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Abstract— In this paper, we propose an approach of following
a visual path for humanoid navigation. The problem consists
in computing appropriate robot velocities for the humanoid
walking task from the visual data shared between the current
robot view and a set of target images. Two types of visual
controllers are evaluated: a position-based scheme and an
image-based scheme. Both of them rely on the estimation of
the homography model even for non-planar scenes. We assume
that the sequence of target images is given and we focus on the
controllers performance. Because classical visual path following
controllers generate discontinuous robot velocities, we propose
a generic controller (applicable for different types of visual
feedback) to alleviate this issue, which is a main contribution
of the paper. The stability of such controller is addressed
theoretically and verified through experiments with a NAO
humanoid robot.

I. INTRODUCTION

Important efforts have been done to integrate the visual
servoing approach [1] to the problem of robot long-distance
navigation. This problem has been mainly addressed for
wheeled mobile robots [2]–[5]. Since the visual servoing
approach is a local solution, a natural extension is the use
of a sequence of target images and the formulation of a
visual path following problem for navigation. This idea was
introduced in [2] for wheeled mobile robots and called view-
sequenced route representation. This navigation approach can
be treated through any of the two classical approaches of
visual servoing: a position-based scheme (PBVS), where
the estimation of some 3D pose parameters is needed, or
an image-based scheme (IBVS), where direct feedback of
image features is used [1]. The capture of a sequence of
target images is carried out from a supervised teaching
phase, which generates the also called visual memory [4],
[5]. An example of position-based scheme that uses the
visual memory approach and 3D reconstruction is [3]. A
complete map building is avoided in [4] by relaxing to
a local Euclidean reconstruction. An image-based scheme
is presented in [5], where direct feedback from a visual
geometric constraint is used.

Work has also been done for vision-based indoor nav-
igation of humanoid robots. In [6], a sequence of target
images and a technique based on template correlation is used
to decide the actions that a humanoid has to perform for
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navigation in corridors. The strategy proposed in [7] copes
with different corridor configurations by taking advantage of
vanishing points computed in that particular environment. In
[8], a vision-based control scheme is proposed to track a de-
sired trajectory in the Cartesian space. Vision and odometry
data are fused to estimate the robot motion and a controller
is designed on the basis of the unicycle model. Unlike some
of these approaches, our strategy might be applied for less
restrictive indoor environments where the sequence of target
images had been previously acquired: corridors, uncluttered
or cluttered environments. Similar to [6], we assume that
a sequence of target images are known and for each target
a visual servoing task has to be accomplished. This means
that the humanoid locomotion process is directed by several
visual tasks.

Humanoids are able to perform several tasks simultane-
ously, however, in this work we focus on the locomotion
guided directly from vision. In [9], a grasping task com-
manded by visual servoing is performed while the humanoid
is walking. Recently, this strategy has been incorporated
within a visually-guided locomotion planner in [10]. In these
cases, the locomotion task cannot be modified by an error
function in terms of visual data. A reactive walking controller
introduced in [11] overcomes this limitation. Using that
scheme, the foot placements are automatically generated
from a desired sequence of linear and angular velocities of
the robot’s center of mass (CoM). This sequence can be
computed from a visual task as it is demonstrated in [12].

In this work, humanoid navigation is formulated as the
problem of following a visual path, which is defined by a
given sequence of target images. In particular, two types
of visual controllers are evaluated: PBVS and IBVS. The
visual path following consists in calculating the appropriate
robot velocities for the walking task. The humanoid robot
is treated as a holonomic system at the locomotion level,
without imposing motion constraints (as in the unicycle
model), which allows the robot to move appropriately even
in visual paths that naturally requires pure lateral motion.
In this context, we propose a generic control law capable to
alleviate the discontinuous behavior of the robot velocities
that appears when a new target image is given [3]–[5].
In summary, the contribution of the paper is the proposal
of a pure vision-based navigation strategy that exploits the
holonomic nature of the humanoid locomotion, mitigating
discontinuities of the robot velocities.

The paper is structured as follows. Sect. II gives an
overview of the navigation strategy. Sect. III describes the
visual path following scheme tailored to humanoids. We



present the proposed smooth transition control in Sect. IV.
Experiments are described in Sect. V and some final remarks
are given in Sect. VI.

