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Introduction

This note considers SO(3) invariant solutions to the Yang-Mills equations on the standard four-
sphere S4 in five-dimensional Euclidean space R5, with SU(2) as a gauge group. The SO(3) action
on S4 is induced by the irreducible representation of SO(3) on R5. Since a generic orbit of this
action is three- dimensional, the Yang-Mills equations reduce to a system of ordinary differential
equations with certain boundary conditions.

Our work is motivated by the following question:

Are all solutions to the SU(2)-Yang-Mills equations over S4 (anti-)self dual?

Sibner, Sibner, and Uhlenbeck[1] recently answered “no” to this question, by proving the
existence of a non self-dual solution to these equations. Their proof is far from constructive. We
believe that by using our symmetry we can find more explicit non self-dual connections of any
Chern class.

The Yang-Mills (YM) equations are the Euler-Lagrange equations for the Yang-Mills action
functional

Y M(ω) =

∫
S4
‖F‖2.

Here F is the curvature of ω, a connection defined on some principal SU(2) bundle P over S4.
Isomorphism classes of such bundles are classified by their second Chern number c2, an integer.
A connection ω is (anti-)self dual if and only if it minimizes Y M among all smooth connections
defined on P , in which case Y M(ω) = 8π2|c2|.

In order to define invariant connections it is neccessary to lift the SO(3) action to an action by
SU(2), the universal cover of SO(3). The decomposition of SU(2) bundles with SU(2) symmetry
into (equivariant) isomorphism classes is finer than that of all SU(2) principle bundles. In fact,
we will show that the isomorphism classes of these bundles with symmetry are indexed by pairs
of integers (n−, n+) , each equivalent to 1 mod 4, and with

c2 =
n2
− − n2

+

8
.

Thus, there can be a number of distinct bundles with symmetry for a given Chern number. In
case of c2 = 0, there are an infinite number, but only one of these contains a self dual connection. So
if we can show that the Yang-Mills functional attains its infimum on these equivariant components,
then we obtain the existence of an infinite family of non (anti-)self dual connections. So far, we
have not succeeded.
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In this note we set the groundwork for this project by showing how to classify the invariant
connections, how to write their Yang-Mills equations as ODE’s on an interval, and how to get
the correct boundary conditions for this system of ODE’s. The trickiest part is the boundary
conditions, which encode the smoothness of the connection. In the final section we present several
possible approaches for proving the existence of the minimum.

Some of this groundwork can be found in Urakawa [6], and in Harnad [2]. These authors work
much more generally than we do, but do not work out any details of our specific symmetry.

Our investigation of this specific symmetry was inspired by the paper of Avron et al [3]. For
each half-integer J (representing the total spin of a fermionic system) they construct a family of
quaternionic line bundles with connections over S4 with this symmetry. They show that all but
one of these connections is not self-dual.

§1 Equivariant bundles

The equivariant YM set-up consists of

a) a principle G bundle P → X with a group S (for symmetry) acting on P by bundle auto-
morphisms,

b) an S invariant connection ω on P such that

c) ω satisfies the YM equations D ∗Dω = 0.

In this note X =S4, G = SU(2), S = SU(2) and the S action is required to project to the
action on S4 given by the irreducible representation of S on R5.

We consider first the lifting problem: classify all possible lifts of the given S action on S4 to
bundle automorphisms of a principal G bundle P → S4. (The S action on S4 has an ineffective
kernel ±1, so it is actually an S/±1 ∼= SO(3) action; we look for S actions on P instead of SO(3)
actions because there are more of them: every SO(3) action defines an S action via the projection
S → SO(3) , but not conversely).

We begin by giving a more detailed description of the S action on S4. The space of 3×3 traceless
symmetric matrices Q forms a real 5-dimensional vector space, R5, with norm ‖Q‖2 = tr(Q2).
SO(3) acts orthogonally on this vector space by conjugation of matrices, and hence S acts via its
projection to SO(3). The action on S4 is obtained by restricting this action to the four-sphere
S4 = {tr(Q2) = 1} ⊂ R5.

