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Abstract— Two robust kinematic controllers for position
trajectory tracking of a perturbed wheeled mobile robot are
presented. We address a final objective of fixed-time pose-
regulation, which means that the robot position and orientation
must reach desired final values simultaneously in a user-defined
time. To achieve that, we propose the robust tracking of
adequate trajectories for position, which drives the robot to
get a desired final orientation due to the nonholonomic motion
constraint. Hence, the main contribution of the paper is a
complete strategy to define adequate reference trajectories as
well as robust controllers to track them in order to enforce
the pose-regulation of a wheeled mobile robot in a desired
time. Realistic simulations show the good performance of the
proposed scheme even in the presence of strong disturbances.

I. INTRODUCTION

Control of wheeled mobile robots (WMR) is still an
appealing research topic due to the wide application of these
robotic systems and the theoretical challenge that represents
the control problem [1]. In this paper, we are interested
in driving a perturbed differential-drive robot, which has
nonholonomic motion constraints, to a desired position and
orientation (pose) simultaneously. Regarding to related work,
only position control of a four degrees of freedom mobile
robot has been addressed in [2]. Two separated control loops
are proposed to carry out position trajectory tracking.

Many efforts on WMR control have been dedicated to a
unifying theory to solve the problems of stabilization and
tracking. For instance, a kinematic control law that utilizes
a damped dynamic oscillator achieving position/orientation
tracking is presented in [3]. The same controller is used
for the regulation problem. Recently, a smooth time-varying
controller has been proposed in [4] to simultaneously address
the problems of stabilization and tracking. In that work, a
single controller is able of converting between stabilizer and
tracker rather than switching between two controllers.

Motion planning is an essential element in navigation
systems and might be an important complement of a control
scheme for mobile robots. In [5], a method for steering
systems with nonholonomic constraints between arbitrary
configurations is proposed. A steering control of mobile
robots around pre-planned paths is presented in [6], it pro-
poses simple linear control laws to constrain the demand of
the steering controller taken into account the curvature of the
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pre-planned paths. A combined strategy of motion planning
and control has been proposed in [7], this is a complete
architecture for autonomous navigation of mobile robots. A
module of the strategy generates the trajectories dealing with
obstacles and a saturated integral sliding mode controller
solves the tracking problem.

Robust controllers for WMR is an important feature to
achieve good accuracy in a robotic task. Some efforts have
been dedicated to the robust control of WMR at a dynamic
level. In [8], an inverse dynamic controller receives the
signals of a kinematic controller based on a super-twisting
sliding mode control to improve robustness on a trajectory
tracking task. A dynamic control scheme for stabilization
of robots subject to nonholonomic constraints and external
disturbances is proposed in [9]. The method uses the port-
Hamiltonian theory to derive smooth time-invariant control
laws. At kinematic level, the so-called intelligent PID con-
troller is introduced to control a nonholonomic mobile robot
with measurement disturbance in [10]. Recently, a kinematic
control scheme oriented to the problem of avoiding obstacles
while navigating is proposed in [11]. The controller design
considers additive disturbances on the inputs and the solution
is based on the supervisory control framework.

In this paper, we present two alternatives of robust
kinematic controllers for trajectory tracking of a perturbed
differential-drive robot. The control scheme allows us to
specify desired trajectories for the position coordinates,
whereas the orientation remains as a degree of freedom in
the control system. The final goal is the regulation of the
robot pose in a desired time, which means that the robot
position and orientation must reach desired final values in
a user-defined time. We exploit the tracking of adequate
trajectories to drive the robot to reach the desired position
and also orientation simultaneously, such that pose-regulation
is finally achieved. Thus, the main contribution of the paper is
a complete strategy to define adequate reference trajectories
and robust controllers to track them, which ensures the
pose-regulation of a WMR in a desired time. The stabil-
ity of the controllers, a proportional-integral control and a
super-twisting control, is theoretically proved. The complete
control strategy is evaluated through realistic simulations
introducing additive disturbances.

