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Abstract

This note contains a simple formula (Proposition 1 in Section 3) for the
curvature of the canonical line bundle on a hermitian manifold, using the
Levi-Civita connection (instead of the more usual hermitian connection,
compatible with the holomorphic structure). As an immediate applica-
tion of this formula we derive the following: the six-sphere does not admit
a complex structure, orthogonal with respect to any metric in a neigh-
borhood of the round one. Moreover, we obtain such a neighborhood in
terms of explicit bounds on the eigen-values of the curvature operator.
This extends a theorem of LeBrun.
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1 Introduction

First, some standard definitions. An almost-complex structure on an even-
dimensional manifold M?2" is a smooth endomorphism J : TM — TM, such
that J2 = —Id. The standard example is M = C" with J given by the usual
scalar multiplication by ¢. A holomorphic map between two almost-complex
manifolds (My,J1) and (M, J3) is a smooth map f : M; — M, satisfying
df o J1 = Jo odf. An almost-complex structure is said to be integrable, or is
called simply a complex structure, if it is locally holomorphicaly diffeomorphic to
the standard example; in other words, for each x € M there exist neighborhoods
UcCM,zeU,and V C C", and a holomorphic diffeomorphism f: U — V.

Given an even-dimensional manifold, how is one to decide if it admits a
complex structure? There are some, more or less obvious, necessary conditions
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(e.g. the existence of an almost-complex structure, which can be tested by char-
acteristic classes), but in general there is no known answer to this question. A
well-known example, so far undecided, is the 6-sphere (this is the only interest-
ing dimension, because in all other dimensions n # 2,6, the n-sphere does not
admit even an almost-complex structure). This space admits a non-integrable
almost-complex structure, but it is unknown as yet if it admits a complex struc-
ture.

A related question is that of the existence of an orthogonal complex struc-
ture. Here the set-up is the following: given an even-dimensional riemannian
manifold (M, g), one is looking for an integrable almost-complex structure J
which is orthogonal with respect to g; that is, g(X,Y) = ¢(JX, JY), for all
X,Y € T,,M and m € M. One calls such a pair (g,J) a hermitian structure.
The problem here is then that of extending a given riemannian structure to a
hermitian one.

One way of analyzing the problem of the existence of orthogonal complex
structures is to consider the space of all orthogonal almost-complex structures.
These are sections of a bundle over M, whose fiber at a point of the manifold
consists of all (linear) orthogonal complex structures on the tangent space at
that point. The total space Z of this bundle is called the twistor space associated
to (M,g) and it admits a tautological almost-complex structure. Then the
idea is to translate differential geometric problems on M to complex-geometric
problems on Z. For example, an orthogonal almost-complex structure on M is
given, by definition, by a section of Z — M; it will be integrable if the section
is holomorphic, thus embedding M as a complex sub-manifold of Z. In other
words, the problem of orthogonal complex structures on M is translated into
that of certain complex submanifolds of Z. This approach leads to the proof of
C. LeBrun of non-existence of an orthogonal complex structure on S° relative
to the round metric [2]. The twistor space Z in this case turns out to be Kéhler,
so that an orthogonal complex structure on S would give an embedding of S¢
as a complex submanifold of a Kahler one, thus inheriting a Kahler structure,
which is clearly impossible for S¢ (since H?(S®) = 0). For more information
on this approach to orthogonal complex structures we recommend the survey
article of S. Salamon [3].

Here we suggest a different construction, considerably more elementary. This
is based on the observation that the curvature of a connection on a complex line
bundle is a closed two-form (representing the first Chern class of the line bundle,
up to a constant), so one can try to use the given data (g, J) on M to construct
a line bundle with connection whose curvature two-form is non-degenerate, i.e.
a symplectic form. On certain manifolds this might be impossible (e.g. on
a compact manifold with H? = 0), so if one uses a connection coming from
the Levi-Civita connection on (M, g) then one obtains in this way a curvature
obstruction for the existence of an orthogonal complex structure.



