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Abstract

This note contains a simple formula (Proposition 1 in Section 3) for the
curvature of the canonical line bundle on a hermitian manifold, using the
Levi-Civita connection (instead of the more usual hermitian connection,
compatible with the holomorphic structure). As an immediate applica-
tion of this formula we derive the following: the six-sphere does not admit
a complex structure, orthogonal with respect to any metric in a neigh-
borhood of the round one. Moreover, we obtain such a neighborhood in
terms of explicit bounds on the eigen-values of the curvature operator.
This extends a theorem of LeBrun.
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1 Introduction

First, some standard definitions. An almost-complex structure on an even-
dimensional manifold M2n is a smooth endomorphism J : TM → TM , such
that J2 = −Id. The standard example is M = Cn with J given by the usual
scalar multiplication by i. A holomorphic map between two almost-complex
manifolds (M1, J1) and (M2, J2) is a smooth map f : M1 → M2 satisfying
df ◦ J1 = J2 ◦ df . An almost-complex structure is said to be integrable, or is
called simply a complex structure, if it is locally holomorphicaly diffeomorphic to
the standard example; in other words, for each x ∈M there exist neighborhoods
U ⊂M , x ∈ U , and V ⊂ Cn, and a holomorphic diffeomorphism f : U → V .

Given an even-dimensional manifold, how is one to decide if it admits a
complex structure? There are some, more or less obvious, necessary conditions
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(e.g. the existence of an almost-complex structure, which can be tested by char-
acteristic classes), but in general there is no known answer to this question. A
well-known example, so far undecided, is the 6-sphere (this is the only interest-
ing dimension, because in all other dimensions n 6= 2, 6, the n-sphere does not
admit even an almost-complex structure). This space admits a non-integrable
almost-complex structure, but it is unknown as yet if it admits a complex struc-
ture.

A related question is that of the existence of an orthogonal complex struc-
ture. Here the set-up is the following: given an even-dimensional riemannian
manifold (M, g), one is looking for an integrable almost-complex structure J
which is orthogonal with respect to g; that is, g(X,Y ) = g(JX, JY ), for all
X,Y ∈ TmM and m ∈ M . One calls such a pair (g, J) a hermitian structure.
The problem here is then that of extending a given riemannian structure to a
hermitian one.

One way of analyzing the problem of the existence of orthogonal complex
structures is to consider the space of all orthogonal almost-complex structures.
These are sections of a bundle over M , whose fiber at a point of the manifold
consists of all (linear) orthogonal complex structures on the tangent space at
that point. The total space Z of this bundle is called the twistor space associated
to (M, g) and it admits a tautological almost-complex structure. Then the
idea is to translate differential geometric problems on M to complex-geometric
problems on Z. For example, an orthogonal almost-complex structure on M is
given, by definition, by a section of Z → M ; it will be integrable if the section
is holomorphic, thus embedding M as a complex sub-manifold of Z. In other
words, the problem of orthogonal complex structures on M is translated into
that of certain complex submanifolds of Z. This approach leads to the proof of
C. LeBrun of non-existence of an orthogonal complex structure on S6 relative
to the round metric [2]. The twistor space Z in this case turns out to be Kähler,
so that an orthogonal complex structure on S6 would give an embedding of S6

as a complex submanifold of a Kähler one, thus inheriting a Kähler structure,
which is clearly impossible for S6 (since H2(S6) = 0). For more information
on this approach to orthogonal complex structures we recommend the survey
article of S. Salamon [3].

Here we suggest a different construction, considerably more elementary. This
is based on the observation that the curvature of a connection on a complex line
bundle is a closed two-form (representing the first Chern class of the line bundle,
up to a constant), so one can try to use the given data (g, J) on M to construct
a line bundle with connection whose curvature two-form is non-degenerate, i.e.
a symplectic form. On certain manifolds this might be impossible (e.g. on
a compact manifold with H2 = 0), so if one uses a connection coming from
the Levi-Civita connection on (M, g) then one obtains in this way a curvature
obstruction for the existence of an orthogonal complex structure.

