
Humanoid Localization and Navigation using a Visual Memory

Josafat Delfin1, Hector M. Becerra2 and Gustavo Arechavaleta1

Abstract— A visual memory (VM) is a topological map in
which a set of key images organized in form of a graph repre-
sents an environment. In this paper, a navigation strategy for
humanoid robots addressing the problems of localization, visual
path planning and path following based on a VM is proposed.
Assuming that the VM is given, the main contributions of the
paper are: 1) A novel pure vision-based localization method.
2) The introduction of the estimated rotation between key
images in the path planning stage to benefit paths with enough
visual information and with less effort of robot rotation. 3)
The integration of the complete navigation strategy and its
experimental evaluation with a Nao robot in an unstructured
environment. The humanoid robot is modeled as a holonomic
system and the strategy might be used in different scenarios
like corridors, uncluttered or cluttered environments.

I. INTRODUCTION
The robot navigation based on a visual memory (VM) is

a method that mimics the human behavior of memorizing
key scenes the first time that an environment is explored
in order to facilitate a subsequent navigation in the same
environment. A VM is a topological map that represents an
environment by a set of key images [1], which are typically
organized as a directed graph where each node is a key
image and the edges provide information of the relation
between nodes. Once this representation of the environment
is known, the problems of robot localization, path planning
and autonomous navigation can be solved. The navigation
based on a VM can be considered as an extension of the
typical visual servo-control task [2] that allows the robot to
enlarge its workspace.

The visual servo-control is a local task that can be solved if
the same visual scene is partially seen from a target and ini-
tial locations. This constraint can be avoided in a navigation
scheme based on a VM, where a sequence of target images is
used, such that the target and initial locations do not need to
share information [1], [3]. Since the work in [4], where the
view-sequenced route representation was introduced, some
navigation strategies based on a VM have been suggested
in the context of wheeled mobile robots [1], [5], [6]. For
this kind of robots, this approach has been addressed with
a position-based visual servoing (PBVS) scheme [5] or an
image-based visual servoing (IBVS) scheme [1]. Also, direct
feedback of a geometric constraint has been used in an IBVS
[6].

1J. Delfin and G. Arechavaleta are with Robotics and
Advanced Manufacturing Group, Centro de Investigación y
de Estudios Avanzados del IPN, Saltillo, Coah. Mexico.
{josafat.delfin,garechav}@cinvestav.mx

2H. M. Becerra is with Centro de Investigación en
Matemáticas (CIMAT), C.P. 36023, Guanajuato, Gto., Mexico.
hector.becerra@cimat.mx
The first two authors were supported in part by Conacyt [grant 220796].

Vision-based control of humanoid robots is an interesting
and challenging problem due to the inherent complexity of
the robotic system and the undesired sway motion intro-
duced by the walking pattern [7]. The problem of visual
servoing for humanoid robots has been addressed in works
like [7]–[9]. These schemes exploit the reactive walking
pattern generator (WPG) proposed in [10], which provides
automatic generation of foot placements from desired values
of linear and angular velocities of the robot’s center of mass
(CoM). In [8] and [9], a visual servoing scheme gives the
reference of velocities for the CoM as the input to the WPG.
Such schemes are decoupled since the visual controller is
independent of the WPG. In [7], visual constraints are part
of the WPG to define a coupled scheme.

Vision-based indoor navigation of humanoid robots for
large displacements has also been addressed in the literature.
A vision-guided locomotion scheme in structured indoor
scenarios is proposed in [11], which drives the robot while
avoiding obstacles. In [3], the view-sequenced route rep-
resentation is used for humanoid navigation in a corridor.
No initial localization is done and the controller is based
on template correlation to decide next motion directions.
Other humanoid navigation method based on pre-registered
keyframes is suggested in [?], where known landmarks are
used for localization. Another landmark-based navigation
strategy that integrates motion planning through geometric
primitives and visual servoing tasks is described in [12].
A trajectory tracking control based on vision fused with
odometry is proposed in [13]. The trajectory is defined in the
Cartesian space and the locomotion controller assumes the
unicycle model. In [14], the visual navigation strategy deals
with different corridor configurations exploiting vanishing
points.