This action on S4 has two orbit types. The principal (generic) type consists of matrices Q ∈ S4

with distinct eigenvalues. The singular orbits, of which there are two, consist of matrices with
double eigenvalues. As a principal isotropy group we can take the the subgroup Γ of S which
leaves the three coordinate axes (the eigenspaces of a generic matrix) invariant. This is a finite
subgroup of S, and so the generic orbit is three dimensional. Each singular orbits is isomorphic to
a real two-dimensional projective space , since, given two eigenvalues, one of which is degenerate,
the symmetric matrix is uniquely determined by the choice of the nondegenerate eigenspace. On
one singular orbit the nondegenerate eigenvalue is positive, and on the other it is negative.

For the rest of the paper we will identify S with the group of unit quaternions. Then

Γ = {±1,±i,±j,±k}.

Let
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∆ = {diag(λ1, λ2, λ3) | λ2
1 + λ2

2 + λ2
3 = 1, λ1 + λ2 + λ3 = 0}

be the fixed-point set of Γ in S4.
∆ is a great circle in S4 parameterized by

ct =

√
3

2
diag(cos(t), cos(t + 2π/3), cos(t− 2π/3)), 0 ≤ t ≤ 2π.

The arc ct, 0 ≤ t ≤ π/3 is a global slice for the S action: it intersects each orbit precisely once.
The two endpoints c0 and cπ/3 correspond to the two singular orbits, the interior of the arc to the
principal orbits. Let St be the isotropy subgroup of ct. We have

S0 = {eiθ, jeiθ}, Sπ/3 = {ejθ, iejθ}, St = Γ = S0 ∩ Sπ/3, 0 < t < π/3.

Note that the two singular orbits intersect ∆ at the 6 points t = 0, π/3, 2π/3, . . . etc., 3 per orbit
(see figure).

&%
'$td d

d
t
t t = 0

t = π/3

A lift of the S action to a principle G bundle is described by the following data. Let ut, 0 ≤
t ≤ π/3, be a lift of ct to P . This defines the holonomy representations λt : St → G by

s · ut = utλt(s), s ∈ St, 0 ≤ t ≤ π/3.

A different choice of ut differs by a curve gt ∈ G. This results in the conjugation of λt by gt. This
construction is reversible:

proposition 1 There is a 1-1 correspondence between

a) Isomorphism classes of S equivariant principle G bundles P over S4(with the given S action
on S4), and

b) conjugacy classes of homomorphisms λt : St → G.

See [5] for details.
A short calculation yields the following:

proposition 2 The conjugacy classes of homomorphisms λt : St → G are given by the following
list:

a) λt ≡ 1;

b) λt(γ) = γ, γ ∈ Γ,
λ0(e

iθ) = ein+θ,
λπ/3(e

jθ) = ejn−θ,
where n± ≡ 1 (mod 4), i.e. n± = 1,−3, 5,−7. . . etc.
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Remark: In case (b), the lift ut can be chosen as follows: consider the action p → γ · pγ−1

of Γ on P |∆. It is easily seen from the definitions that the fixed point set of this action intersects
each fiber of P |∆ in two antipodal points, and so forms a 2:1 covering space of the circle ∆. Define
ut to be a local section of this 2:1 covering defined over ct, 0 ≤ t ≤ π/3. (A global section may not
exist.) Clearly there are two such choices.

This completely solves the lifting problem.

§2 Invariant connections

In this section we determine an explicit form for the S-invariant connections. This is based on
propositions 1 and 2 describing the possible S actions. We will soon see that the only connection
having the symmetry of type (a) of proposition 2 is the flat connection on the trivial bundle. Thus,
we will be concentrating on connections having symmetry type (b).