A natural complex line bundle to consider, for a given complex structure,
is the so-called canonical line bundle K := A™°(M) — the bundle of (n,0)-
forms, or the top exterior power of the holomorphic cotangent bundle. Now
there are two natural ways to use the hermitian structure on M to equip K
with a connection. First, the complex structure on M induces a holomorphic
structure on K and the riemannian metric on M induces a hermitian metric on
K; these two in turn determine uniquely a canonical hermitian connection (a
metric-preserving connection whose (0, 1)-part coincides with the 9-operator of
the complex structure on M; see for example Griffiths and Harris [1], p. 73).
The other choice of a connection on K comes from the Levi-Civita connection on
T M, extended (by the Leibniz rule) to the bundle of exterior n-forms A™(M),
complexified, then projected orthogonally to the sub-bundle K C AZ(M).

Unless the orthogonal complex structure happens to be Kéahler (i.e. the
Kéhler 2-form w = g(J+,-) is closed), these two choices of a connection are
different. We make here the second choice, the one coming from the Levi-Civita
connection, as it seems to us more natural from a Riemannian geometric point
of view, e.g. for relating the resulting curvature 2-form of the canonical bundle
with the Riemann curvature tensor of (M, g).

The outcome then is a rather simple formula for the curvature of the canon-
ical line bundle on a hermitian manifold (Proposition 1 of Section 3). From
this formula it becomes obvious that a complex structure compatible with the
round metric on the sphere will render the curvature 2-form of the corresponding
canonical line bundle a symplectic form (in fact Kéhler), and that this property
will be maintained for nearby metrics (Corollaries 2 and 3 of Section 4). !

We shall now outline the details of the calculation indicated above. We need
to recall first some standard terminology.

Let E — M be a complex hermitian vector bundle over a differentiable
manifold, with a hermitian connection D : T'(E) — I'(T*(M) ® E), i.e.

d<81, 82> = <l)817 82> + <81,D82>

for any two sections s, s2 € I'(E).
The curvature R of (E, D) is defined by first extending D to I'(A*(M)®E) —
D(AFHH(M) ® EB),

D(a®s):=da®s+ (—1)*a® Ds,

then
R:= D? € T(A*(M) ® End(E)).

IClaude LeBrun has informed us recently that his proof also extends to metrics near the
round one, but this requires embedding the usual twistor space inside a larger one. Also, after
completing the work described here we found two articles ([4] and [5]) containing ideas close
to ours.



If Ey C FE is a sub-bundle then there is an induced hermitian connection
on Ey as follows: let so be a section of Ey, and let (Ey)* be the orthogonal
complement of Ey in E, then decompose orthogonally

DSO = D()SO + (I)S(),

with
Dysg € D(T*(M) ® Ey), ®so € T(T*(M)® (Fo)™b).

One then verifies easily that Dj defines a hermitian connection on Ej and that
® is “tensorial”, i.e. a section of T*(M) ® Hom(Ey, (Eg)™*), called the second
fundamental form of Ey in F.

Now there is a well-known formula for the curvature of (Ey, Dy) in terms of
the curvature R of (E, D) and the second fundamental form ® of Ey in E. It is
given by

Q=mpoRomy+P* N, (1)

where g : E — Ejy is orthogonal projection. The (easy) calculation can be
found for example in [1], p.78.

In our case, starting with the Levi-Civita connection on AZ(M) and pro-
jecting onto the canonical line-bundle K = A™°(M) C AZ(M), we find out the
following:

1. mpoRom§ = iR(w), where w is the Kéhler form and R is the interpretation
of the Riemann curvature tensor of M as an operator in End(A?(M)) (see
the corollary to Lemma 1 in Section 3).

2. The second fundamental form ® € A'(M)® Hom(A™°, (A™9)1) is of type
(1,0), hence ®* A ® is non-positive (see Lemmas 2 and 3 in Section 3; see
next section, Definition 2, for the sign convention).

The first fact does not require even the integrability of the orthogonal almost-
complex structure, i.e. it holds also for almost-hermitian manifolds. The second
one does depend on the integrability (in fact, it can be shown to be equivalent
to the integrability of the almost-complex structure).

We use these two basic results to deduce rather easily the non-degeneracy
of the 2-form € in the proof of the above mentioned theorem of LeBrun, as well
as its extension to metrics which are nearby the round one (see Section 4).

2 Some definitions and notation

First, to make sense of Formula (1) in the Introduction, we need to review some
terminology.