In this paper, we propose a navigation strategy based on
a VM, addressing the problems of localization, visual path
planning and path following. This is an extension of our pre-
vious work [15], where a control scheme for the visual path
following stage has been proposed. Thus, assuming that the
visual memory is known, i.e., the only available information
is a set of key images, the main contributions of this paper
are: 1) a vision-based localization method that relies on the
homography decomposition; 2) we introduce a new way to
define weights for the edges of the graph representing the
VM. Besides of considering visual information (number of
matched points), the estimated rotation between key images
is also considered, such that the planning stage benefits paths
with enough visual information between key images but with
less effort of robot rotation; 3) the integration of the whole
navigation scheme and its evaluation in an unstructured

environment. It is worth noting that the humanoid robot is
considered as a holonomic system at the locomotion level, no
motion constraints are imposed as in the unicycle model used
in related works [12], [14]. Moreover, the proposed strategy
can be used in less restrictive indoor environments. For
instance: corridors, uncluttered or cluttered environments.
Additionally, in the proposed localization method no extra
information is needed, like odometry or sensor fusion, in
comparison with methods like [13].

The paper is structured as follows. Sec. II gives an
overview of the navigation strategy. Sec. III describes the
structure of the VM. We present the localization strategy
and path planning in Sec. IV. The control scheme is sum-
marized in Sec. V. Experiments are presented in Sec. VI and
conclusions are given in Sec. VII.

II. OVERVIEW OF THE NAVIGATION STRATEGY

The autonomous navigation framework presented in this
work can be divided in four steps: 1) visual memory building;
2) robot localization; 3) discrete path planning; and 4)
path following. A visual memory (VM) is represented by
a directed graph G = {I, E} where each node is an image
of a set I = {I1, I2, . . . , Im} of m key images and E =
{E1, E2, . . . , Ep} is the set of p edges that link the nodes.
The generation of the VM is done offline, i.e., the set of key
images is acquired on a supervised (human-guided) teaching
phase.

The localization step consists of finding the image I∗1
of the VM that best fits the current image I. We use the
homography matrix to compute the measurements for finding
the most similar key image in the graph. In the visual path
planning stage, given an image of the VM as a target I∗n and
the image found by the localization stage, the planner finds
the shortest visual path I∗ linking those nodes (key images)
of the graph.

The last step is the visual path following, which consists
of autonomously executing the visual path found by the
planner. The control guides the humanoid along the sequence
of key images until the robot achieves the desired location.
The main steps of the proposed framework are presented
in Algorithm 1, where each function is detailed in the
subsequent sections. We assume that the VM is given as an
input of the algorithm. Thus, the memory building process
is not addressed in this work.

III. STRUCTURE OF THE VISUAL MEMORY

As aforementioned, key images are selected during the
teaching phase and they are the nodes of the graph G. In
this section, we complement the description of the structure
of the graph by defining the edges between nodes.

An edge represents the cost of traveling from one node to
any adjacent node, and it is set as a weight Ei. We define
the edges in terms of the number of matched interest points
and the amount of rotation between neighboring key images
as follows:

Ei = α(1− s∗i) + βθu
∗
i , (1)

Algorithm 1: visualNavigation allows the autonomous nav-
igation of the robot.

Input: Graph of key images G = {I, E}, target image I∗n
Output: Autonomous visual navigation

1 I = captureCurrentImage
2 I∗1 = localizeRobot(I, I)
3 I∗ = getShortestPath(I∗1 , I∗n,G)
4 ROBOTNAVIGATION = pathFollower(I, I∗)
5 return

where s∗i and θu
∗
i are the normalized number of matches

and the normalized rotation with respect to the vertical axis
(y-axis of the camera) between neighboring key images
respectively, α and β are two weights to favor one of the
terms if desired. The cost related to the number of matches
(1 − s∗i) means that, the more matches there are between
nodes, the lower the cost will be. And the cost related to
the rotation means that, the more rotation there are between
nodes the higher the cost will be.