If ω is an S invariant connection on P then it is determined by its values along a lift ut of the
section ct of the S action on S4. When the symmetry of P is of type (b) we fix this lift according
to the remark at the end of the previous section . In case the symmetry is of type (a) we take ut

to be a horizontal lift of ct.
For a symmetry generator X ∈ Lie algebra of S we define

φt(X) = ω(Xut) ∈ Lie algebra of G.

This is the “ vertical” component, or Higgs field, corresponding to the X action at ut. Note that
in case (b) the definition of φt does not depend on which of the two lifts of ct we take, for they
differ by right multiplication by −1, and this acts trivially on Lie(G).

More generally, define φ : P → Hom(Lie(S), Lie(G)) by

φp(X) = ω(Xp).

If ω is S-invariant, this has the symmetries φpg = g · φp, and φsp = φp · s, where g· and ·s mean
the composition with the adjoint actions of these elements on the appropriate Lie algebra. These
imply the following symmetries in our situation:

i) φt(γ ·X) = λt(γ) · φt(X),

ii) ω(u̇t) = λt(γ) · ω(u̇t).

where λt is given by proposition 2. In case (a) of that proposition these equivariance conditions
easily imply that φt ≡ 0. Since we chose ω(u̇t) ≡ 0, ω is the flat connection on the trivial bundle.
We therefore concentrate on case (b). Now Lie(G) = Lie(S) = R3, so that φt ∈ Hom(R3, R3), and
Γ acts on each of these R3’s by reflections about the i, j, k axes. Thus the equivariance condition
(i) implies that φt fixes these axes. Then

φt = a1(t) · i⊗ σ1 + a2(t) · j ⊗ σ2 + a3(t) · k ⊗ σ3

where {σ1, σ2, σ3} is the dual basis to {i, j, k} and ai are real valued functions on [0, π/3]. Similarly,
the Γ equivariance property (ii) implies that ω(u̇t) = 0 (i.e. ut is horizontal after all) since the
only Γ invariant vector of R3 is 0. So a1, a2, a3 completely describe the S invariant connection ω.

The boundary conditions satisfied by the ai at t = 0 and t = π/3 are determined by using some
additional symmetries of φ : ∆ → R3 ∼= 3× 3 diagonal matrices; namely
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1) W equivariance, where W = N/Γ and N = N(Γ) is the normalizer of Γ in S,

2) St equivariance for t = 0 and t = π/3 .

In (1) W ∼= the group of permutations of {1, 2, 3}. It acts on R3 by permutation of the
coordinates and on the circle ∆ by reflections, i.e. (23) acts by t → −t, (13) acts by t → π/3− t,
etc. To verify this W equivariance recall the general fact that for any S action, W acts on the
fixed point set of Γ. In our case, S acts on P and Hom(Lie(S), Lie(G)) by conjugation. The Γ
fixed point set in P is a double cover of ∆ (see the remark at the end of section 1), and the fixed
point set in Hom(Lie(S), Lie(G)) is “diagonal matrices”∼= R3. Since φ is ±1 invariant it descends
to a W equivariant map on ∆. Finally, calculate that N(Γ) projects to the subgroup of SO(3)
generated by 900 rotations about the coordinate axes.

The above neccesary conditions, (1) and (2), are also sufficient for φt to represent a smooth S
invariant connection (see [5] for details):

proposition 3 There is a 1-1 correspondence between non-flat S invariant connections on S4

and maps φ = (a1, a2, a3) : [0, π/3] → R3 which can be extended smoothly to a map of the circle
∆ ⊃ [0, π/3] subject to the following conditions: At 0:

• a1(0) = n+ ≡ 1 (mod 4),

• a1(t) = a1(−t),

• a2(t) = a3(−t), and

• if n+ 6= 1 then a2(0) = a3(0) = 0.

At π/3:

• a2(π/3) = n− ≡ 1 (mod 4),

• a2(π/3 + t) = a2(π/3− t),

• a1(π/3 + t) = a3(π/3− t), and

• if n− 6= 1 then a1(π/3) = a3(π/3) = 0.