II. OVERVIEW OF THE NAVIGATION STRATEGY
A visual path consists of an ordered set of n target images

acquired on a supervised teaching phase of the navigation
method. In this work, we assume that the visual path is
given previously, so that, we focus on the development of
an appropriate control law that allows the humanoid robot
replaying autonomously the memorized path.

Fig. 1 presents an overview of the proposed framework
for visual path following for humanoids. At the beginning of
the autonomous navigation, the robot is close to the starting
position of the teaching phase, in such a way that I∗1 is the
first target image to reach. The task of following the visual
path is divided into n subtasks, each one consisting of driving
to zero the visual error between the currently acquired image
I and the next target image I∗i . Point features are matched
between the current image I and the corresponding target
image I∗i along the robot motion. According to Fig. 1, the
matched image features are used to compute the subtask error
that has to be driven to zero through an adequate control
law. Additionally, the mean squared error between the set of
corresponding point features is used to define the switching
condition to the next target image. When the error is small
enough, a new target image is requested to be reached and
the same whole cycle is repeated for each target image until
the final one I∗n is reached.
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Fig. 1: Visual path following strategy for humanoids.

III. VISUAL PATH FOLLOWING SCHEME
The problem of following a visual path can be treated as a

set of n visual servoing subtasks. In this sense, the problem
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Fig. 2: Visual control scheme for humanoids.

can be solved through any of the two classical approaches of
visual servoing: PBVS and IBVS. In this work, we focus on
the proposal of a generic controller able to provide smooth
robot velocities, which is a critical aspect for the navigation
of a humanoid robot. Unlike a wheeled mobile robot [4],
[5], a humanoid robot might get unbalanced in the effort to
achieve a sudden change of the commanded velocities.

A. Visual control scheme for humanoids

In this work the humanoid locomotion is generated by
considering the well-known cart-table model that captures
the relation between the acceleration of the CoM and the
zero moment point (ZMP) during walking. The velocity of
the CoM ˙̄xr will be obtained by the instantaneous output
of a visual servo-controller as detailed below. We use a
walking pattern generator (WPG) that considers automatic
footstep placements and incorporates additional inequality
linear constraints [11]. The outcome of the pattern generator
is then used to compute the motion coordination by means
of an efficient inverse kinematics method [13].

Let νm be the velocity of the frame attached to the robot’s
CoM. We assume that a constant transformation mT c exists
between νm and the velocity of the camera reference frame
νc, so we have:

νm =m T cνc (1)

where
mT c =

(
mRT

c −mRT
c [r]×

0 mRT
c

)
∈ R6×6,

with [r]× ∈ R3×3 representing a screw-symmetric matrix
and mRc ∈ SO(3). This constant transformation means that
the robot’s head is fixed w.r.t. the robot’s body. Then, the
input for the WPG can be expressed as:

˙̄xr =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

νm. (2)

Notice that only the translational components of ˙̄xr are
needed for the WPG while the angular term is used to
construct the linear inequality constraints that define the next
footstep placement [11]. The whole process for the visual
control tailored to humanoids is shown in Fig. 2.

B. Visual Control Strategies

The aim of the visual servo-control approach is to drive
a vector of m image features s to a desired value s∗ [1].
In the context of visual path following, that goal must



be accomplished for each target image (n visual servoing
subtasks). Thus, the following subtask error can be defined:

ei = s− s∗i ∈ Rm.
The relationship between the camera velocities and the

change of the image features vector is given by ṡ = Lsνc,
where Ls ∈ Rm×6 is an interaction matrix. In this paper,
we concern for selecting an appropriate features vector of
dimension 6, i.e. m = 6, to have a square interaction matrix.
In this paper s∗i is a vector of constant values and then ėi = ṡ.
Thus, the time derivative of the error for each subtask is
given by ėi = Lsνc. A typical choice of νc to impose an
exponential decay of the error is as follows:

νc = −λL̂−1
s ei, (3)

with λ a positive control gain. Notice that we will propose
a six-dimensional features vector that allows us to have an
invertible estimated interaction matrix L̂s.

The classical approach to compute the camera velocity
vector given in (3) has the disadvantage of being discontin-
uous at the instant when a new target image is given. In the
sequel of this section, we describe the selected visual features
for feedback and in the Sect. IV the proposed controller to
achieve smooth transitions between subtasks. The switching
to the next target image is given when the image error ε is
below a threshold Tε, i.e.:

ε =
1

k

k∑
j=1

∥∥pj − p∗
j

∥∥ < Tε. (4)

where k is the total number of corresponding point features.
In the following two subsections, we describe two different
control schemes that can be used individually to carry out
the sequence of n visual servoing subtasks one by one. In the
controllers description, we will consider that the robot has
to reach the location associated to the ith target image I∗i ,
however, to simplify the notation we do not use the subscript
i to denote the subtask index.