Thus, we need to estimate the relative θu∗i between
neighboring key images Ii and Ii+1, with the associated
reference frames Ci and Ci+1, respectively. An option to
recover the whole relative pose (translation up to scale)
between the camera frames Ci and Ci+1 is by means of
the homography matrix decomposition [16]. To estimate the
homography matrix H∗

i , only the key images Ii and Ii+1

are needed. The relative transformation between Ci and Ci+1

is encoded in the Euclidean homography as:

H∗
i = R∗

i +
t∗i
d∗i+1

n∗
i+1 (2)

where R∗
i and t∗i are the rotation matrix and translation

vector, d∗i+1 is the distance from a plane π to Ci+1, and
n∗
i+1 is the unitary vector expressed in Ci+1 normal to π.

According to (2), it is possible to decompose H∗
i to obtain

t∗i up to scale and R∗
i . Having the rotation matrix R∗

i , it can
be parametrized by the axis/angle θu∗

i . Only the y-element of
the vector θu∗

i is used to measure the rotation θu∗i between
neighboring key images since only that angular component
is needed for the WPG as explained in [15].

An efficient algorithm to decompose a homography matrix
is proposed in [17]. In this work, we rely on the homography
decomposition to define the edges of the graph, to localize
the robot and for visual control purposes. In particular, in
order to deal with general 3D scenes, we use the algorithm
proposed in [16], which allows us to estimate a homography
associated to a virtual plane for non-planar scenes.

IV. VISUAL LOCALIZATION AND PLANNING

Once the visual memory (VM) is available with the
structure described in the previous section and before starting
the autonomous navigation, the robot must localize itself by
comparing its current view with the memorized key images.
Next, given a target image, a path planning stage is needed to
find a sequence of key images connecting the image resulting
from the localization and the target image. In both stages, we

Algorithm 2: localizeRobot finds the most similar key image
I∗1 in the graph to the current image I.

Input: Graph of key images G = {I, E}, current image I,
target image I∗n

Output: Most similar key image I∗1
1 for j ← 1 to m do
2 matches = match(I, Ij)
3 if matches > µ then
4 Hj = computeHomography(matches)
5 (Rj , tj) = decomposeHomography(Hj)
6 t±j = computeDirection(tj)
7 ‖ tj ‖ = computeDistance(tj)
8 D[j] = saveImageData(t±j , ‖ tj ‖)

9 else
10 NEXTIMAGE

11 I+ = selectForwardImages(D)
12 I− = selectBackwardImages(D)
13 if SIZE(I+) > 0 then
14 I∗1 = selectMostSimilar(I+)

15 else
16 I∗1 = selectMostSimilar(I−)

17 return I∗1
18 Function selectMostSimilar(Iµ)
19 (I∗±1, I∗±2) = selectTwoCandidates(Iµ)
20 if (I∗±1, I∗±2) belong to same branch then
21 matches = match(I∗±1, I∗±2, I)
22 {H1,H2} = parametersConstantPlane(matches)
23 {‖ t1 ‖, ‖ t2 ‖} = computeDistance({H1,H2})
24 I∗1 = selectTheClosest({‖ t1 ‖, ‖ t2 ‖})

25 else
26 {I1, I2} = getShortestPath(I∗±1, I∗±2, I∗,G)
27 {d1,d2} = computeDistanceOfPath({I1, I2})
28 I∗1 = getImageWithShortestPath({d1,d2})

29 return I∗1

take advantage of the homography decomposition described
in Section III.

The visual localization process consists in finding the most
similar key image of the memory in terms of the visual
features by comparing it to the current image. We propose
Algorithm 2 to localize the robot. First, match finds the
matched features for every pair of images. Nevertheless, we
have a minimum number of matches µ > 8 to guarantee the
computation of the homography and to have a subset of key
images similar to I. This is constrained due to the non-planar
estimation of the homography [16].

With the matches, the next step is to compute the ho-
mography matrix and decompose it (lines 4-5). We classify
the images for which the resulting direction is forward I+
or backward I− with respect to the current image location.
From the estimated translation vector t, we assign a value
in line 6 as follows:

t± =

{
+1, tz > 0,
−1, tz < 0.