Let V be a real 2n-dimensional vector space with a euclidean inner product
(,-) and a linear orthogonal almost-complex structure J. We extend the inner



product (-,-) on V in the usual way to the real exterior algebra A*(V*), by
declaring the k-forms {n;, A ... An; |1 < i < ... < i < 2n} an orthonormal
basis of A¥(V*), where {ny,...,m2,} is the dual basis of an orthonormal basis
of V.

We denote also by (-, ) the complez-linear extension of the euclidean inner
product (+,-) to the complexified vector spaces AL(V*) = A¥(V*) ® C. The
hermitian inner-product on these spaces is thus given by (¢, V) = (¢,v).

Next, let W be a complex vector space with an hermitian inner product (-, -)
and denote by Endc (W) the complex-linear endomorphisms of W. Denote by
End(V) the real endomorphisms of V.

All tensor products, unless denoted otherwise, are over the reals.

Definition 1 Let V and W be as above, and «v, f € V*QEndc (W) two endomorphism-
valued 1-forms.

1. The wedge product a A B € A*>(V*) @ Endc(W) is defined by
aABX,Y):=a(X)oB(Y)—aY)o B(X).

Equivalently, if « = a® A, 8 = b® B, where a,b € V* and A,B €
Endc(W), then a A B := (aAbD) ® (Ao B).

2. The adjoint o* € V* @ Endc(W) is defined by

Equivalently, fora=a® A, a* =a® A*.

Note that when extending the notation to complex forms in V& @c Endc (W),
one has that a*(2) = [a(2)]*, Z € V¢, so that if a = ¢ ® A, where ¢ € V7,
then a* = ¢ ® A*. (Proof: if Z = X + 1Y, then o*(Z) = o*(X) +ia*(Y) =

[a(X)]* +iaY)]* = [a(X) —ia(Y)]* = [a(Z)]*.) Hence if « is of type (1,0)
then a* is of type (0,1) etc.

Next, we need to make some convention concerning positivity (watch for a
confusing error in [1], pp. 29 & 79, around this definition).

Definition 2 1. A 2-formw € A%2(V*) is called positive, w > 0, if B(X,Y) =
w(X, JY) is a symmetric positive bilinear form. Equivalently: w is positive
if it is a real 2-form of type (1,1) (that’s the “symmetric” requirement)
and w(X',X")/i > 0 for all non-zero X' € V10 where Vg = V1.0 g V01
s the decomposition of the complezification of V into +i eigen-spaces of
J. Obviously, a positive (or negative) 2-form is non-degenerate.



2. Now let Q € A2(V*) @ Endc(W) be a 2-form on V with values in anti-
hermitian endomorphisms on W, so i€} is an hermitian-valued 2-form
(we have in mind the curvature of a hermitian connection). Then Q is
called positive, Q > 0, if (iQw,w) is a positive 2-form for all non-zero
w € W. Equivalently, Q > 0 if it is an End(W)-valued (1,1)-form such
that Q(X', X") is a positive hermitian operator for all non-zero X' € V1.0,
We define similarly 0 > 0, Q < 0, etc.

A word of caution: According to the last definition, the Kéhler form w =
(J-,-) on V is a real positive 2-form, whereas iw is an imaginary negative form.

Definition 3 Let A € End(V') be an antisymmetric endomorphism on V., i.e.
(Av,w) = —(v, Aw) for all v,w € V. Define

1. Ae N2(V*) by A(v,w) = (Av,w).

2. A* € End(V*) by (A*n)(v) = n(Av), as well as its extension to A*(V*)
as a derivation:

A*(a A B) = (A*a) A B+ a A (A*B).

We use throughout the article the shorthand notation A*(M) for the bundle
of alternating k-forms A*(T*M).

Definition 4 1. Let R € A*(V*) ® End(V) (we have in mind the curvature
tensor of the Levi-Civita connection on a riemannian manifold). Define
R € End(A%2(V*)) as follows: if R = >0 ® Aj, where o € A2(V*) and
A; € End(V), then

R(B) = — Zoq(fij,ﬁ), Be N (V7).

2. Applying this definition to the curvature tensor of a riemannian manifold
R € T(A?(M) ® End(TM)), we obtain the so-called curvature operator
R € T'(End(A%(T*M))).