2



A natural complex line bundle to consider, for a given complex structure,
is the so-called canonical line bundle K := Λn,0(M) – the bundle of (n, 0)-
forms, or the top exterior power of the holomorphic cotangent bundle. Now
there are two natural ways to use the hermitian structure on M to equip K
with a connection. First, the complex structure on M induces a holomorphic
structure on K and the riemannian metric on M induces a hermitian metric on
K; these two in turn determine uniquely a canonical hermitian connection (a
metric-preserving connection whose (0, 1)-part coincides with the ∂̄-operator of
the complex structure on M ; see for example Griffiths and Harris [1], p. 73).
The other choice of a connection on K comes from the Levi-Civita connection on
TM , extended (by the Leibniz rule) to the bundle of exterior n-forms Λn(M),
complexified, then projected orthogonally to the sub-bundle K ⊂ Λn

C(M).
Unless the orthogonal complex structure happens to be Kähler (i.e. the

Kähler 2-form ω = g(J ·, ·) is closed), these two choices of a connection are
different. We make here the second choice, the one coming from the Levi-Civita
connection, as it seems to us more natural from a Riemannian geometric point
of view, e.g. for relating the resulting curvature 2-form of the canonical bundle
with the Riemann curvature tensor of (M, g).

The outcome then is a rather simple formula for the curvature of the canon-
ical line bundle on a hermitian manifold (Proposition 1 of Section 3). From
this formula it becomes obvious that a complex structure compatible with the
round metric on the sphere will render the curvature 2-form of the corresponding
canonical line bundle a symplectic form (in fact Kähler), and that this property
will be maintained for nearby metrics (Corollaries 2 and 3 of Section 4). 1

We shall now outline the details of the calculation indicated above. We need
to recall first some standard terminology.

Let E → M be a complex hermitian vector bundle over a differentiable
manifold, with a hermitian connection D : Γ(E)→ Γ(T ∗(M)⊗ E), i.e.

d〈s1, s2〉 = 〈Ds1, s2〉+ 〈s1, Ds2〉

for any two sections s1, s2 ∈ Γ(E).
The curvature R of (E,D) is defined by first extendingD to Γ(Λk(M)⊗E)→

Γ(Λk+1(M)⊗ E),

D(α⊗ s) := dα⊗ s+ (−1)kα⊗Ds,

then
R := D2 ∈ Γ(Λ2(M)⊗ End(E)).

1Claude LeBrun has informed us recently that his proof also extends to metrics near the
round one, but this requires embedding the usual twistor space inside a larger one. Also, after
completing the work described here we found two articles ([4] and [5]) containing ideas close
to ours.
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If E0 ⊂ E is a sub-bundle then there is an induced hermitian connection
on E0 as follows: let s0 be a section of E0, and let (E0)⊥ be the orthogonal
complement of E0 in E, then decompose orthogonally

Ds0 = D0s0 + Φs0,

with
D0s0 ∈ Γ(T ∗(M)⊗ E0), Φs0 ∈ Γ(T ∗(M)⊗ (E0)⊥).

One then verifies easily that D0 defines a hermitian connection on E0 and that
Φ is “tensorial”, i.e. a section of T ∗(M) ⊗ Hom(E0, (E0)⊥), called the second
fundamental form of E0 in E.

Now there is a well-known formula for the curvature of (E0, D0) in terms of
the curvature R of (E,D) and the second fundamental form Φ of E0 in E. It is
given by

Ω = π0 ◦R ◦ π∗0 + Φ∗ ∧ Φ, (1)

where π0 : E → E0 is orthogonal projection. The (easy) calculation can be
found for example in [1], p.78.

In our case, starting with the Levi-Civita connection on Λn
C(M) and pro-

jecting onto the canonical line-bundle K = Λn,0(M) ⊂ Λn
C(M), we find out the

following:

1. π0◦R◦π∗0 = iR(ω), where ω is the Kähler form and R is the interpretation
of the Riemann curvature tensor of M as an operator in End(Λ2(M)) (see
the corollary to Lemma 1 in Section 3).

2. The second fundamental form Φ ∈ Λ1(M)⊗Hom(Λn,0, (Λn,0)⊥) is of type
(1, 0), hence Φ∗ ∧Φ is non-positive (see Lemmas 2 and 3 in Section 3; see
next section, Definition 2, for the sign convention).