The paper is structured as follows. Sec. II presents the
mathematical modeling and problem statement. Sec. III de-
scribes the synthesis of both controllers and presents their
stability properties. The definition of desired trajectories is
detailed in Sec. IV. Simulation results are shown in Sec. V
and conclusions and future work are remarked in Sec. VI.



II. MODELING AND PROBLEM FORMULATION

In this paper, we are interested in the problem of robust
pose-regulation of a differential-drive robot in a desired time,
i.e., take the robot position and orientation to desired values
with respect to a fixed reference frame in a desired time.
We consider a perturbed kinematic model of the system
described by the motion equation

z cos(0+p3) 0
gy | =| sin(@+8) 0| (u+d), ()
0 0 1

where x,y € R describe the Cartesian position and 6 € R its
orientation with respect to a fixed reference frame W (see
Fig. 1), 8 = 0 for forward motion and 5 = « for backward
motion, u = col(v,w) € R? are the translational and
rotational input velocities respectively and d = col(dy, d2)
€ R? is a constant matched disturbance.

Yw Y
T T
W} ow (W dw i
1 1
Yy
B /‘wf N
7 NE
Ur L.
Tp

Fig. 1. Kinematic configuration of the robot with a virtual control point at
a distance [. Left: Forward motion model. Right: Backward motion model.

A. A transformed kinematic model

In this section, we modify the system (1) via the addition
of a virtual point (1) along the longitudinal axis of the robot—
see Fig. 1. Hence, the well defined change of coordinates

x; = x+lcos(f+ B),
y = y-+lsin(0@+p), ()
0 = 0,
with [ > 0 and constant, transforms (1) into
Z cos(f +B) —lsin(6+ B)
y; = | sin(0+pB) lcos(6+pP) (u+d). (3)
0 0 1

For controller design and to simplify the notation, we
partition and recalled the coordinates as

z = col(xy, y1) € R?,

such that the modified model (3) can be written as

z = A+p)(u+d),
0 = w+d, “)
with full rank matrix A (0 + 3): R — R?*?2 given by
. | cos(@+pB) —lsin(6+ pB)
A0 +5):=A= sin(@ + 5) lcos(f + B)

B. Problem formulation

Consider that we have the perturbed kinematic model of
the WMR (1), transformed to system (4) by the change
of coordinates (2). The robust pose-regulation problem in
a desired time can be enunciated as follows.

Definition 2.1 (Problem statement): Regulate z and 6 of
the system (4) to desired constant values z/ = col(z{ , zg ) €
R? and #f in a user-defined time 7 in spite of the disturbance
d. Without loss of generality, we will assume z/ = 0.

In order to deal with the time-constraint imposed by T,
we propose to address the regulation problem as a trajectory
tracking problem for adequate references of the position
coordinates z; and y;. We will show that by tracking some
particular trajectories, the orientation 6 can also reach a
desired value. By assuming that z/ = 0, we consider that
the desired final robot’s position will be the origin of R2.

III. ROBUST TRAJECTORY TRACKING CONTROL

In this section, we present the main result of the paper,
where two robust controllers are described to achieve trajec-
tory tracking on coordinates related to the Cartesian position
of the robot.

Definition 3.1 (Control objective): Let us define a vector
of errors as 4
. zi(t) — x (1) ]
Z(t) ==z —z%(t) = ! , 5)
©) RLl ot e (
with z{,yf € R desired trajectories. The objective is to
ensure lim;_, ., Z = 0 to achieve trajectory tracking.

In order to reach the origin of R? in the time 7 as final
robot’s position, we assume in the sequel that z¢(t) = z/ =
0 for t > 7. In the following, we denote |:13|2 .= x|z for
x € R™. Given a function f : R®™ — R, we define the

4
differential operator V., f := % , where x; € RP
with p < n, x; is a subset of components of the vector x.

A first controller to achieve the previous control objective
makes use of the well known addition of integral action on
actuated coordinates [12] in order to reject the disturbance
d and it is presented in the following proposition.