Another word of caution concerning sign conventions: we have made
the choice of signs in the above definitions so as to make R coincide with the
curvature operator as defined in riemannian geometry. Thus, for example, the
round sphere has a positive curvature operator (in fact, it is the identity opera-
tor). This is also tied up with our definition R = D?, where there seems to be a
conflict in the literature. In complex geometry it is usual to define the curvature
of a connection by D?, as we did in the Introduction. Thus, the curvature of
the canonical bundle of CP! is i times the area form. In riemannian geome-
try on the other hand, probably for historical reasons, the curvature tensor of
the Levi-Civita connection is defined by the formula Vx y] — [Vx, Vy], which
amounts to defining R = —D?. Our sign choice in Definition 4 is made so as to
reconcile this conflict.



3 Three lemmas on hermitian structures

The first lemma is quite simple, and has probably appeared elsewhere. The
second is essentially in Griffiths and Harris ([1], p.79, after overcoming the pos-
itivity confusion). The third is a curious fact about the Levi-Civita connection
on a hermitian manifold, probably known, though we could not find it in the
literature.

Let V be, as in the last section, a euclidean 2n-dimensional real vector space
with an orthogonal almost-complex structure J, and let w = (J+,-) denote the
associated Kéahler 2-form.

Lemma 1 Let A € End(V) be an antisymmetric endomorphism of V' and let
mo : AR(V*) = A™O0(V*) denote orthogonal projection. Then

Moo A" ol = i(A,w),
where A* € End(A%(V*)) and A € A2(V*) are given above in Definition 3.

Proof. Choose a unitary basis 6y, ...,60, for (V)19 so that
Ww=i(0L A0+ ... +0, A\O,).
Now 1 =601 A ... A6, is a unitary element of A™%(V*), hence

mpo Aoy = (A%),9) =
= (A1) AOA...NOp, O NOIA .. NB,) +

F (O A (A O)N o ANOp, O NOI A AO) +
= (A*Hl,g1)++(A*9n,9;)

Now, given any «, 8 € V*, one can check easily from our definition of A that
(A%, ) = —(A,an B),
hence R ~ ~ R
mpo A oni =—(A, 00 N0+ -+ 0, NO,) =i(A w),

as claimed. O

Corollary 1 Let (M, g, J) be an almost-hermitian manifold and let 7o : A%(M)®
AR(M) — A%(M) @ A™°(M) denote orthogonal projection in the second factor.
Then

o o Romy = iR(w),

where w = g(J-,-) is the Kdhler form, R € T'(A*(M) @ End(AZ(M)) is the
curvature of the connection induced on A¢%(M) by the Levi-Civita connection on
TM, and R is the curvature operator associated to the riemannian metric (as
in Definition 4 above).



Proof. The main point to notice is that if the curvature tensor of a con-
nection on T'M is given (locally) by > «a; ® A;, where a; € T'(A*(M)) and
A; € T'(End(TM)), then the curvature tensor of the induced connection on
AZ(M) is given by — > a; ® A%, with A7 given by Definition 3. The result now
follows immediately from the previous lemma and the definition of R. O

Lemma 2 If ® € AL9(V*)®c Endc (W), where W is a hermitian vector space,
then &* A O < 0.

Proof. As noted above (Section 2, after Definition 1), ®* is of type (0, 1), hence
®* A @ is of type (1,1). Next, for any X’ € V1.9,

(2" AD) (X X)) = &°(X)B(X') - & (X)P(X) =
= N (XNP(X) = —[2(X)]"(X),

and the claim follows since A*A is a hermitian non-negative operator for any
A € End¢(W). O

Lemma 3 Let M?" be a riemannian manifold with an orthogonal complex
structure (i.e. a hermitian manifold). Denote by V the Levi-Civita connec-
tion on TM, as well as its extension to AL(M) (using the Leibniz rule). Then
the second fundamental form of the canonical bundle K = A™°(M) C AL(M),
with respect to the Levi-Civita connection, is of type (1,0) (as in the previous
Lemma).