§3 The reduced YM equations

The YM equations in terms of a1, a2, a3 are :

1

4

d

dt
(K1ȧ1) = a1(

1

K1

+
a2

3

K2

+
a2

2

K3

)− a2a3(
1

K1

+
1

K2

+
1

K3

), . . . etc. (1)

where “. . . etc.” stands for another 2 similar equations that we get by cyclic permutations of 1,2,3.
The Ki are functions of t defined by

K1(t) = 3
sin t

− 4 sin t,

K2(t) = K1(t + 2π/3),

K3(t) = K1(t− 2π/3).

5



The (anti)self-dual equations are

1

2
K1ȧ1 = ±(a1 − a2a3), . . . etc. (2)

where “+” stands for the self-dual, and “−” for the anti self-dual equations.
To derive these equations we write the curvature along the cross-section ct in terms of the ai

′s

F = i[2(a2a3 − a1)σ
2 ∧ σ3 − ȧ1σ

1 ∧ dt] + . . . etc.

which gives the (anti-)self-dual equations (the coefficients Ki arise from the fact that the σi are
not orthonormal). The YM equations can be derived from variation of the YM action∫

S4
‖F‖2 ∝

∫ π/3

0

dt[
4(a2a3 − a1)

2

K1

+ K1ȧ1
2 + . . . etc.]

with respect to ai, or directly by evaluating D ∗ F = 0 in terms of ai.

§4 Chern numbers

We now would like to calculate the second Chern number c2 corresponding to each of the equivariant
bundles given in proposition 2b.

proposition 4 The second Chern number of a bundle P with the n± symmetry given in proposition
2b is

c2 =
n2
− − n2

+

8
. (3)

Proof: This is a straightforward calculation similar to the one in [3]. We use one of the equivariant
connections in proposition 3 and the formula for its curvature in the previous section. We than
have

tr(F 2) ∝ (ȧ1(a2a3 − a1) + . . .)σ1σ2σ3dt ∝ d

dt
(a1a2a3 −

a2
1 + a2

2 + a2
3

2
)σ1σ2σ3dt,

⇒ c2 ∝
∫
S4

tr(F 2) ∝ a1a2a3 −
a2

1 + a2
2 + a2

3

2

∣∣∣∣π/3

0

v ∝ n2
− − n2

+.

We can determine the missing constant by some more care in the above calculation or by doing
a special case, say n+ = 1, n− = −3, corresponding to the lift to the quaternionic Hopf bundle
S7 → S4 (c2 = −1) by the irreducible representation on C4. QED

Remarks: 1. It is possible to calculate c2 somewhat more simply without using the explicit
form of an equivariant connection. This is based on a general equivariant integration formula due
to Atiyah and Bott[4], but the above calculation is more elementry.

2. The lifts in the general n± case can also be realized concretely. These arise by the “spectral
splitting” of the trivial rank-n quaternionic vector bundle S4×Hn with respect to a certain linear
operator on its sections (the “quadrupole Hamiltonian” in [3]).
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§5 Existence of non-dual connections.

If a particular equivariant class of connections does not posses (anti-)self dual connections than any
critical point of the YM functional restricted to this class (e.g. a minimum) is a YM connection
which is not (anti-)self dual.

The only (anti-)self dual connections on a trivial bundle are flat. The only equivariant flat
connection has a1 = a2 = a3 ≡ 1 and n+ = n− = 1 (by the curvature formula in section 3).
Therefore, any equivariant YM connection on a bundle with n+ = n− 6= 1 is not (anti-)self dual.

There are a number of possible approaches for proving the existence of such a non self-dual
solution. We have not yet been able to push any of these through to fruition. We will review one
fairly convincing approach in some detail, and discuss some others briefly.

The most convincing approach so far is the direct method of the calculus of variations. What
one has to do is show that the set of invariant connections satisfy the Palais-Smale condition. Tom
Parker is working on a general theorem to this effect.

