
αpot4 4.99e-2 5.74e-2 5.18e-2 5.16e-2 1.34e-3
αs
quad 4.53e-2 4.86e-2 4.66e-2 4.66e-2 8.94e-4
αs
max 4.57e-2 5.16e-2 4.78e-2 4.75e-2 1.69e-3

αs
pow4 4.59e-2 4.93e-2 4.75e-2 4.77e-2 8.56e-4

TABLE I: Results obtained for all configurations.

Despite the implementation and use of three different fitness
functions in our algorithm, all the results are presented under
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the n = 2 metric, so that they can be properly compared.
Table I shows a summary of the fitness obtained by the six
configurations. It is appreciated that despite the few gener-
ations, the results obtained have good quality, with values
in median lower than the reference value of [3] in all the
evaluated configurations of encoding and fitness function. The
best individuals for each configuration are presented in Table
II. The evolution of the fitness for the six configurations can
be seen in Fig. 3. For each generation, the median of the
fitness of the best individual is shown, taking into account 30
independent executions. It can be seen that the 2 encodings
are separated in the figure and that the configurations with
several α’s reach a fitness lower than those using a single
α. We can say that although the configurations of one α
present better results than in [3], the use of more parameters
leads to much better results. The diversity of the population
is shown in Fig. 4. It was measured as the mean distance to
the closest individual in each generation [19]. As expected,
diversity decreases globally throughout generations. However,
the number of generations are not enough to reach conver-
gence, i.e., reaching a degree of diversity close to zero. This
means that probably, by altering the DE parameters to induce a
faster convergence or by performing larger executions, higher-
quality solutions might be obtained. However, this is left as
future work. To have a clearer notion of which configuration is
better, a statistical comparison was performed among them. A
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Model k1 k2 k3 k4 k5 k6 α1 α2 α3 α4 α5 α6 Fitness Rank
αquad 9.28e-1 2.95 3.02 4.99 6.05 1.7 3.36e-1 4.89e-2 4
αmax 1.16 3.80 3.65 5.75 3.08 7.47 7.85e-2 4.98e-2 5
αpot4 1.02 3.37 3.18 8.22 3.96 3.31 2.40e-1 4.99e-2 6
αs
quad 1.07 1.53 2.32 4.14 3.67 3.09 6.94e-2 8.89e-1 9.63e-1 4.03e-1 3.77e-1 1.15e-1 4.53e-2 1
αs
max 1.23 3.53 1.96 1.43 3.82 7.64e-1 3.07e-2 9.35e-1 9.19e-1 4.08e-1 4.23e-1 4.26e-1 4.57e-2 2

αs
pow4 9.25e-1 1.71 1.85 5.68 1.35e-1 4.98 1.91e-1 8.44e-1 4.45e-1 4.32e-1 3.04e-1 1.92e-1 4.59e-2 3

TABLE II: Best individual of each configuration.

αquad αmax αpot4 αs
quad αs

max αs
pow4 SR

αquad - ↑ ↔ ↓ ↓ ↓ 1.0
αmax ↓ - ↓ ↓ ↓ ↓ 0.96
αpot4 ↔ ↑ - ↓ ↓ ↓ 1.0
αs
quad ↑ ↑ ↑ - ↑ ↑ 1.0
αs
max ↑ ↑ ↑ ↓ - ↔ 1.0

αs
pow4 ↑ ↑ ↑ ↓ ↔ - 1.0

TABLE III: Statistical Comparison of the different configura-
tions.

similar guideline as the one applied in [20] was used, where,
for this case, the non-parametric Kruskal-Wallis test is used
to compare the medians of the results obtained. Table III
shows the comparison of the different configurations with a
significance level of 5%. The success rate (SR) shown in the
last column is measured with respect to [3]. It can be seen that
configurations with several α’s have a statistical superiority to
the rest. Also being αsquad superior to all.

We considered important to verify qualitatively the behavior
of the outputs of the optimization, as well as the evolution of
the CoP and the trajectory of the steps that the robot took
along the simulation with the results shown in the Table II.
Figs. 5, 6 and 7 show these 3 aspects for the configurations
αsquad, αsmax and αspow4 respectively. In the graphs (a) of each
figure, the behavior of the outputs of the system over time is
appreciated. In general, there is good convergence to zero in
all these graphs, however the outputs in Fig. 5(a) are better
than the rest. The outputs in that figure converge closer to zero
in a smoother way (without overshooting) than with the other
configurations. Meanwhile in Fig. 6(a), the outputs that must
keep at zero oscillate a little, and can be appreciated that the
outputs do not converge completely. In addition, the CoP in the
Fig. 5(b) has a smoother behavior compared to the Fig. 6(b)
and 7(b). Finally, the graphs (c) show the desired trajectory
in dotted line and the trajectory described by each foot in
continuous line. A closer tracking to the parabolic reference
in the movement of the swing foot can be seen in Fig. 5(c)
compared to the other subfigures (c).

