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NOTES 
Edited by Ed Scheinerman 

The Continuous Newton's Method, 
Inverse Functions, and Nash-Moser 

J. W. Neuberger 

1. INTRODUCTION. The conventional Newton's method for finding a zero of a 

function F : Rn -> Rn, assuming that iF\y))~l exists for at least some y in Rn, is the 
familiar iteration: pick zo in Rn and define 

zk+i = zk- iFfizk)rxFizk) ik = 0,1,2,...), 

hoping that z\, z2, ... converges to a zero of F. What can stop this process from find 

ing a zero of F? For one thing, there might not be a zero of F. For another, the process 

might terminate for some integer k in the event that F'izk) does not have an inverse. 
A domain of attraction corresponding to a given root of F consists of the set of all 

starting values z0 that lead, through convergence of z\, z2, ..., to this root. Newton's 

method can lead to chaotic domains of attraction, even for simple choices of F (see 
[8]). This can lead to striking pictures but constitutes a nightmare for the numerical 

analyst. This fact, if nothing else, leads one to the damped Newton's method, which 
consists of 

zk+[ =zk- SkiF'izk))-lFizk) ik = 0,1,2,... ), 

where Si, <52, ... are chosen from (0, 1) in an attempt to gain more reasonable do 

mains of attraction. The continuous Newton's method is, in a sense, a limiting case of 
a sequence of damped Newton's methods: Pick T > 0 and for each positive integer m 

consider damped Newton's method running m steps with 8k = T/m, ik = 1, ..., m). 
Denote the resulting zm+\ by xm. If x\, x2, ... converges, the limit of this sequence 
is said to be the result of the continuous Newton's method at the number T. The 

preceding is just a rough way of saying the following: consider finding a function 
z : [0, oo) -> Rn so that 

ziO) = xe Rn, ?it) = -iF\zit))-lFizit)) it > 0) (1) 

in the hope that u = lim^oo zit) exists and F(w) = 0. 
The continuous Newton's method seems much less familiar than the conventional 

Newton's method. An application to finding roots of complex polynomials is found in 

[8] and the references contained therein. In [8] it is shown that for the continuous New 
ton's method there are no fractal domains of attraction. A starting place from which 
to gain an historical overview of the continuous Newton's method is [1]. This refer 
ence contains a survey of path-following methods (to which the continuous Newton's 
method belongs) and also contains a very extensive set of references. The papers [10], 
[11] and the references contained therein have detailed discussions of various aspects 
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of the continuous Newton's method. The continuous Newton's method has a close con 
nection with inverse and implicit function results; the present note is a contribution to 
this connection. See also [5] in this regard. 

We pause to show an important feature of the continuous Newton's method, a fea 
ture that has no counterpart in the ordinary or damped Newton's method. This feature 
is at the heart of what led to the results in the rest of this note. Suppose that z satisfies 

(l).Then 

E'(z(t))z'(t) = -E(z(t)) (r>0), 

which can be rewritten as 

(Foz)'(t) = -F(z(t)), 

whence 

F(z(t)) = exp(-t)F(z(0)). 

So, we see that the "residual" F(z(t)) (what we want to drive to zero) doesn't change 
direction, only magnitude, as t increases. Some thought indicates that this fact leads 
to a philosophy of mountain climbing when the function F represents the gradient of 
a function 0 that specifies the height of a mountain. The philosophy says to proceed 
up a mountain in such a way that the direction of the gradient doesn't change as you 
climb (think of Stone Mountain in Georgia, Enchanted Rock in Texas, Ayers Rock in 

Australia). 
In this note some results arising from a study of the continuous Newton's method 

are given. Included are some zero finding results, some inverse function results and 
a Nash-Moser type result that avoids some of the dreaded "derivative loss" associ 
ated with the conventional Newton's method applied to problems in partial differential 

equations. 

2. TWO ZERO FINDING RESULTS. Suppose that each of m and n is a positive 
integer. If s > 0 and y is in Rn, then bs(y) and Bs(y) denote the open and closed balls 

(in Rn), respectively, that have center y and radius s. The following theorem gives a 
condition on an initial estimate that is sufficient for convergence: 

Theorem 1. Suppose that r > 0, that x e Rn, and that F is a continuous function 
from Br(x) to Rm with the property that for each y in br(x) there is an h in Br(0) such 
that 

lim -(F(y + th) 
- 

F(y)) = -F(x). 
r-*0+ t 

Then there exists u in Br(x) such that F(u) = 0. 