The relative distance between key images is computed
by the norm ‖ t ‖ of the translation vector. Although the
vector t is scaled, its norm gives a notion of distance. The

Fig. 1: Constant virtual plane. The green circles (marked with
number) are selected and maintained as features to form the same
virtual plane. Top row. The first candidate I∗±1 and the second
candidate I∗±2. Bottom row. The current image I.

direction and distance parameters are saved in a vector D,
from which the images are classified as forward I+ or back-
ward I− (lines 11-12). Using first the set I+, the function
selectMostSimilar finds among them the most similar key
image to the current one. If there are no forward images
the algorithm selects the closest image among the backward
images I−. We prefer to get the robot localization even if
the most similar image is behind the current location.

The function selectMostSimilar (lines 18-29) first selects
two candidate images (I∗±1, I∗±2), the two images with the
highest number of point matches. Using (I∗±1, I∗±2), the
algorithm verifies if both candidates belong to the same
branch of the graph G. If it is the case, the algorithm selects
the most similar key image using the relative distance ‖ t ‖.
This process computes again H and t for the candidate
images (I∗±1, I∗±2) with respect to the current image, but
now: the virtual plane used for the homography estimation
(according to [16]) remains constant (lines 22-23). Thus, the
estimated distances are consistent. This process is illustrated
in Fig. 1. Once the new distances {‖ t1 ‖, ‖ t2 ‖} are
obtained, the closest candidate image I∗1 to the current one
is selected (line 24), i.e., the image with smaller ‖ t ‖.

If the candidate images do not belong to the same branch,
the algorithm selects the most similar key image aided by
a path planner that finds the shortest path from the two
candidates (I∗±1, I∗±2) to the target image I∗n (lines 26-28).
This consideration is needed to discard a localization that
might derive in a long path in the navigation stage. The
process is as follows: using the graph G, a path planner
finds the shortest path from each one of the two candidates
(I∗±1, I∗±2) to the target image I∗n. The distance of each
path I1, I2 is computed and stored in a vector of distances
{d1,d2}. The solution I∗1 of the localization will be the
candidate image with the shortest path to the target image,
i.e., the path with the minimum distance in terms of the edges
defined in (1).

Visual
Control

Eq. (3) or (10)

 Target Image

Transformation
between

Camera-CoM
Eq. (1) and (2)

WPG [11]

Inverse
kinematics [13]

 Robot
• Perform gait
• Capture new image

+

-

Desired
Joint

Configuration

Current Joint
Configuration

 Current Image

*

i
ie

Fig. 2: Visual control scheme for humanoids.

The visual path I∗ = {I∗1 , I∗2 , . . . , I∗n−1, I∗n} represents
the visual task that the robot has to accomplish. Given I∗1
and I∗n, the visual path is the set of key images that link the
starting and the desired key images. The resulting visual path
is the minimum length path in G that connects the nodes I∗1
and I∗n. The length of a path is the sum of the values of
its edges, and the edges are defined according to (1). This
process is done by the function getShortestPath.

V. VISUAL PATH FOLLOWING

Once the visual path is found, the vision-based walking
controller is activated to follow autonomously the sequence
of key images. We applied the scheme presented in our
previous work [15]. Here we make a brief summary of that
scheme.

The problem of visual path following can be treated as
a set of n visual servoing subtasks where the visual error
depends on the current image and the corresponding target
image from the visual path I∗ = {I∗1 , I∗2 , . . . , I∗n−1, I∗n}. In
this work, we applied a PBVS, but the problem can be also
solved by means of IBVS, as described in [15].