In more detail , this approach runs as follows. Take ωi to be a sequence of invariant connections
all lying in one invariant component, and satisfying Y M(ωi) → inf Y M , where the infimum is taken
over this component. Then show

1) a subsequence of this sequence converges to some ω∞,

2) ω∞ is invariant, lies in the same invariant component as the ωi, and enjoys some regularity,

3) Y M(ω∞) ≤ Y M(ωi),

4) the validity of the principle of symmetric criticality [5], which states that if an invariant field
is extremal among invariant fields, then it is extremal among all fields.

(2) and (3) imply that ω∞ satisfies the hypothesis of the principle of symmetric criticality, and
so, if we can complete these steps we are done. Steps (1), (3), and (4) can be completed.

Step (1) is essentially Uhlenbeck’s famed compactness theorem, which says the following. Sup-
pose we are handed a sequence of connections on which Y M is bounded. Then there exists a finite
set D of points of S4, a subsequence of the sequence, and a sequence of gauge transformations
defined on S4 \ D, such that after applying the gauge transformations to the connections of the
subsequence, the resulting subsequence converges to some ω∞. This convergence is in the weak
topology of the Sobolev space of L1

2,loc connections on S4 \D. Moreover, the points of D, so called
“bubbling off points”, are characterized by concentration of curvature density there. If a connec-
tion is invariant, then the curvature density is an invariant function. Consequently, for invariant
sequences, blow up of curvature must happen along entire group orbits. But D is a discrete point
set, and for our symmetry, no orbits are discrete. Consequently D is automatically empty. This
shows (1).

Proving the regularity of ω∞ in step (2) is usually bound up with showing that it is a critical
point. In regard to its invariance, the following observation is in order. Suppose that ω is an
invariant connection and that ω′ is obtained from ω by gauge transformation. Then ω′ is itself
invariant if and only if it equals ω. This suggests that in applying the Uhlenbeck compactness
result, we need not apply any gauge transformations.

In addition to this four-dimensional approach, there are one-dimensional approaches to ex-
istence. One approach is to apply the direct method of the calculus of variations to the one-
dimensional action. The role played by the special endpoint conditions of proposition 3 is un-
clear from this 1-dimensional point of view. Another approach is to work directly with the one-
dimensional ODE. The endpoints, 0 and π/3, are the only singular points for this ODE.
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A fourth approach is to use the ”ambi-twistor” method pioneered by Witten[7]. See also
Isenberg, Yasskin and Green [8]. This is a generalization of the twistor method for self-dual
solutions. Of the four approaches this is the most constructive.

§6 Numerical evidence.

Notice that the reduced YM action and equations are invariant w.r.t. the reflection t → t+π. (This
interchanges dual and anti-self-dual solutions and flips the boundary conditions). It is therefore
natural to consider reflection invariant solutions on the trivial bundle n+ = n− 6= 1. Combined
with the W symmetries of proposition 3 this means that a solution to the equations on [0, π/6]
with

a1(π/6)− a2(π/6) = a′1(π/6) + a′2(π/6) = a3(π/6) = 0

extends to a smooth reflection-invariant solution on [0, π/3] with n+ = n−.
A numerical integration of the equations for the case n+ = n− = −3 was done as follows:

first a (truncated) power series expansion for the solutions was calculated at t = 0. This gives a
family of solutions starting at t = 0 depending on the 3 parameters a′′1(0), a

′
2(0), and a′′2(0). For

example, the values a′′1(0) = 2, a′2(0) =
√

3, a′′2(0) = −1 correspond to the anti-self dual solution
a1(t) = −2 cos t − 1. After “jumping-off” a small amount off the t = 0 singularity by the power
series we begin a numerical integration (Runge-Kutta) up to t = π/3 where we check the above
“reflectability” conditions. This method yields a solution for the values

a′′1(0) = 7, a′2(0) = −4, a′′2(0) = −3

with approximately 1 precent error.
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