Proposition 3.2: Consider the time derivative of (5) and
(4) in closed-loop with the controller

A~ (=kyz +27) — p,
ATz, (6)

u =

p =

with positive free gains k,, k; and p € R? an integral action.
I. The closed-loop takes the form

z | [ —kIs —kA [ V:H, o
p B kiAT 0o Vsz ’
with total energy function H, : R? x R?2 =+ R
L 1,. 1 .
H.(2,p) = 5 |2]* + 5k, ®)
where p=p — d.!

'From the fact that d is a constant vector we get i) = p.



II. The closed loop system has a globally asymptotically
stable equilibrium point at the desired point (z, p) =
(0,d).

III. The closed-loop system has a zero dynamics of first
order given by

0 = w+dy=0,
6 = —1(visingd—vycos) —ps+do =0, (9)
where v; = —k,Z; + ,éf and vy = —kpZy + z'g.

Proof: Regarding to point I, replacing the control law

(6) in (4) we get the first row of the closed-loop (7). The

second row of (7) corresponds to the definition of the integral

part given by (6). On the other hand, taking as Lyapunov

function (8) and its time derivative along the system (7)

yields

H.(z,p) = —k,|Z|*. (10)

This proves that (0, d) is a stable equilibrium of the closed

loop system (7). Furthermore, the trajectories will converge
to the largest invariant set included in

s={@p) | . =0} ={@p)|z=0}. (D
From (7) and (11) we have that
0 = _Aﬁa
p = 0. (12)

Hence, from the fact that A is a full rank matrix, we can
conclude that the largest invariant set S is

M={(2.p)|2=0,p=d}.

This proves that the equilibrium point (0, d) of the target
dynamics (7) is asymptotically stable. Finally, related to point
III, the closed-loop system reaches its zero dynamics [13]
when z = z%(t) = z/ = 0 for t > 7. Thus, the outputs
z1 and 29 can be regulated to zero, but in the system (4),
the dynamics of orientation is remaining. Equation (9) is
obtained from (6) noting that w is the second component of
the input’s vector u. Since v; =0, vo = 0 and p = d when
z1 = 0 and 29 = 0, the zero dynamics (9) represents a stable
dynamics with bounded constant solution 6.

Hence, in the case of the system (4) with outputs z; = x;,
zo = 1y, the subset of the state space describing the zero
dynamics is given by

{[xl,yl,G]T |21 =0, 20 = 0}

- {[o,o,ef, éeR}.

Zero dynamics in this control system means that when
the variables related to the robot’s position are corrected, the
orientation might be different to zero. [ ]

Remark 3.3: The addition of integral action on actuated
coordinates presented in Proposition 3.2 can be equivalent
to add an integrator around the passive output presented in
[12] for Port Hamiltonian systems, where the task preserves
stability in the presence of disturbances or modeling errors.

AR

The following proposition presents a second option of
robust controller to achieve the control objective of Definition
3.1. It is based on continuous second order sliding mode
control.

Proposition 3.4: Consider the time derivative of (5) and
(4) in closed-loop with a super-twisting control

u = A7'(—kSsign(z) + 2% + ),
6 = —kosign(z), (13)
5 11/2
with S = = S 112 and positive free gains kq, ko.
0 |2’2|

I. The closed-loop takes the form

Zz = —k1Ssign(z) + o + o,

o = —kosign(z), (14)
with 0 = Ad a bounded disturbance.

II. The closed-loop system has a globally finite-time stable
equilibrium point at the desired point (z, o) = (0, —p).

III. The closed-loop system has a zero dynamics of first
order given by

06 = w +dy =0,

6 = —%(vlsin9—vgcos6‘)+02+gg:0,(15)
where vy = —Fki|%|/?sign(%) + 2 and v, =
—k1| %"/ ?sign(2) + 4.