A. Visual control scheme for humanoids

We use a walking pattern generator (WPG) that considers
automatic footstep placements and incorporates inequality
linear constraints [10]. The motion coordination to generate
the gait is computed by means of an efficient inverse kine-
matics method [18]. To generate the reference velocity ˙̄xr
for the WPG, let νr be the velocity of the frame attached to
the robot’s CoM. We assume that a constant transformation
rT c ∈ R6×6 exists between νr and the velocity of the
camera reference frame νc, thus:

νr = rT cνc ∈ R6. (3)

This constant transformation assumes that the robot’s head
is fixed w.r.t. the robot’s body. Therefore, the input for the
WPG can be expressed as:

˙̄xr =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

νr ∈ R3. (4)

Fig. 2 shows the whole process for the visual control
tailored to humanoids. See [15] for more details.

Algorithm 3: pathFollower allows the robot to solve visual
subtasks to perform the autonomous navigation.

Input: Visual path to follow I∗ = {I∗1 , I∗2 , . . . , I∗n−1, I∗n},
current image I

Output: Autonomous visual navigation
1 k ← 1
2 while k ≤ n do
3 I∗k ← I∗[k]
4 matches = match(I∗k , I)
5 Hk = computeHomography(matches)
6 ek = subtaskErrorComputation(Hk)
7 νc = smoothTransitionControl(ek)
8 ROBOTGAIT = WPG(νc)
9 εk = meanSquaredErrorComputation(I∗k , I)

10 I = captureNewImage
11 if εk < Tε then
12 k ++

13 stopRobot
14 return

B. Position-based Visual Servoing

For each visual servoing task, the visual error that must
be minimized can be defined as

ek = s− s∗k ∈ R6

where the visual features for a PBVS are given by [2]:

s = (t, θu) ∈ R6 (5)

being t the translation up to scale between the reference
frames associated to the current camera pose C and the kth

key image frame C∗k , and θu the axis/angle parametrization
of the rotation matrix R between those reference frames. We
consider that the translation and rotation are expressed with
respect to C∗k . Therefore s∗ = 0 and ek = s. The vector s
can be obtained by homography decomposition, as described
at the end of Sec. III.

As detailed in [2], the translational and rotational velocities
are decoupled and the velocity vector is given by:

νc =

[
vc
ωc

]
=

[
−λt
−λθu

]
∈ R6. (6)

If the camera pose is accurately estimated and the control
gain λ > 0, the velocity vector (6) yields to an exponentially
stable error dynamics of the form ė = −λe.

The controller (6) can be introduced in the WPG according
to Fig. 2, with the aim of driving the humanoid robot to the
location associated to each key image I∗k of the path I∗.

C. Controller for smooth transition

In the visual path following problem there exists the issue
that the error vector s in (5) suddenly increases when a new
key image is given as target, which yields to discontinuous
robot velocities [6]. In [15], we proposed a controller that
achieves smooth transitions between subtasks. We introduced
in (6) a smooth transition function h(t) to penalize the large
error at the beginning of each subtask. The proposed control
law written in the form of the PBVS is given by:

νc =

[
−λh (t) t
−λh (t) θu

]
∈ R6. (7)

The transition function h(t) has the effect of a time-
varying gain for the control law (6). An adequate proposal
for a transition function is:

h(t) =

{
h0 + 1

2 (1− h0)
(

1− cos
(
π(t−t0)
tf−t0

))
, t0 ≤ t ≤ tf ,

1, t > tf ,

where t0 and tf are the initial and final times of the transition
function, respectively, and h0 is a minimum value from
which h(t) increases smoothly up to the unity. Therefore,
after tf , the maximum value of the control gain λ is applied.
The minimum value of h(t) allows the robot to achieve a
continuous motion, i.e., the robot does not stop while the
discontinuities in the velocities are significantly reduced.
The duration of the transition function tf − t0 has to be
defined adequately to ensure that the maximum control gain
is applied at least during some time at each subtask.

Algorithm 3, shows the pathFollower function dedicated
to this process. The point features pj of the current image
I are matched with the points p∗

j of the corresponding key
image I∗k along the robot motion. The matched points are
used to compute the control law (7) from the homography
decomposition. The switching to the next key image occurs
when the mean squared error between the corresponding
point features ε remains below a threshold Tε over a finite
number of iterations K, i.e.:

ε =
1

l

l∑
j=1

∥∥pj − p∗
j

∥∥ < Tε, (8)

where l is the number of corresponding point features in each
subtask. The same steps are repeated for each key image in
I∗ until the target image I∗n is reached.