The first fact does not require even the integrability of the orthogonal almost-
complex structure, i.e. it holds also for almost-hermitian manifolds. The second
one does depend on the integrability (in fact, it can be shown to be equivalent
to the integrability of the almost-complex structure).

We use these two basic results to deduce rather easily the non-degeneracy
of the 2-form Ω in the proof of the above mentioned theorem of LeBrun, as well
as its extension to metrics which are nearby the round one (see Section 4).

2 Some definitions and notation

First, to make sense of Formula (1) in the Introduction, we need to review some
terminology.

Let V be a real 2n-dimensional vector space with a euclidean inner product
(·, ·) and a linear orthogonal almost-complex structure J . We extend the inner
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product (·, ·) on V in the usual way to the real exterior algebra Λ∗(V ∗), by
declaring the k-forms {ηi1 ∧ . . . ∧ ηik |1 ≤ i1 < . . . < ik ≤ 2n} an orthonormal
basis of Λk(V ∗), where {η1, . . . , η2n} is the dual basis of an orthonormal basis
of V .

We denote also by (·, ·) the complex-linear extension of the euclidean inner
product (·, ·) to the complexified vector spaces Λk

C(V ∗) = Λk(V ∗) ⊗ C. The
hermitian inner-product on these spaces is thus given by 〈φ, ψ〉 = (φ, ψ).

Next, let W be a complex vector space with an hermitian inner product 〈·, ·〉
and denote by EndC(W ) the complex-linear endomorphisms of W . Denote by
End(V ) the real endomorphisms of V .

All tensor products, unless denoted otherwise, are over the reals.

Definition 1 Let V and W be as above, and α, β ∈ V ∗⊗EndC(W ) two endomorphism-
valued 1-forms.

1. The wedge product α ∧ β ∈ Λ2(V ∗)⊗ EndC(W ) is defined by

α ∧ β(X,Y ) := α(X) ◦ β(Y )− α(Y ) ◦ β(X).

Equivalently, if α = a ⊗ A, β = b ⊗ B, where a, b ∈ V ∗ and A,B ∈
EndC(W ), then α ∧ β := (a ∧ b)⊗ (A ◦B).

2. The adjoint α∗ ∈ V ∗ ⊗ EndC(W ) is defined by

α∗(X) = [α(X)]∗.

Equivalently, for α = a⊗A, α∗ = a⊗A∗.

Note that when extending the notation to complex forms in V ∗C ⊗C EndC(W ),
one has that α∗(Z) = [α(Z̄)]∗, Z ∈ VC, so that if α = φ ⊗ A, where φ ∈ V ∗C ,
then α∗ = φ̄ ⊗ A∗. (Proof: if Z = X + iY , then α∗(Z) = α∗(X) + iα∗(Y ) =
[α(X)]∗ + i[α(Y )]∗ = [α(X) − iα(Y )]∗ = [α(Z̄)]∗.) Hence if α is of type (1, 0)
then α∗ is of type (0, 1) etc.

Next, we need to make some convention concerning positivity (watch for a
confusing error in [1], pp. 29 & 79, around this definition).

Definition 2 1. A 2-form ω ∈ Λ2(V ∗) is called positive, ω > 0, if B(X,Y ) =
ω(X, JY ) is a symmetric positive bilinear form. Equivalently: ω is positive
if it is a real 2-form of type (1, 1) (that’s the “symmetric” requirement)
and ω(X ′, X̄ ′)/i > 0 for all non-zero X ′ ∈ V 1,0, where VC = V 1,0 ⊕ V 0,1

is the decomposition of the complexification of V into ±i eigen-spaces of
J . Obviously, a positive (or negative) 2-form is non-degenerate.
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2. Now let Ω ∈ Λ2(V ∗) ⊗ EndC(W ) be a 2-form on V with values in anti-
hermitian endomorphisms on W , so iΩ is an hermitian-valued 2-form
(we have in mind the curvature of a hermitian connection). Then Ω is
called positive, Ω > 0, if 〈iΩw,w〉 is a positive 2-form for all non-zero
w ∈ W . Equivalently, Ω > 0 if it is an End(W )-valued (1, 1)-form such
that Ω(X ′, X ′) is a positive hermitian operator for all non-zero X ′ ∈ V 1,0.
We define similarly Ω ≥ 0, Ω < 0, etc.