Proof: The point I can be directly verified by replacing
the control law (13) in (4) to obtain the closed-loop system
in (14). Notice that (14) expresses decoupled dynamics for
Z1 and Zs. Thus, the decoupled closed-loop dynamics can be
expressed as

—k1|Z| M ?sign(%) + 0i + 04,
—kosign(Z;),

5 o=

(16)

& =

for ¢ = 1,2. Let us define & = o; + 0;. Then, (16) can be
written as

zZ; =
& =

for ¢« = 1,2. Thus, related to point II, it has been proved
in [14] that, for bounded continuously differentiable distur-
bances, i.e., if |p;| < L and |g;| < M for some constants
L > 0,M > 0, the second order systems (17) converge
globally to the origin (z; = 0, {& = 0) in finite-time if
adequate positive control gains k; and ko are used. Since
& = 0, then the unknown terms of the disturbance can
be constructed 9; = —o;, so that ¢ = —o. Hence, all the
trajectories of (14) will converge to the invariant set

M={(z,0)|z=0,0 =—p}.

—k1|22|1/251gn(§1) + fi,

—kosign(Z;) + 0i, o))

Finally, related to the point III, the derivation of the zero
dynamics can be addressed similarly as in Proposition 3.2.

Since v1 =0, v =0 and 0 = —p when z; =0 and 25 =0,
the zero dynamics (15) represents a stable dynamics with
bounded constant solution 6. |



Remark 3.5: Both controllers given by (6) and (13) can
be implemented for forward and backward motion to track
the desired trajectories. Forward motion control is used if
B =0 and v = +uy, and backward motion is used if 3 =7
and v = —uq, with u; being the first component of u.

IV. DESIRED TRAJECTORIES DEFINITION

The problem stated in Definition 2.1 requires the robot
to reach a desired position and orientation. Up to now, the
presented controllers drive to zero the position coordinates
z1 = x; and zo = y;, but the orientation evolves freely
as described by the zero dynamics. We propose to define an
adequate parabolic trajectory for the robot position in order to
achieve also orientation correction for nonholonomic mobile
robots. Parabolic trajectories are the simplest ones that can
connect two points in R? imposing a desired slope at the
final point. Let us define an initial robot’s pose given by
(21, 2%,0") and a final desired pose defined by (2, 27, 07).
A parabolic trajectory on the z; — 25 plane symmetric to an
axis parallel to z; has the form

4p(z1 — h) = (20 — k)2, (18)
where p € R represents the constant distance between the
vertex and the focus and h, k € R are the vertex coordinates

of the parabola (see Fig. 2).

Fig. 2. Parabolic desired trajectory symmetric to an axis parallel to z7,
whose tangent at the origin of the plane is equal to tan(81).

Wlthout loss of fgenerality, consider the final desired
position z{(r = 0 and 24(7) = 2z} = 0. Taking
the derivative of (18) evaluated at the desired position and
equating to the slope given by tan @/ at the desired position,
we have

22 |0,0= 42 = tan /. (19)
Moreover, evaluating (18) at the desired position (origin

of the plane), we get
k? = —4ph. (20)
Thus, from (19) and (20), the parameters k& and h are
k=_—=2%2 h=_-F (21)

tan 67 tan2 07
Since we know the initial position (2}, z4) and solving for
p in (18), we get p = L)Ql
4 zi—ﬁ)
Then, using these results, the proposed trajectory is gen-
eralized for an initial pose (z!,z%,0) and a final pose

(2f,2,67) and parametrized in time as follows:

Fig. 3. Parabolic desired trajectory symmetric to an axis parallel to 25,
whose tangent at the origin of the plane is equal to tan(8/).

2 = 2~ 22 (1+cos( ))—l—zg, 0<t<r
24y —2f —
A) = 7( e O vn o<t<T 22
(s5—21)"
r = ST
4(2’{72'{7;“9;)

Notice that the computation of the parameters p, k and
h for the trajectory (22) has singularities for some values
of /. Hence, we propose another complementary option
of trajectory that can be used conveniently avoiding these
singularities and generating shortest paths depending on the
initial and desired final poses. Following a similar procedure
to the previous, we can define a parabolic trajectory on the
z1 — zo plane symmetric to an axis parallel to Z5, which is
given by (see Fig. 3)

dp(zy — k) = (21 — h)2 (23)

By parametrization of the equation (23) in time, we define
the following complementary option of desired trajectory:

A = BFA

2 () — oS —
(1(t> {-r)® .