VI. EXPERIMENTAL EVALUATION

We implemented the proposed navigation scheme on a Nao
humanoid robot. The top camera mounted on the robot’s head
was used in the experiments. We made two experimental
evaluations, one related to the localization algorithm and
the boundaries where the robot can be initialized away
from the visual paths and the other related to the whole
navigation scheme, i.e., the localization, planning and visual
path following.

For all the experimental evaluations the images were
obtained with a resolution of 640 × 480 pixels. The image
features were acquired as follows: first, a corner detector
based on [19] was used, which is implemented in the function
goodFeaturesToTrack of the OpenCV library. Then,
we assigned a SURF descriptor [20] to each detected point.
A robust matcher based on RANSAC matched all the points
between the current image and the corresponding key image.
The HLM function of ViSP library was used to compute
the homography for planar and non-planar scenes [16]. All
robot motions during the experiments were captured with an
Optitrack System to obtain ground truth of the navigation
scheme.

A. Localization
Here, we present the evaluation of the localization algo-

rithm. We have made an experimental evaluation in order
to know the boundaries around a key image where the
localization algorithm can work effectively. We found that
the working radius around a key image is approximately
0.7m.

1) Localization in one branch: First, we show the case
when there is only one branch, i.e., there is only one visual
path. Thus, if we refer to Algorithm 2, the condition in line
20 is always satisfied. So the localization process reduces to
lines 20 to 24, where the algorithm selects the closest key
image I∗1 to the current image I.

We applied Algorithm 2 for each one of the three paths
shown in Fig. 3. We classified the results in three categories,
the case when closest key image was found ahead the robot,
marked as “Forward”, the case when the closest key image
was found “Backward” the robot and the case when the
localization was a “Failure”, i.e., when none key image was
found. Based on the results shown in Fig. 3, in all the cases
the localization algorithm found a solution. In more than
80%, the closest image was found forward, this is preferred
in order to perform a forward navigation from the beginning
of the autonomous motion. Only 16% of the cases, the
localization algorithm found a key image behind the robot,
but still in these cases, a key image in the neighborhood of
the robot was found.

2) Localization aided by a graph and planning: Now, we
show the performance of the localization algorithm using a
graph. In this case, the two candidate images (I∗±1, I∗±2)
might be in one branch or two different branches of the
graph, thus the localization process is carried out by the
lines 20 to 24 or 25 to 28 of Algorithm 2, respectively. The
graph representing the VM is shown in Fig. 4, it has 90 key
images and 94 edges. The green triangles represent the pose
of the robot where each key image (node) was taken. The
magenta triangles are the nodes that connect the branches
of the graph. For the planning algorithm, we use as the
function getShortestPath, Dijkstra’s algorithm to obtain the
minimum length path.

In Fig. 4, we present three cases of localization and
planning. The first case is shown in Fig. 4(a). Here the robot
starts near one branch (red triangle), however the candidate
key images I∗±1 and I∗±2 (orange and gray triangles) are in
the same branch and the localization algorithm selects the
closest key image I∗1 , in this case the orange mark. Once
the robot is localized, getShortestPath finds the minimum
length path I∗ to the target image I∗n (cyan triangle). The
second case is shown in Figs. 4(b) and 4(c) . Here the robot
starts between two branches of the graph (red triangle), so the
candidate key images belong to different branches (orange
and gray triangles). In this case, the localization algorithm
is aided by the path planner to select the most similar key
image accounting for the shortest path to the target image.
As it can be seen in Fig. 4(b), the path to the target image
(cyan triangle) is the shortest one if the algorithm selects
the key image on the right (orange triangle), but if the

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

 Key images

 Forward

 Backward

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

 Key images

 Forward

 Backward

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

 Key images

 Forward

 Backward

Fig. 3: Results of localization in one branch. We used three visual paths: a straight line, a S-like path and an elliptic path.
The green triangles represent the robot’s poses where key images were taken. The blue triangles represent the evaluation
poses where the localization found forward images. The red triangles represent results of localization for backward images.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