A word of caution: According to the last definition, the Kähler form ω =
(J ·, ·) on V is a real positive 2-form, whereas iω is an imaginary negative form.

Definition 3 Let A ∈ End(V ) be an antisymmetric endomorphism on V , i.e.
(Av,w) = −(v,Aw) for all v, w ∈ V. Define

1. Â ∈ Λ2(V ∗) by Â(v, w) = (Av,w).

2. A∗ ∈ End(V ∗) by (A∗η)(v) = η(Av), as well as its extension to Λ∗(V ∗)
as a derivation:

A∗(α ∧ β) = (A∗α) ∧ β + α ∧ (A∗β).

We use throughout the article the shorthand notation Λk(M) for the bundle
of alternating k-forms Λk(T ∗M).

Definition 4 1. Let R ∈ Λ2(V ∗)⊗ End(V ) (we have in mind the curvature
tensor of the Levi-Civita connection on a riemannian manifold). Define
R ∈ End(Λ2(V ∗)) as follows: if R =

∑
j αj ⊗Aj, where αj ∈ Λ2(V ∗) and

Aj ∈ End(V ), then

R(β) = −
∑
j

αj(Âj , β), β ∈ Λ2(V ∗).

2. Applying this definition to the curvature tensor of a riemannian manifold
R ∈ Γ(Λ2(M) ⊗ End(TM)), we obtain the so-called curvature operator
R ∈ Γ(End(Λ2(T ∗M))).

Another word of caution concerning sign conventions: we have made
the choice of signs in the above definitions so as to make R coincide with the
curvature operator as defined in riemannian geometry. Thus, for example, the
round sphere has a positive curvature operator (in fact, it is the identity opera-
tor). This is also tied up with our definition R = D2, where there seems to be a
conflict in the literature. In complex geometry it is usual to define the curvature
of a connection by D2, as we did in the Introduction. Thus, the curvature of
the canonical bundle of CP 1 is i times the area form. In riemannian geome-
try on the other hand, probably for historical reasons, the curvature tensor of
the Levi-Civita connection is defined by the formula ∇[X,Y ] − [∇X ,∇Y ], which
amounts to defining R = −D2. Our sign choice in Definition 4 is made so as to
reconcile this conflict.
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3 Three lemmas on hermitian structures

The first lemma is quite simple, and has probably appeared elsewhere. The
second is essentially in Griffiths and Harris ([1], p.79, after overcoming the pos-
itivity confusion). The third is a curious fact about the Levi-Civita connection
on a hermitian manifold, probably known, though we could not find it in the
literature.

Let V be, as in the last section, a euclidean 2n-dimensional real vector space
with an orthogonal almost-complex structure J , and let ω = (J ·, ·) denote the
associated Kähler 2-form.

Lemma 1 Let A ∈ End(V ) be an antisymmetric endomorphism of V and let
π0 : Λn

C(V ∗)→ Λn,0(V ∗) denote orthogonal projection. Then

π0 ◦A∗ ◦ π∗0 = i(Â, ω),

where A∗ ∈ End(Λn
C(V ∗)) and Â ∈ Λ2(V ∗) are given above in Definition 3.

Proof. Choose a unitary basis θ1, . . . , θn for (V ∗)1,0, so that

ω = i(θ1 ∧ θ̄1 + . . .+ θn ∧ θ̄n).

Now ψ = θ1 ∧ . . . ∧ θn is a unitary element of Λn,0(V ∗), hence

π0 ◦A∗ ◦ π∗0 = (A∗ψ, ψ̄) =

= ((A∗θ1) ∧ θ2 ∧ . . . ∧ θn , θ̄1 ∧ θ̄2 ∧ . . . ∧ θ̄n) +

+ (θ1 ∧ (A∗θ2) ∧ . . . ∧ θn , θ̄1 ∧ θ̄2 ∧ . . . ∧ θ̄n) + . . .

= (A∗θ1, θ̄1) + · · ·+ (A∗θn, θ̄n).