(1+coe( D) +2{, 0<t<T

24 = o 0<t<T (24)
_ (z1—2{)?
p 4(z27z2 (zlfz{)tan 07)
k = —ptan®6/, h=—2ptané’.

Since we have two options of desired trajectories and
two ways of motion control to track the trajectory (forward
and backward), we propose a strategy to decide for one
of the combinations in order to avoid singularities in the
trajectory computation and to take into account the length of
the generated path. Algorithm 1 presents such strategy for
the case when the initial robot position is in the first quadrant
of the z; — 29 plane. A similar strategy is defined for any
initial position in every quadrant of the plane. Notice that
exceptions that cannot be directly handled by the proposed
strategy are initial positions over any of the axes, i.e., for
2t =0 or zi = 0. In these cases the robot should be moved
away from the initial condition to start inside a quadrant
of the plane. Then, the proposed strategy exemplified in
Algorithm 1 can be applied. The need of an initial motion
for positions over the axes is because in that cases the



Algorithm 1 Trajectory generation for the first quadrant:
z; > 0,25 > 0.

Input: Initial position (2%, %), desired pose (z{ 725 ,07) and
desired time 7.
Output: Trajectory to be tracked (22) or (24), and type of motion
(see Remark 3.5).
1. Compute ¢° = arctan <%)
#1771
if 0 < 67 < Z then
if 97 < ¢ or 6 = 0 then
2. Trajectory (24) backward;
else
3. Trajectory (22) backward;
end if
end if
if 2 <67 < then
if 5 < 9f < %77 then
4. Trajectory (22) backward;
else
5. Trajectory (24) forward;
end if
end if
itT <0 < %7‘(’ then
if 8/ — 1 < ¢' then
6. Trajectory (24) forward;
else
7. Trajectory (22) forward;
end if
end if
if %71' < 6% < 27 then
if £ <6/ < Ir then
8. Trajectory (22) forward;
else
9. Trajectory (24) backward;
end if
end if

parabolas become a line along an axis and then an arbitrary
desired orientation cannot be reached by tracking that linear
trajectory.

The tracking of the proposed parabolic trajectories al-
low us to define a fixed temporal horizon 7 to reach the
desired robot pose. Although parabolic trajectories are the
simplest ones accomplishing the task constraints, higher
order trajectories might benefit in terms of smoothness and
path length. Notice that the robot always begins over the
desired trajectory, so that the controller has to maintain
the tracking of it. Due to the nonholonomic motion of the
robot, the tracking controller drives the robot to perform
an initial autonomous rotation to get aligned with the path
independently of the initial robot orientation. Next, it is
proved that orientation correction is also achieved by tracking
the proposed trajectories, in such a way that pose-regulation
is accomplished.

Proposition 4.1: The robust controllers (6) and (13),
tracking the reference trajectory specified by Algorithm 1
(similarly for the other quadrants), drives the virtual control
point of the perturbed differential-drive robot (4) to reach the
desired pose (z1 = z{, 29 = zg, 0+5 = Gf), i.e., orientation
is also corrected.

Proof: 1t is clear the global robust stability of the
error system (7), respectively (14), with the controller (6),
respectively (13), which drives the robot position to the
desired values (21 = z{, 2 = 2J) in 7 seconds. Thus,
it remains to prove that the orientation is also corrected in
T seconds. We assume that the rotational velocity is small
when the robot is approaching to the desired position, which
is realistic given the construction of the desired trajectory.
Thus, the translational velocities of the virtual control point
for each axis are given by

Z1=wvcos(f+ ), Zo=wvsin(6+p).