Proof. Suppose that c > 0. Define 

5 = {j g [0,1] : 3 y e fl?(jt) suchthat || F (y) 
- (1 -s)F(x)\\ <cs}. 

Note that S is closed, since [0, 1] and Br(x) are compact and F is continuous. Denote 

sup 5 by ? and suppose that ? < 1. Pick y in Bkr(x) for which 

\\F(y)-(l-X)F(x)\\ <cX, 
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and then choose h in BriO) and S in (0, 1 - X] so that 

1 
-iFiy + 8h)-Fiy)) + Fix) < , 

that is, 

\\iFiy + &h)-Fiy)) + &Fix)\\ <e8. 

Then \\y + 8h\\ < (? + S)r and 

\\Fiy + 8h)-il-8-k)Fix)\\ 
< \\Fiy + 8h)-Fiy) + 8Fix) \Fiy)-il-X)Fix)\\ < i8 + k), 

so 8 + ? belongs to S, a contradiction. Therefore ? = 1. 

Hence, for each 6 > 0 there is w6 in Brix) so that ||F(w6)|| < 6. By the continuity 
of F and the compactness of Brix), there exists w in Brix) such that F(m) =0. 

The following shows that things simplify if the inverse of the derivative exists for 
all y in Brix): 

Theorem 2. Suppose that r > 0, that x e Rn, and that F is a C2-function from Brix) 
to Rn with the property that if y e Brix), then iF\y))~x exists and 

\iF'iy))-xFix)\\ <r. (2) 
Then there exists u in Br{x) such that F(u) = 0. Moreover, such an element is given 
by u = z(l), where z satisfies 

z(0) = x, z'(t) = -(F'(z(0))_1 Fix) (t [0, 1]). (3) 

Proof Note that (3) has a unique solution z on all of [0, 1] since, due to (2), a solution 
can't "escape" from Brix) in less than "time one" (that F is of class C2 makes local 
existence and uniqueness hold). Thus 

that is, 

hence 

iF'izit)))z'it) = -Fix) it e [0, 1]), 

iFoz)'it) = -Fix), 

Fizit)) 
- 

FiziO)) = -tFix). 

We conclude that 

Fizit)) = il-t)Fix) (i G [0,1]). 

In particular, F(z(l)) = 0. 

If the function F in Theorem 2 were only of class C1 the conclusion would still 

hold, even though there might not be uniqueness of the solution to (3) (which isn't 
needed anyway). 
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3. THE CONTINUOUS NEWTON'S METHOD. How do Theorems 1 and 2 relate 
to the continuous Newton's method? Suppose that H is a Banach space and that F is 
a (^-function from H to itself for which (F'(x))~x exists and has domain all of H for 
each x in H. If, as in the introduction, z : [0, oo) -> H and 

Z(0) =xeH, z'(t) = -(F\z(t))rlF(z(t)) (t > 0), (4) 

then 

F(z(t)) = exp(-t)F(z(0)) (5) 

and from (4) we obtain 

z(0)=x, z'(t) = 
-exp(-t)(F'(z(t)))-lF(x). (6) 

Now make a change of scale from [0, oo) to [0, 1) by defining w : [0, 1) -> H as 
follows: 

Then 

w'(t) = -(F\w(t)))-lF(x). (7) 

Note that lim^i- w(t) exists if and only if lim^oo z(t) exists. The former limit exists 
if and only if w in (7) can be solved on all of [0, 1]. 

This is the key to Theorems 1 and 2 as well as to Theorem 3 in the next section. 
Theorems 1 and 3 can be regarded as applying an Euler-type method applied to (7). 

4. ZERO FINDING IN INFINITE DIMENSIONAL SPACES. Theorem 1 can 
easily be generalized to cover a wide class of partial differential equations. The cel 
ebrated papers of Nash [7] and of Moser [6] are landmarks in the study of partial 
differential equations. These two works, together with [3], [4], and [5], use a version 
of the discrete Newton's method, and all involve long arguments running through quite 
a number of pages of difficult calculations. An early version of the continuous New 
ton's method for PDEs is found in [12], a later one in [2]. The present note is largely 
based on [9]. 