Now, given any α, β ∈ V ∗, one can check easily from our definition of Â that

(A∗α, β) = −(Â, α ∧ β),

hence
π0 ◦A∗ ◦ π∗0 = −(Â, θ1 ∧ θ̄1 + · · ·+ θn ∧ θ̄n) = i(Â, ω),

as claimed. �

Corollary 1 Let (M, g, J) be an almost-hermitian manifold and let π0 : Λ2(M)⊗
Λn
C(M)→ Λ2(M)⊗Λn,0(M) denote orthogonal projection in the second factor.

Then
π0 ◦R ◦ π∗0 = iR(ω),

where ω = g(J ·, ·) is the Kähler form, R ∈ Γ(Λ2(M) ⊗ End(Λn
C(M)) is the

curvature of the connection induced on Λn
C(M) by the Levi-Civita connection on

TM , and R is the curvature operator associated to the riemannian metric (as
in Definition 4 above).
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Proof. The main point to notice is that if the curvature tensor of a con-
nection on TM is given (locally) by

∑
αj ⊗Aj , where αj ∈ Γ(Λ2(M)) and

Aj ∈ Γ(End(TM)), then the curvature tensor of the induced connection on
Λn
C(M) is given by −

∑
αj ⊗A∗j , with A∗j given by Definition 3. The result now

follows immediately from the previous lemma and the definition of R. �

Lemma 2 If Φ ∈ Λ1,0(V ∗)⊗C EndC(W ), where W is a hermitian vector space,
then Φ∗ ∧ Φ ≤ 0.

Proof. As noted above (Section 2, after Definition 1), Φ∗ is of type (0, 1), hence
Φ∗ ∧ Φ is of type (1, 1). Next, for any X ′ ∈ V 1,0,

(Φ∗ ∧ Φ)(X ′, X̄ ′) = Φ∗(X ′)Φ(X̄ ′)− Φ∗(X̄ ′)Φ(X ′) =

= −Φ∗(X̄ ′)Φ(X ′) = −[Φ(X ′)]∗Φ(X ′),

and the claim follows since A∗A is a hermitian non-negative operator for any
A ∈ EndC(W ). �

Lemma 3 Let M2n be a riemannian manifold with an orthogonal complex
structure (i.e. a hermitian manifold). Denote by ∇ the Levi-Civita connec-
tion on TM , as well as its extension to Λ∗C(M) (using the Leibniz rule). Then
the second fundamental form of the canonical bundle K = Λn,0(M) ⊂ Λn

C(M),
with respect to the Levi-Civita connection, is of type (1, 0) (as in the previous
Lemma).

Proof. In fact, the statement is true for all the sub-bundles Λk,0(M) ⊂ Λk
C(M),

k = 1, 2, . . . , n, and follows from the case k = 1. To see this, let θ1, . . . , θn be a
local framing of Λ1,0(M), and

∇θi =
∑
j

(
αij ⊗ θj + βij ⊗ θ̄j

)
, αij , βij ∈ Λ1

C(M).

Then for k = 1 the claim is that the 1-forms βij are of type (1, 0). If this is
true, then for any k ≥ 1,

∇ (θi1 ∧ . . . ∧ θik) = (∇θi1) ∧ θi2 ∧ . . . ∧ θik + θi1 ∧ (∇θi2) ∧ θi3 ∧ . . . ∧ θik + . . .

=
∑
j

βi1,j ⊗ (θ̄j ∧ θi2 ∧ . . . ∧ θik) + βi2,j ⊗ (θi1 ∧ θ̄j ∧ . . . ∧ θik) + . . .

. . .+
(
something in Λ1

C ⊗C Λk,0
)

so that the second fundamental form of Λk,0(M) ⊂ Λk
C(M) is of type (1, 0).

Now for the case k = 1, i.e. to see that the 1-forms βij above are of type
(1, 0), we argue as follows. First, we pick the frame θ1, . . . , θn to be a unitary
frame, i.e. (θi, θ̄j) = δij , It then follows that

0 = d(θi, θj) = (∇θi, θj) + (θi,∇θj) = βij + βji,
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i.e. βij = −βji.
Next, by the torsion-freeness of ∇, we have

dθi = anti-symmetrization of ∇θi =
∑
j

(
αij ∧ θj + βij ∧ θ̄j

)
.