1) Position-based scheme (3D): Let us denote by C and
C∗i the reference frames associated to the current camera pose
(translation and rotation) and the ith target pose respectively.
A vector t expressed in C∗i represents the translation between
C and C∗i and R is the rotation matrix between those
reference frames. A features vector for a position-based
control can be defined as follows:

s = (t, θu) ∈ R6 (5)

where θu represents the axis/angle parametrization of the
rotation matrix (Rodrigues’ formulation). Since the features
vector encodes the translation and rotation w.r.t. the target
frame, in this case sd = 0 and therefore e = s.

The translational and rotational velocities result to be
decoupled according to (3) as detailed in [1] and the velocity
vector is given by:

νc =

[
vc
ωc

]
=

[
−λRT t
−λθu

]
. (6)

Considering that the control gain accomplishes λ > 0 and
that the camera pose is accurately estimated, the velocity

vector (6) yields to an exponentially stable error dynamics
of the form ė = −λe.

There are several options to recover the relative pose
between the current camera frame C and the target one C∗i .
An option that does not require to know the 3D structure of
the scene or a 3D model of an object in the scene is the
homography matrix decomposition [14]. The homography
matrix H can be estimated using only the images I and
I∗i . The homography encodes the relative pose between the
reference frames C and C∗i as follows:

H = R +
t

d∗
n∗T (7)

where R and t are the rotation matrix and translation vector
as defined above, n∗ is the unitary vector expressed in C∗i
normal to a plane π, and d∗ is the distance from π to C∗i .

Thus, it is possible to decompose H according to (7)
to obtain R and t, which are necessary to implement the
control law (6). An efficient algorithm to carry out such
decomposition is proposed in [15]. It is well known that
the decomposition of H generates two geometrically valid
solutions, however, only one of them is physically admissi-
ble. The correct solution can be selected taken the solution
associated to the normal vector whose third component
(nz) will be the largest. We emphasize that although the
homography model is valid for planar scenes, it is possible
to estimate a homography associated to a virtual plane for
non-planar scenes using the algorithm proposed in [14].

2) Image-based scheme (2D): The homography model
has also proved to be efficient for 2D visual servo-control.
A control scheme that formulates a control law directly in
terms of the homography matrix is proposed in [16]. Error
vectors for translation and rotation are directly computed
from the homography matrix. The core idea in that scheme
is that the reference frames C and C∗i coincide, if and only
if the homography matrix H is equal to the identity matrix
I. Under that notion, a task function s = e ∈ R6 locally
isomorphic to the camera’s pose is defined. The task function
e = (eTv , e

T
ω )T is null if and only if the camera reaches the

target pose and it is given by:

ev = (H− I)m∗, (8)
[eω]× = H−HT

where m∗ is any point in the target image I∗i that belongs
to the plane (virtual plane for non-planar scenes) that defines
H, and [eω]× represents the skew-symmetric matrix for the
vector eω = (eωx, eωy, eωz)

T .
Thus, the task function e can be estimated using only the

images I and I∗i , without the need of obtaining the 3D
structure of the target pose (d∗). The homography can be
estimated using the method of [14] for non-planar scenes.
The time-derivative of the task function gives the equation
ė = Lνc, where L is a square interaction matrix. In [16] it
is shown that this control scheme is efficient even without
using the interaction matrix. Thus, the linear control

νc =

[
vc
ωc

]
=

[
−λev
−λeω

]
(9)



with λ > 0, yields an error dynamics locally exponentially
stable. The local stability of the task function is guaranteed
for any 3D structure and any point m∗ [16].

IV. CONTROLLER FOR SMOOTH TRANSITION

Any of both previous controllers, (6) and (9), are of
the form of the generic controller (3). These controllers,
introduced in the WPG according to Fig. 2, are able to drive
the humanoid robot to the location associated to the target
image I∗i . However, in the following of the visual path the
error is large when a new target image is given and the robot
velocities are discontinuous at the switching of each subtask.