V. CONCLUSIONS

In this paper, a metaheuristic (differential evolution) has
been implemented to automatically tune the control parameters
to allow a bipedal robot to walk with a second-order sliding
mode control. To do this, we propose and compare three
different mono-objective fitness functions and two different
encodings of optimization variables We can see from the
results that the proposed optimization models are good enough

and they are not very different from each other. Configurations
with several α’s present better fitness values than those with
only one α. This is because by increasing the number of
parameters to be optimized (several α’s), the search space is
bigger, allowing a greater number of feasible configurations
with better fitness values. Besides, better fitness values were
obtained using the quadratic fitness function and qualitatively
the behavior of the robot walking is better with that opti-
mization model. We consider that the explicit management
of constraints as joint limits, center of pressure and energy
consumption has allowed to obtain much better results than
those obtained by an expert. We are currently working on
addressing the same problem in a multi-objective fashion,
where energy is not more a constraint but a second objective.

REFERENCES

[1] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer
Science & Business Media, 2008.

[2] E. R. Westervelt, C. Chevallereau, J. H. Choi, B. Morris, and J. W.
Grizzle, Feedback control of dynamic bipedal robot locomotion. CRC
press, 2007.

[3] J. E. Machado, H. M. Becerra, and M. Moreno Rocha, “Modeling and
finite-time walking control of a biped robot with feet,” Mathematical
Problems in Engineering, vol. 2015, no. Article ID 963496, p. 17, 2015.

[4] Q. Lu and J. Tian, “Research on walking gait of biped robot based
on a modified cpg model,” Mathematical Problems in Engineering,
no. Article ID 793208, p. 9, 2015.

[5] M. Nikkhah, H. Ashrafiuon, and F. Fahimi, “Robust control of underac-
tuated bipeds using sliding modes,” Robotica, vol. 25, no. 3, pp. 367–
374, 2007.

[6] V. Utkin, J. Guldner, and J. Shi, Sliding mode control in electro-
mechanical systems. CRC press, 2009.

[7] Y. Orlov, Y. Aoustin, and C. Chevallereau, “Finite time stabilization of a
perturbed double integratorpart i: Continuous sliding mode-based output
feedback synthesis,” IEEE Transactions on Automatic Control, vol. 56,
no. 3, pp. 614–618, 2011.

[8] E. Hopper and B. C. Turton, “An empirical investigation of meta-
heuristic and heuristic algorithms for a 2d packing problem,” European
Journal of Operational Research, vol. 128, no. 1, pp. 34–57, 2001.

[9] K. Wolff and P. Nordin, “Evolution of efficient gait with humanoids
using visual feedback,” in IEEE-RAS International Conference on Hu-
manoid Robots, pp. 99–106, 2001.

[10] T. Narukawa, M. Takahashi, and K. Yoshida, “Efficient walking with
optimization for a planar biped walker with a torso by hip actuators and
springs,” Robotica, vol. 29, no. 4, pp. 641–648, 2011.

[11] S. Das and P. Suganthan, “Differential evolution: A survey of the state-
of-the-art,” IEEE Trans. Evol. Comput., vol. 15, pp. 4–31, Feb 2011.

[12] J. Zhao, Y. Xu, F. Luo, Z. Dong, and Y. Peng, “Power system fault
diagnosis based on history driven differential evolution and stochastic
time domain simulation,” Information Sciences, vol. 275, pp. 13 – 29,
2014.

[13] T. Nguyen, L. Tao, and H. Hasegawa, “Gait generation for a small biped
robot using approximated optimization method,” in IOP Conference
Series: Materials Science and Engineering, vol. 157, p. 012009, IOP
Publishing, 2016.



2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI) GUADALAJARA,
JALISCO, MEXICO, NOVEMBER 7-9 2018

0 2 4 6 8 10 12

t (seg)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

y
(t

)

y1

y2

y3

y4

y5

y6

(a) Evolution of system outputs.

0 2 4 6 8 10 12

t (seg)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

C
oP

x
 (

m
)

(b) Evolution of the CoP. (c) Comparison of the trajectories described by the
feet against the reference trajectory.

Fig. 5: Simulation results of αsquad configuration.
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Fig. 6: Simulation results of αsmax configuration.
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