Proof. In fact, the statement is true for all the sub-bundles A*?(M) C AL(M),
k=1,2,...,n, and follows from the case k = 1. To see this, let 61,...,60, be a
local framing of AL%(M), and

Vo, ZZ(aij@)@j—Fﬁij@éj), Ozij,,Bij EA%:(M).
J
Then for k = 1 the claim is that the 1-forms 3;; are of type (1,0). If this is
true, then for any k > 1,

Vi, Ao iNBi) = (VO ANOi Ao NGy + 0, A(VOi) NOig Ao AN + .
= Zﬂm @O ANOiy Ao AOi) + Biyi @ (0iy, AOGA AN + ..

o+ (something in AL ®c Ak’o)

so that the second fundamental form of A*O(M) C AE(M) is of type (1,0).

Now for the case k = 1, i.e. to see that the 1-forms 3;; above are of type
(1,0), we argue as follows. First, we pick the frame 61, ...,60, to be a unitary
frame, i.e. (0;,0;) = 6;;, It then follows that

0 =d(0;,0;) = (V0;,0;) + (0:;,V0;) = Bij + Bji,



i.e. ﬁij = _ﬁji-

Next, by the torsion-freeness of V, we have

df; = anti-symmetrization of VO; = Z (aij NG+ Bij A éj) .
J
Now, for an integrable almost-complex structure, we have the vanishing of the
(0,2)-component of d : A% — A2 hence, taking (0, 2)-components of the last

equation we have
0= Z 5{; N éj,
J

where 3 denotes the (0, 1)-component of 3;;. If we write 8;; = >, %kék,
then the last equation reads

1 1
0= Bijk - /Bikj7
_— 1 1

. / . . . . B v
Le. Biin = Bk and this, combined with the previous e = —Bk yields

Z’; = 0 (we use here “the Ss-lemma”: any tensor T;;, which is symmetric in
one pair of indices and anti-symmetric in another pair is identically zero). O

In summary, we have obtained the following:

Proposition 1 Let M?" be a hermitian manifold (a riemannian manifold with
an orthogonal complex structure). If we equip its canonical bundle A™°(M) with
the connection induced by the Levi-Civita connection of M, then its curvature
Q is given by the formula

Q= iR(w) + ®* A ®,

where w is the Kdhler 2-form associated with the hermitian structure, R is the
curvature operator associated to the riemannian structure (see Definition 4 in
Section 2), and

NP 0.

This last inequality means, recalling our sign conventions of Definition 2 in
Section 2, that i(®* A @) is a non-positive real (1, 1)-form.

Remark. There is an analogous statement for an almost-Kdhler manifold, i.e.
when the almost-complex structure is not necessarily integrable but the Kahler
form is closed (so we have a symplectic manifold). The difference is that in this
case the second fundamental form is of type (0,1), hence the correction term
®* A @ in the curvature formula is non-negative.



4 Some applications

As an immediate corollary to Proposition 1 we obtain the following result of
LeBrun [2]:

Corollary 2 There is no complex structure on S8 which is orthogonal with
respect to the round metric.

Proof. For the round metric on a sphere, R is the identity operator. There-
fore, for any orthogonal complex structure, the formula of Proposition 1 for the
curvature of the canonical line bundle gives

Q=iw+P"ND <iw<0.
It follows that the closed 2-form 2 is non-degenerate, i.e. symplectic, which is
impossible since H2(S°¢) = 0. O

The next corollary extends the above conclusion to a C?-neighbourhood of
the round metric on SS.

Corollary 3 Let g be a riemannian metric on S8 satisfying the following con-
ditions:

e The curvature operator R is positive (i.e. all its eigen values are positive).

o At each point x € S®, the ratio of the largest eigen-value Apaz of R to the
lowest eigen-value Apmin satisfies Amaz/Amin < 7/5 = 1.4.

Then (S8, g) does not admit an orthogonal complex structure.
The proof of the last corollary is based on the following

Lemma 4 Let V be a 2n-dimensional euclidean vector space with an orthogonal
complez structure J, and let w = (J-,-) be the associated Kdhler form. Let Qg be
an imaginary (1,1)-form satisfying Qo < iw. (See Definition 2 in Section 2 for
the sign convention. Note that in particular, since iw < 0, Qq is also negative,
hence non-degenerate).

Then, if Q is any imaginary 2-form satisfying

1
Q- Q|| < —=
|| 0” 2\/ﬁ’

Q is non-degenerate.