In order to avoid such discontinuities, we propose to
introduce a smooth transition function h(t) that penalizes the
large error at the beginning of each subtask. The proposed
control law written in a generic form is given by:

νc = −λh (t) L̂−1
s ei. (10)

The introduction of the transition function h(t) in the
control law has the effect of having a time-varying gain.
The generic control law (10) can be implemented as any of
the two controllers of the previous subsections: the PBVS
(6) or the IBVS (9). An adequate transition function is as
follows:

h(t) =

{
h0 + 1

2 (1− h0)
(

1− cos
(
π(t−t0)
tf−t0

))
, t0 ≤ t ≤ tf ,

1, t > tf .

The function h(t) has a minimum value h0, from which
it increases smoothly up to the unity. Thus, after tf , the
maximum value λ of the control gain is applied. It is worth
noting that the minimum value of h(t) allows the robot to
achieve a continuous motion (without stopping) while the
discontinuities in the velocities are significantly reduced. It
is important to set adequately the duration of the transition
function tf − t0 to ensure that the maximum control gain is
applied at least during some time for every subtask.

Without loss of generality, we have assumed in (10) that
the same value of the gain λ is used for each component of
the velocity vector, however, it is possible to use different
control gains for each one of the components as it will be
described in the experimental results. An important aspect of
the control law (10) is that the time-dependent function h(t)
makes the closed loop dynamics time-dependent. This is:

ėi = −λh (t)LsL̂
−1
s ei. (11)

Consequently, (11) is a non-autonomous system with equi-
librium point ei = 0. An stability analysis for this system
must consider the property of non-autonomy [17]. Let us
define the following candidate Lyapunov function:

V (ei) =
1

2
eTi ei, (12)

that is continuously differentiable, positive definite and de-
crescent as required [17]. The last two properties mean that
the inequality W1 (ei) ≤ V (ei) ≤ W2 (ei) is accomplished
for all ei ∈ R6. Because the candidate Lyapunov function
(12) does not explicitly depend on time, W1 (ei) and W2 (ei)
are trivially found to be W1 (ei) = W2 (ei) = V (ei).

The time-derivative of the candidate Lyapunov function is

V̇ = −λh (t) eTi LsL̂
−1
s ei.

To show that the equilibrium point ei = 0 of the non-
autonomous system (11) is asymptotically stable, a positive
definite function W3 (ei) must be found such that:

∂V

∂t
+
∂V

∂ei
ėi ≤ −W3 (ei) . (13)

The term ∂V/∂t is zero because V (ei) is not a function
of time. Additionally, we have that:

∂V

∂ei
ėi = V̇ = −λh (t) eTi LsL̂

−1
s ei. (14)

Given that h(t) satisfies a lower bound condition:

h(t) ≥ h0 > 0.

Then, we have:
∂V

∂ei
ėi = −λh (t) eTi LsL̂

−1
s ei ≤ −λh0eTi LsL̂−1

s ei. (15)

Therefore, we can set W3 (ei) = λh0e
T
i LsL̂

−1
s ei and

asymptotic stability is guaranteed if and only if LsL̂−1
s > 0 ,

i.e., the matrix LsL̂
−1
s is positive definite. This is the typical

stability condition for a visual servo-controller, however, in
this case the additional condition h(t) ≥ h0 > 0 on the
transition function must be satisfied. For the PBVS (6), the
condition LsL̂

−1
s > 0 holds globally for a good estimation

of the pose parameters. For the IBVS (9), the condition
LsL̂

−1
s > 0 holds locally around ei = 0, as shown in [16].

V. EXPERIMENTAL EVALUATION

We implemented the proposed navigation controller within
a NAO humanoid robot. The top camera mounted on the
robot’s head was used in the experiments. The images were
obtained at a frame rate of 12Hz with a resolution of 640
× 480 pixels. The image features were acquired as follows:
first, a corner detector based on [18] was used, which is
implemented in the function goodFeaturesToTrack of
the OpenCV library. Then, we assigned a SIFT descriptor
[19] to each detected point. A robust matcher based on
RANSAC matched all the points between the current image
and the corresponding target image. Finally, a tracking algo-
rithm based on a sparse iterative version of the Lucas-Kanade
optical flow in pyramids was utilized. We used the function
calcOpticalFlowPyrLK from OpenCV. The tracking
of points from a camera mounted on a humanoid robot is
not trivial due to the jerky camera movements generated
by the robot’s gait. Thus, the tracker was experimentally
tuned to deal with this unavoidable behavior. We evaluated
experimentally the performance of the tracker with the NAO
robot. It was found that the tracker is able to work properly at
the maxima forward, lateral and rotational velocities whereas
the maximum step size are 0.04m for forward direction,
0.14m for lateral and 0.349rad for rotation. The HLM function
of ViSP library was used to compute the homography for
planar and non-planar scenes [14].
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Fig. 3: Path to be followed by the robot in the experiments.