From these relationships we get
tan(6 + §) = (22> :
21

Let us use the parabolic relationship between Cartesian
coordinates (23), according to an option of desired trajectory.
A similar analysis follows for the complementary trajectory
(18). The time-derivative of (23) provides the relationship

2'12 Zl—h

i 2p
Thus, the orientation angle can be computed as follows
when the z; and zs-coordinates track the desired trajectory:

0 + f = arctan <Zl h) .
2p

As aforementioned, when the robot has tracked the ref-
erence trajectory and ¢ = 7 the position reaches the goal
(1 = z{ , 29 = zg ). Since the slope of the trajectory (24)
for 21 = z{ and z, = zJ is given by tan(6/) = (—h/2p)
according to the equation for h in (24), we have

h
0+ B =6 = arctan <) .
2p

This proves that the desired pose (21 = z{ , Zo = fo

0 + B = 67) is reached in T seconds.

i

V. SIMULATION RESULTS

In this section, we present simulation results using indis-
tinctly each controller, (6) the proportional-integral control
(PIC) or (13) the super-twisting control (STC). Simulations
are implemented using Webots [15] with the robot Pioneer
3-DX. A GPS and a compass provide the required feedback
information. The time-derivatives required by the control
laws are implemented using the forward Euler approxima-
tion. For the disturbance, we have introduced d; = 0.1 for
the translational velocity v and do = —0.1 for the rotational
velocity w. We have assumed that the virtual control point
is at [ = 0.1 m. The control gains were fixed to &k, = 1.5,
k; = 1.5 for the PIC and k1 = 0.6, ko = 0.03 for the STC.
For all the simulations, we have defined that the robot has
to reach the desired pose in 7 = 30 s. The simulated control
cycle runs at 5 ms.

The first part of the results corresponds to the same initial
robot pose reaching the origin of the z; —z9 plane for 4 exper-
imental runs and reaching a different final desired orientation
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Fig. 4. Executed and desired trajectories starting from the same initial
robot pose P = (x = 3 m, y = 2 m, § = 180 deg) and reaching the
origin of the plane with 4 different desired orientations.

in each case. Fig. 4 shows the executed trajectories and the
corresponding references for each experimental run, where
the robot is commanded to reach 67 = 0 deg, §7 = 150 deg,
67 = 220 deg and #/ = 315 deg. Two of the experimental
runs are executed using the PIC and the other two using
the STC. According to Algorithm 1, the trajectory to reach
6 = 0 deg is the only one tracked in backward motion.
The other trajectories are tracked in forward motion. This
is why the trajectory in black in Fig. 4, corresponding to
6 = 0, starts in a different position than the other ones,
since the virtual control point in this case is behind the robot
reference frame as defined in Fig. 1(right). For each of the
cases evaluated in Fig. 4, the final position error, given by
the Euclidean distance between the final position and the
origin of the plane, is less than 1 cm for each case. The
mean squared tracking error is less than 10 cm? for each
case. The final orientation errors for the goals #f = 0 deg,
67 = 150 deg, 6/ = 220 deg and 6§/ = 315 deg are 2 deg,
5 deg, 0.4 deg and 6.7 deg, respectively.

Two examples, for #f = 0 deg with STC and 67 = 220
deg with PIC, of the evolution of the robot pose with respect
to time are shown in Fig. 5. We can see the good tracking
of the desired trajectories for position coordinates z; and
29, such that the real evolution of these variables are over
imposed to the references. Also, the free variable for the
control system 6 is taken really close to the corresponding
desired value in the fixed time 7 = 30 s using either con-
trollers. Fig. 6 presents the evolution of the robot velocities
with respect to time for the same two cases 7 = 0 deg
and 67 = 220 deg. The velocities settle at the contrary
sign values of the introduced constant disturbances, such that
they are effectively rejected. Notice that although the STC
is continuous in contrast to classical sliding mode control, it
generates a small high frequency component on the velocities
that can be reduced if the control loop is even faster.