 Path planned

 Initial Pose

 Target Key Image

 First candidate

 Second candidate

(a)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

 Path planned

 Initial Pose

 Target Key Image

 First candidate

 Second candidate

(b)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

 Path planned

 Initial Pose

 Target Key Image

 First candidate

 Second candidate

(c)

Fig. 4: Evaluation of the localization in a graph. (a) Case when two candidate images are in the same branch of the
graph. (b) and (c) Cases when two candidate images are in different branches.

target image changes, as it is observed in the Fig. 4(c), the
algorithm selects the key image on the left (gray triangle).
This localization process avoids key images with longer paths
associated to them.

B. Complete navigation scheme

Finally, we show the behavior of the robot for the whole
navigation scheme, i.e., once the robot was localized and the
path was found, the navigation is carried out by means of
the visual path following scheme described in Sec. V. For
this experiment, we use the same image features described
at the beginning of this section but also we use a tracking
algorithm based on a sparse iterative version of the Lucas-
Kanade optical flow in pyramids, implemented in the func-
tion calcOpticalFlowPyrLK of OpenCV. We evaluated
experimentally the performance of the tracker with the Nao

robot because of the jerky camera movements generated by
the robot’s gait. Thus, the tracker was experimentally tuned
to deal with this unavoidable behavior.

Fig. 5 shows the performance of the navigation scheme
for the humanoid robot Nao. The red triangle depicts the
initial pose of the robot, the gray triangle is the most similar
key image that Algorithm 2 returned, the target key image
is the cyan triangle and the orange triangle is the final pose
of the robot during the experiment. The visual path planned
was composed by 23 key images over a total distance close
to 6m. The localization takes approximately 7 seconds to
compare all key images in the graph with the current image.

Concerning the control parameters we used λ = 0.065
for translation and λ = 0.3 for rotation. They are different
because in bipedal locomotion, it might be easier for the

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

Path planned

Target Key Image

Closest Key Image

Initial pose

Final pose

Fig. 5: Performance of the autonomous robot navigation.
The magenta line shows the motion of the robot during the
navigation. As it can be seen, the robot gets close to the
target key image (cyan triangle) with an error of less than
10cm. The images on the right from top to bottom are: the
current image I at the initial pose (red triangle), the closest
key image I∗1 (gray triangle), the final pose (orange triangle)
and the target key image I∗n (cyan triangle).

robot to move laterally compared to rotate. The duration
of the transition function h(t) was set experimentally to 40
iterations. Also, for a good compromise between mitigation
of discontinuities of walking velocities and continuity of
motion during navigation, we assigned experimentally h0 =
0.2. The threshold Tε was set to 18 pixels for the whole path
and K = 100 iterations.

We evaluated the controller presented in Sec. V-B, but
it is important to mention that also an IBVS can be used
for the navigation as presented in our previous work [15].
Overall, the proposed scheme solves a global navigation task
by driving the robot to a vicinity of the location associated
to the target key image, which is the main goal rather than
to follow the path with high accuracy.

VII. CONCLUSIONS

In this paper, we have proposed a navigation scheme for
humanoid robots using the appearance-based environment
representation called visual memory. Assuming that a set
of key images which defines a visual memory is known,
the navigation scheme consists of three stages: localization,
planning and execution. Each stage only relies on visual
information based on the homography matrix decomposition
for planar and non planar scenes. Besides the visual informa-
tion considered as matched point features, we introduced an
estimated rotation between key images in the path planning
stage to benefit visual paths with less rotations. The stages
have been integrated and evaluated in a real-world setting
with a Nao humanoid robot. We have shown experimentally
that our navigation scheme works for humanoid robots in

unstructured indoor environments.
For future work, we consider extending our scheme for

long distance navigation and handling a hierarchical task
scheme to deal with different types of obstacle avoidance.