The visual path was defined by 16 target images over a
total distance of 4.34m. A bird’s-eye view of the path is
depicted in Fig. 3, where the red robot marks the starting
position and the sequence of the blue robots marks the
16 target images. The path has been designed to show
the adaptability of the vision-guided humanoid locomotion
depending on the shape of the visual path. Thus, the path
consists in a curved segment, similar to one performed by
a differential drive robot, and a rectilinear lateral segment.
The red rectangle in Fig. 3 represents a fence-like obstacle
which does not occlude the view of the camera. The goal of
using this experimental setup is to simulate an environment
with a narrow passage.

Regarding the control parameters, it is convenient to
use different control gains for translation and for rotation,
because in the bipedal locomotion, it might be easier for
the robot to move laterally compared to rotate, so that, we
used λ = 0.06 for translation and λ = 0.2 for rotation.
The duration of the transition function h(t) was set experi-
mentally to 40 iterations. We found out experimentally that
h0 = 0.05 represents a good compromise between mitigation
of the discontinuities of walking velocities and continuity of
motion during the robot navigation. The threshold Tε was
set to 13 pixels for the whole path.

We have implemented the visual controls described in
Sect. III, without and with smooth transitions, and the results
are shown in Figs. 4(a)-4(d). In those figures, we emphasize
some details by zooming the interval of the plots marked
by an ellipse. Those intervals of the plots correspond to
parts of the path where a larger change of direction takes
place, and therefore the discontinuities in the velocity ωz are
higher. It is also possible to appreciate discontinuities in the
lateral velocity υy , during the lateral motion (approximately
between the 2000 and 3000 iterations for each plot in all
controls).

Figs. 4(a) and 4(b) show the velocities during the whole
navigation for the position-based control, without and with
smooth transitions respectively. In Fig. 4(a) it can be seen
at the zoomed area the discontinuities at the switching of
each subtask. In Fig. 4(b), the same discontinuities are
smoothed by the transition function. Figs. 4(c) and 4(d)
show the results of the image-based control without and with
smooth transitions respectively. Notice that the discontinuous
behavior of the velocities in Fig. 4(c) is alleviated in Fig. 4(d)

by introducing the transition function.
The evaluated controllers solve the global navigation task

by driving the robot to a vicinity of the location associated to
the final target image with an error less than 6% of the total
path length. Nevertheless, the repeatability of the task can
be ensured by means of smooth transitions. According to the
results a satisfactory estimation of the pose parameters has
been achieved for the PBVS. However, the sensitivity of this
approach to a good pose estimation reduces the repeatability
of the results in comparison to the IBVS. In this sense,
the IBVS control outperforms the PBVS control for several
trials.

It is worth emphasizing that the threshold Tε plays an
important role on the precision of each subtask. Nevertheless,
a small threshold is not always the best option in order
to obtain a natural robot motion for navigation. For the
experiments, we have achieved a good behavior by fixing
Tε. Finally, the experimental results validate how our visual
path following scheme exploits the reactivity of the footstep
placements computed by WPG. The humanoid is able to
perform forward and lateral steps in indoor environment.

VI. CONCLUSIONS

In this paper, we have shown the feasibility of the visual
path following approach for humanoid robots navigation in
indoor environments. We assumed that a sequence of target
images is known. We proposed a generic visual control
law that copes with discontinuous robot velocities appeared
when the target image is replaced by a new one during
humanoid navigation. In particular, we incorporated smooth
transition functions in the control laws. The stability of the
proposed scheme has been proved theoretically and verified
through experiments with a real humanoid platform. The
control scheme takes advantage of the reactive footstep
placements without the need of any footstep planning to
decide the type of walking behavior that better adapts to the
visual servoing task, e.g., forward or lateral stepping. We
have evaluated both, a position-based and an image-based
methods. An important ingredient has been the estimation of
an homography associated to a virtual plane for non-planar
scenes.
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