The second part of the results corresponds to 4 different
initial robot poses to reach the origin of the z; — 29 plane
with desired orientation 87 = 90 deg for all the cases. Fig. 7

STC, backward - 6'=0 deg

15
Time (s)

Fig. 5. Evolution of the robot pose with respect to time for the cases of
desired orientation 0 = 0 deg and 0/ = 220 deg.

STC, backward - 0'-0 deg
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PIC, forward - 6'-220 deg
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Fig. 6. Evolution of the robot velocities with respect to time for the cases
of desired orientation 8 = 0 deg and 6 = 220 deg.

presents the executed trajectories and the corresponding ref-
erences for each experimental run. Two of the experimental
runs are executed using the PIC and the other two using the
STC. A similar strategy to the one in Algorithm 1 is used
to define the desired trajectories and the way to track them
(forward or backward). In these cases, the strategy specifies
that the trajectories starting in P; and Ps are executed
in backward motion and those starting in P3 and P, are
executed in forward motion. Similar performance to the first
part of the results was obtained in this second part. For each
of the cases in Fig. 7, the final position error is less than 1
cm and the mean squared tracking error is less than 10 cm?.
The final orientation errors are 2.6 deg for P, 1 deg for P,
7.4 deg for P3 and 8.7 deg for Py,.

Fig. 8 shows the evolution of the robot pose with respect
to time for the cases starting in P, and P3. One more time,
the real evolution of the position coordinates z; and z, are
practically over imposed to the references, which demon-
strate the good performance of both tracking controllers.
Also, the robot orientation closely reaches the desired value
in the specified time 7 = 30 s. We present the corresponding
robot velocities for the same two cases starting in Po and
P3. Also, the settling values of the velocities are those that
effectively cancel the introduced disturbances. In general, we
can say that both controllers, PIC and STC, present similar
performance for the evaluated conditions.

Finally, we refer to a video included as a complement,
where we present the performance of both robust controllers
in the presence of more severe disturbances and an obstacle



= - = STC, backward - Desired traj
4l | ——STC, backward - Real traj.
= - = PIC, backward - Desired traj.
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- = = STC, forward - Desired traj.
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Fig. 7. Executed and desired trajectories starting from 4 different initial
robot poses P1 = (z =2m, y =3 m, § =180 deg), P> = (. = —1m,
y=4m, 6 =270 deg), P3s = (x = —4.5 m, y = —3 m, § = 90 deg),
Py=(x=25m y=—-2m, 0 =90 deg) and reaching the origin of
the plane with desired orientation 90 deg.

P, - PIC, backward

15
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Fig. 8. Evolution of robot pose with respect to time for the cases of initial
pose P2 and P3.

that the robot crashes, making it deviating from the trajectory
for a while. The robot recovers the trajectory to finally reach
the desired position and orientation in a desired time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the pose-regulation problem
of a perturbed wheeled mobile robot, i.e., drive the robot
to reach simultaneously a desired position and orientation
regardless of additive disturbances in the control inputs.
The pose-regulation problem is faced by tracking adequate
trajectories for the position coordinates, such that the robot’s
orientation gets a final desired value due to the nonholonomic
motion constraint. Two alternatives of robust kinematic
controllers are presented to ensure an accurate trajectory
tracking. Moreover, a complete strategy details how to define
the adequate trajectories on the basis of parabolic curves,
which are the simplest curves accomplishing the task con-
straints. The strategy also specifies a convenient motion
to track the trajectories in forward or backward motion.
Compared to classical stabilization/regulation schemes for
wheeled mobile robots, our proposal allow us to define the
time of convergence. Realistic simulations have shown good
performance of the proposed control scheme.

P, - PIC, backward

— (s
— o (radls)

I
15 20 25 a

P, - STC, forward

Fig. 9. Evolution of robot velocities with respect to time for the cases of
initial pose P2 and P3.

As future work, we plan: 1) to implement the complete
control strategy in a real robot, 2) to analyze theoretically
the behavior of the presented controllers against time-varying
disturbances and 3) to contrast the use of other type of
trajectories, for instance B-splines, in terms of length of the
path and pose-regulation accuracy.
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