REFERENCES

[1] J. Courbon, Y. Mezouar, and P. Martinet. Autonomous navigation of
vehicles from a visual memory using a generic camera model. IEEE
Trans. on Intelligent Transportation Systems, 10(3):392–402, 2009.

[2] F. Chaumette and S. Hutchinson. Visual servo control. Part I: Basic
approaches. IEEE Robotics and Automation Magazine, 13(4):82–90,
2006.

[3] J. Ido, Y. Shimizu, Y. Matsumoto, and T. Ogasawara. Indoor navigation
for a humanoid robot using a view sequence. Int. Journal of Robotics
Research, 28(2):315–325, 2009.

[4] Y. Matsumoto, M. Inaba, and H. Inoue. Visual navigation using view-
sequenced route representation. In IEEE Int. Conf. on Robotics and
Automation, pages 83–88, 1996.

[5] E. Royer, M. Lhuillier, M. Dhome, and J. M. Lavest. Monocular vision
for mobile robot localization and autonomous navigation. Int. Journal
of Computer Vision, 74(3):237–260, 2007.

[6] H. M. Becerra, C. Sagüés, Y. Mezouar, and J. B. Hayet. Visual
navigation of wheeled mobile robots using direct feedback of a
geometric constraint. Autonomous Robots, 37(2):137–156, 2014.

[7] M. Garcı́a, O. Stasse, J. B. Hayet, C. Dune, C. Esteves, and J. P.
Laumond. Vision-guided motion primitives for humanoid reactive
walking: decoupled versus coupled approaches. Int. Journal of
Robotics Research, 34(4–5):402–419, 2014.

[8] C. Dune, A. Herdt, O. Stasse, P. B. Wieber, K. Yokoi, and E. Yoshida.
Cancelling the sway motion of dynamic walking in visual servoing. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 3175–
3180, 2010.

[9] J. Delfin, H. M. Becerra, and G. Arechavaleta. Visual servo walking
control for humanoids with finite-time convergence and smooth robot
velocities. Int. Journal of Control, 34(4–5):402–419, 2014.

[10] A. Herdt, H. Diedam, P. B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl. Online walking motion generation with automatic footstep
placement. Advanced Robotics, 24(5-6):719–737, 2010.

[11] R. Cupec, G. Schmidt, and O. Lorch. Vision-guided walking in a
structured indoor scenario. Automatika, 46(1-2):49–57, 2005.

[12] J. H. Hayet, C. Esteves, G. Arechavaleta, O. Stasse, and E. Yoshida.
Humanoid locomotion planning for visually-guided tasks. Int. Journal
of Humanoid Robots, 9(2):26, 2012.

[13] G. Oriolo, A. Paolillo, L. Rosa, and M. Vendittelli. Humanoid odomet-
ric localization integrating kinematics, inertial and visual information.
Autonomous Robots, 40(5):867–879, 2016.

[14] A. Paolillo, A. Faragasso, G. Oriolo, and M. Vendittelli. Vision-based
maze navigation for humanoid robots. Autonomous Robots, pages 1–
17, 2016.

[15] J. Delfin, H. M. Becerra, and G. Arechavaleta. Visual path following
using a sequence of target images and smooth robot velocities for
humanoid navigation. In IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), pages 354–359, 2014.

[16] E. Malis, F. Chaumette, and S. Boudet. 2 1/2 Visual servoing with
respect to unknown objects through a new estimation scheme of
camera displacement. Int. Journal of Computer Vision, 37(1):79–97,
2000.

[17] B. Triggs. Autocalibration from planar scenes. In H. Burkhardt and
B. Neumann, editors, Computer Vision - ECCV’98, volume 1406 of
LNCS, pages 89–105. Springer Berlin Heidelberg, 1998.

[18] O. Kanoun. Real-time prioritized kinematic control under inequality
constraints for redundant manipulators. In Robotics: Science and
Systems VII, Los Angeles, CA, USA, June 2011.

[19] J. Shi and C. Tomasi. Good features to track. In IEEE Computer
Vision and Pattern Recognition, pages 593–600, 1994.

[20] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded up robust
features. In European Conf. on Computer Vision, pages 404–417,
2006.