Now, for an integrable almost-complex structure, we have the vanishing of the
(0, 2)-component of d : Λ1,0 → Λ2, hence, taking (0, 2)-components of the last
equation we have

0 =
∑
j

β′′ij ∧ θ̄j ,

where β′′ij denotes the (0, 1)-component of βij . If we write β′′ij =
∑

k β
′′
ijkθ̄k,

then the last equation reads

0 = β′′ijk − β′′ikj ,

i.e. β′′ijk = β′′ikj , and this, combined with the previous β′′ijk = −β′′jik yields
β′′ij = 0 (we use here “the S3-lemma”: any tensor Tijk which is symmetric in
one pair of indices and anti-symmetric in another pair is identically zero). �

In summary, we have obtained the following:

Proposition 1 Let M2n be a hermitian manifold (a riemannian manifold with
an orthogonal complex structure). If we equip its canonical bundle Λn,0(M) with
the connection induced by the Levi-Civita connection of M , then its curvature
Ω is given by the formula

Ω = iR(ω) + Φ∗ ∧ Φ,

where ω is the Kähler 2-form associated with the hermitian structure, R is the
curvature operator associated to the riemannian structure (see Definition 4 in
Section 2), and

Φ∗ ∧ Φ ≤ 0.

This last inequality means, recalling our sign conventions of Definition 2 in
Section 2, that i(Φ∗ ∧ Φ) is a non-positive real (1, 1)-form.

Remark. There is an analogous statement for an almost-Kähler manifold, i.e.
when the almost-complex structure is not necessarily integrable but the Kähler
form is closed (so we have a symplectic manifold). The difference is that in this
case the second fundamental form is of type (0, 1), hence the correction term
Φ∗ ∧ Φ in the curvature formula is non-negative.
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4 Some applications

As an immediate corollary to Proposition 1 we obtain the following result of
LeBrun [2]:

Corollary 2 There is no complex structure on S6 which is orthogonal with
respect to the round metric.

Proof. For the round metric on a sphere, R is the identity operator. There-
fore, for any orthogonal complex structure, the formula of Proposition 1 for the
curvature of the canonical line bundle gives

Ω = iω + Φ∗ ∧ Φ ≤ iω < 0.

It follows that the closed 2-form Ω is non-degenerate, i.e. symplectic, which is
impossible since H2(S6) = 0. �

The next corollary extends the above conclusion to a C2-neighbourhood of
the round metric on S6.

Corollary 3 Let g be a riemannian metric on S6 satisfying the following con-
ditions:

• The curvature operator R is positive (i.e. all its eigen values are positive).

• At each point x ∈ S6, the ratio of the largest eigen-value λmax of R to the
lowest eigen-value λmin satisfies λmax/λmin < 7/5 = 1.4.

Then (S6, g) does not admit an orthogonal complex structure.

The proof of the last corollary is based on the following

Lemma 4 Let V be a 2n-dimensional euclidean vector space with an orthogonal
complex structure J , and let ω = (J ·, ·) be the associated Kähler form. Let Ω0 be
an imaginary (1, 1)-form satisfying Ω0 ≤ iω. (See Definition 2 in Section 2 for
the sign convention. Note that in particular, since iω < 0, Ω0 is also negative,
hence non-degenerate).

Then, if Ω is any imaginary 2-form satisfying

‖Ω− Ω0‖ <
1

2
√
n
,

Ω is non-degenerate.

Proof. First, a brief reminder about norms. We use the euclidean norm on V to
embed Λ2(V ∗) ⊂ End(V ) as antisymmetric endomorphisms: α 7→ A, where A is
given by (Av,w) = α(v, w). In fact, this is the inverse of our map of Definition
3 in Section 2, A 7→ Â = α.
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Next, the euclidean structure on V induces a euclidean norm ‖·‖E on End(V )
by ‖A‖2E =

∑
|Aij |2, where Aij are the components of an element A ∈ End(V )

with respect to an orthonormal basis of V . This norm is multiplicative, i.e.
‖AB‖E ≤ ‖A‖E‖B‖E. Using this multiplicativity property, one can show that if
A ∈ End(V ) satisfies ‖A‖E < 1, then I +A+A2 + ... is convergent, thus giving
an inverse to I −A.