Proof. First, a brief reminder about norms. We use the euclidean norm on V' to
embed A?(V*) C End(V) as antisymmetric endomorphisms: « +— A, where A is
given by (Av,w) = a(v,w). In fact, this is the inverse of our map of Definition
3 in Section 2, A — A = a.

10



Next, the euclidean structure on V' induces a euclidean norm || ||z on End(V)
by [[A||E = 3" |Ai;]?, where A;; are the components of an element A € End(V)
with respect to an orthonormal basis of V. This norm is multiplicative, i.e.
IAB||g < ||A||le||B||le. Using this multiplicativity property, one can show that if
A € End(V) satisfies ||Al|g < 1, then I + A+ A% + ... is convergent, thus giving
an inverse to I — A.

Unfortunately, the norm || - ||g induces on A%(V*) a norm which differs by
a constant from the standard norm on A%(V*): for any 2-form B, |||z =
V2||8||. For example, the Kihler form w has (standard) norm +/n, whereas the
corresponding endomorphism, namely J, has norm v/2n. In what follows, we
will work with the || - ||g norm on 2-forms.

Now, we can diagonalize w and Qg simultaneously (over C), obtaining

wziZHj/\éj, QO:Z)\jHj/\gja
with {6;} a unitary frame, and the condition y < iw implies A; < —1. Then
_ 1 ~
QOI = ZTJGJAQM
thus 1
195 17 = 23 15 < 2.
J

Now,
Q=0+ (2—Q) = (I+2(Q2-)),

and our condition of | — Q|| < 1/(2+/n) translates to

1
Q-0 < —,
I~ o)l < 7=
hence
1
Q7O -0 < |9t -0 <Von-— =1,
1925 ( o)lle <1192 e ( o)lle Ton
and so () is non-degenerate. O

Proof of Corollary 3. Let us suppose there is a complex structure on S¢ which
is orthogonal with respect to a metric g whose curvature operator satisfies the
said conditions. From Proposition 1, the curvature of the associated canonical
line bundle is given by

Q=iR(w)+ D" AP =i(Rw — w) + Qo,

where ¢ = iw + ®* A P < iw. Now we apply the previous lemma. We conclude
that Q is non-degenerate provided ||Rw — w]|| < 1/(2v/3) (pointwise).

11



Now, by rescaling the metric if necessary (this does not affect of course
the orthogonality of the complex structure), we can bring the eigen-values of
R to the range (5/6,7/6), so that the eigen-values of R — I are in the range
(—1/6,1/6). This implies that |[(R — I)a| < (1/6)|«| (pointwise) for any
a € A%2(M), so in particular

1 1 1
Rw—wl|| < =|lw|l= =V3 = —.
IReo — ] < gllwll = gva= 5=
And so, according to the lemma above, the closed 2-form €2 is non-degenerate,
i.e. symplectic, which is impossible since H?(S®) = 0. O

Remarks.

1. It is tempting to generalize Corollary 3 to the case of a hermitian struc-
ture on a 2n-dimensional manifold with a positive curvature operator satisfying
Amaz /[ Amin < (2n+1)/(2n — 1). Unfortunately, such a generalization is useless,
because of the well-known “sphere-theorem”, which implies that the universal
cover of a complete riemannian manifold satisfying our curvature bound is a
sphere, on which a complex structure is in question only in dimension 6 (be-
cause in all dimensions except 2 and 6 the n-sphere does not admit even an
almost-complex structure), so we are back to our case.

2. However, we believe that one should be able to use Proposition 1 beyond
what we have done here, because of the following argument. The condition
of orthogonality of a complex structure with respect to a riemannian metric is
obviously conformally invariant. On the other hand, the curvature restriction in
Corollary 3 is not conformally invariant. Thus, Corollary 3 can be improved by
including any metric on S® which is conformal to a metric satisfying the given
curvature condition, but one hopes for a more explicit condition, say in terms
of the Weyl tensor. So far, we were not able to derive such a condition.

3. Another direction in which one could possibly use Proposition 1 is by apply-
ing it to some specific classes of hermitian structures. In such cases one may be
able to give a more delicate estimate of the terms in the formula of Proposition
1, especially the Rw term.
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