Details of applications to concrete partial differential equations won't be attempted 
here. Instead we state a version of Theorem 1 that applies to such equations. For the 
next theorem suppose that each of H, J, and K is a Banach space and that H is com 

pactly embedded in 7 (meaning: the points of H form a dense linear subspace of / 
and if yi, y2, ... is a sequence in H such that, for some M > 0, \\yn\\H < M for all 

n, then yx, y2, ... has a subsequence convergent in J to an element y of H satisfying 
Il y Wh < M). Suppose also that F : H -> K is a function that is continuous with re 

spect to the topologies of / and K. When s > 0 and u is in H, bs(u) and Bs(u) signify 
(only for Theorems 3 and 5) the open and closed balls in H, respectively, with center 
u and radius s. 

Theorem 3. Suppose that x e H, that r > 0, and that for each y in br(x) there is an 
h in Br (0) such that 

lim -(F(y + th) 
- 

F(y)) = -F(x). 
t^o+ t 
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Then there is u in Brix) such that F(w) = 0. 

Proof. This parallels the proof of Theorem 1 except that in the two instances where 

compactness is mentioned we now appeal to the fact that any bounded sequence in H 
has a subsequence that converges in J to a member of H. 

5. SOME INVERSE FUNCTION RESULTS. 

Theorem 4. Suppose that r > 0, that G is a continuous function from Rn to Rm with 

G(0) = 0, and that g is a point of Rm. Suppose also that for each y in bri0) there is 
an h in Br (0) such that 

lim ?(Giy + th)-Giy)) = g. (8) 
r^0+ t 

Then there exists u in Bri0) such that G(?) = g. 

Proof. Define F : Bri0) -> Rm by Fiy) = Giy) 
- 

g. Then if y is in bri0), there is 
an h in J5r(0) for which (8) holds. Thus 

lim -(Fiy + th)-Fiy)) = g. 
r^0+ t 

According to Theorem 1 there exists u in Br (0) such that F(w) = 0, whence G(w) = g. 

If m = n, G is a C1 function, and iG\y))~] exists for each y in 2?r(0), then the 

hypothesis of Theorem 4 is satisfied by every g in Rn for which IKG^m))-1^ < r. 
From this we see that there is a ball in Rn centered at the origin that is filled with 
elements of the range of F. 

A generalization to infinite dimensions of Theorem 2 follows. It is a Nash-Moser 

type theorem of use in partial differential equations (see [9]). 

Theorem 5. Suppose H, J, K, r, br and Br are as in Theorem 3 and that G : Bri0) -> 
K is continuous as a function on J. Suppose also that g belongs to K and that for each 

y in br (0) there is an h in Br (0) such that 

lim -(Giy + th)-Giy))=g. 
t^0+ t 

Then there exists u in Bri0) such that G(m) = g. 

Proof This follows immediately from Theorem 3 by applying it to F : Br (0) -? K 
defined by Fiy) 

? 
Giy) 

? 
g for each y in Br{0). 

6. TWO PROBLEMS. Here are two problems for the reader. The ideas of this note 

apply to these problems, but a reader might want to think of other ways to establish 
the results. 

Problem 1. Suppose c and p are real numbers, that r > 0, and that / is a C1 function 
with domain [c 

? r, c + r]. If 

\p-fic)\<r\f'ix)\ ixe[c-r,c + r]), 

show that there exists x in [c 
? 

r, c + r] such that fix) 
? 

p. 
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Preliminary to stating a second problem, we note that the maximal connected do 
main of existence of a solution u to 

u = 1 + w2, m(0) = 0, (9) 

is (?ti/2, ti?2). This illustrates a common occurrence for nonlinear ordinary differen 
tial equations. Thus the assumptions of the following problem, as well as the conclu 

sion, are strong. 

Problem 2. Suppose that F is a C1 function from Rn to Rn with F(0) = 0 and that 

(F'(x))~l exists for each x in Rn. Suppose also that for each v in Rn there is a function 
z : [0, 1] -> ?w suchthat 

z(0) = 0, z'(0 = (F'(z(O)rv 

Show that the range of F is all of /?". 
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A Note on Alternating Permutations 

Anthony Mendes 

A permutation a 
? 

o\ on of a set of n distinct integers is alternating provided o\ < 

a2 > <J3 < a4 > . Let F0 
= 1. For n = 

1,2,..., define En to be the number of 

alternating permutations in the set of permutations on n distinct integers. This sequence 
has a fantastic generating function. Andr? showed that 

oo n 

7 En 
? = sec t + tan t (1) 

nearly 125 years ago [1], [2]. 
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