Unfortunately, the norm ‖ · ‖E induces on Λ2(V ∗) a norm which differs by
a constant from the standard norm on Λ2(V ∗): for any 2-form β, ‖β‖E =√

2‖β‖. For example, the Kähler form ω has (standard) norm
√
n, whereas the

corresponding endomorphism, namely J , has norm
√

2n. In what follows, we
will work with the ‖ · ‖E norm on 2-forms.

Now, we can diagonalize ω and Ω0 simultaneously (over C), obtaining

ω = i
∑

θj ∧ θ̄j , Ω0 =
∑

λjθj ∧ θ̄j ,

with {θj} a unitary frame, and the condition Ω0 ≤ iω implies λj ≤ −1. Then

Ω−10 =
∑ 1

λj
θj ∧ θ̄j ,

thus

‖Ω−10 ‖2E = 2
∑
| 1

λj
|2 ≤ 2n.

Now,
Ω = Ω0 + (Ω− Ω0) = Ω0

(
I + Ω−10 (Ω− Ω0)

)
,

and our condition of ‖Ω− Ω0‖ < 1/(2
√
n) translates to

‖(Ω− Ω0)‖E <
1√
2n
,

hence

‖Ω−10 (Ω− Ω0)‖E ≤ ‖Ω−10 ‖E ‖(Ω− Ω0)‖E <
√

2n · 1√
2n

= 1,

and so Ω is non-degenerate. �

Proof of Corollary 3. Let us suppose there is a complex structure on S6 which
is orthogonal with respect to a metric g whose curvature operator satisfies the
said conditions. From Proposition 1, the curvature of the associated canonical
line bundle is given by

Ω = iR(ω) + Φ∗ ∧ Φ = i(Rω − ω) + Ω0,

where Ω0 = iω+ Φ∗ ∧Φ ≤ iω. Now we apply the previous lemma. We conclude
that Ω is non-degenerate provided ‖Rω − ω‖ < 1/(2

√
3) (pointwise).
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Now, by rescaling the metric if necessary (this does not affect of course
the orthogonality of the complex structure), we can bring the eigen-values of
R to the range (5/6, 7/6), so that the eigen-values of R − I are in the range
(−1/6, 1/6). This implies that ‖(R − I)α‖ < (1/6)‖α‖ (pointwise) for any
α ∈ Λ2(M), so in particular

‖Rω − ω‖ < 1

6
‖ω‖ =

1

6

√
3 =

1

2
√

3
.

And so, according to the lemma above, the closed 2-form Ω is non-degenerate,
i.e. symplectic, which is impossible since H2(S6) = 0. �

Remarks.
1. It is tempting to generalize Corollary 3 to the case of a hermitian struc-
ture on a 2n-dimensional manifold with a positive curvature operator satisfying
λmax/λmin < (2n+ 1)/(2n− 1). Unfortunately, such a generalization is useless,
because of the well-known “sphere-theorem”, which implies that the universal
cover of a complete riemannian manifold satisfying our curvature bound is a
sphere, on which a complex structure is in question only in dimension 6 (be-
cause in all dimensions except 2 and 6 the n-sphere does not admit even an
almost-complex structure), so we are back to our case.
2. However, we believe that one should be able to use Proposition 1 beyond
what we have done here, because of the following argument. The condition
of orthogonality of a complex structure with respect to a riemannian metric is
obviously conformally invariant. On the other hand, the curvature restriction in
Corollary 3 is not conformally invariant. Thus, Corollary 3 can be improved by
including any metric on S6 which is conformal to a metric satisfying the given
curvature condition, but one hopes for a more explicit condition, say in terms
of the Weyl tensor. So far, we were not able to derive such a condition.
3. Another direction in which one could possibly use Proposition 1 is by apply-
ing it to some specific classes of hermitian structures. In such cases one may be
able to give a more delicate estimate of the terms in the formula of Proposition
1, especially the Rω term.
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