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Abstract

This paper is concerned with the billiard version of Jacobi’s last ge-
ometric statement and its generalizations. Given a non-focal point O
inside an elliptic billiard table, one considers the family of rays emanating
from O and the caustic Γn of the reflected family after n reflections off
the ellipse, for each positive integer n. It is known that Γn has at least
four cusps and it has been conjectured that it has exactly four (ordinary)
cusps. The present paper presents a proof of this conjecture in the special
case when the ellipse is a circle. In the case of an arbitrary ellipse, we give
an explicit description of the location of four of the cusps of Γn, though
we do not prove that these are the only cusps.

1 Introduction and statement of results

The motivation for this work goes back to Jacobi’s 1842-3 “Lectures on Dynam-
ics” [13]. Recall that the conjugate locus of a point on a surface is the locus
of the first conjugate points on the geodesics that start at this point. Jacobi
considered the conjugate locus of a non-umbilic point on the surface of a triaxial
ellipsoid in 3-space. What is known as the Last Geometric Statement of Jacobi
is the claim that this conjugate locus has exactly four cusps, see Figure 1. We
refer to [17] for a detailed historical discussion.

Figure 1. Left: A sketch of the conjugate locus from [13]. Right: The first (red)
and second (blue) conjugate locus of a point on a triaxial ellipsoid.

The Last Geometric Statement of Jacobi was proved only recently [10]. In
contrast, it was known for a long time that the conjugate locus of a generic
point on a convex surface has at least four cusps; see [2] where this theorem is
attributed to C. Carathéodory and [22] for a recent proof.

The conjugate locus of a point is also called the first caustic. One considers
the loci of the second, third, etc., conjugate points on the geodesics emanating
from a point; these are the second, third, etc., caustics. These curves are also
the components of the envelope of the 1-parameter family of geodesics that start
at this point. Figure 1 (right) depicts the first and second such caustics.

This article concerns the billiard versions of these problems. G. Birkhoff [1]
suggested to consider billiard trajectories in a convex plane domain as the
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geodesics on a “pancake”, the surface obtained from the domain by infinitesi-
mally “thickening” it. This leads to the following set-up.

Consider an oval C, a smooth strictly convex closed curve in the plane,
the boundary of a billiard table. Let O be a point inside C and consider the
billiard trajectories that start at O. After n reflections off C, we obtain a 1-
parameter family of lines whose envelope is a closed connected curve in the real
projective plane RP2, possibly with some cusps and self intersections, called
the n-th caustic by reflection from O. The term caustic, meaning “capable of
burning,” comes from optics, where C is an ideal mirror and O is a light source.

We refer to [4, 5] and the literature cited therein for the study of the first
caustics by reflection, also known as catacaustics. In particular, A. Cayley
studied the first caustics by reflection and refraction in a circle in his memoire [6]
where he considered the cases when the source of light was inside the circle, on
the circle, and outside the circle, including at infinity.

We proved in [3] that, for every n ≥ 1, if O is a generic point inside an oval,
then the n-th caustic by reflection from O has at least 4 cusps. This is one of
many variations on the classic 4-vertex theorem. Here are refined versions of
two conjectures made in [3].

Conjecture 1. If C is an ellipse and O is an interior point which is not a focus
of C then, for all n ≥ 1, the n-th caustic by reflection from O has exactly four
cusps, and all four are ordinary ones.

See the Section 2.2 for a precise definition of “ordinary cusp”.

Remark 1. The n = 1 case of Conjecture 1 (without the “ordinary” part) can
be thought of as a “limiting case” of the Jacobi’s Last Geometric Statement, as
one of the axes of the ellipsoid tends to 0.

Conjecture 2. If an oval C is not an ellipse then there exists an n ≥ 1 and an
open set U inside C such that for every O ∈ U the number of cusps of the n-th
caustic by reflection from O is greater than four.

An analogue of Conjecture 1 for the caustics of geodesics emanating from
a point on a tri-axial ellipsoid was experimentally studied in [17]. That paper
contains numerous computer generated images of first, second, third, and fourth
caustics, each having exactly four cusps.

This article is a step toward proving Conjecture 1. To state our first result,
we recall a well known property of billiards in an ellipse.

An ellipse C defines two 1-parameter families of confocal conics, those conics
which share their foci with C. One family consists of ellipses, the other of
hyperbolas (including the major and minor axes of C). They form, in the
complement of the foci of C, a double foliation so that through each point pass
one confocal ellipse and one confocal hyperbola, intersecting orthogonally at the
point. A ray (directed line), incident to the interior of C, is tangent to exactly
one of these confocal conics (or incident to one of the foci), and after reflection
off C it is tangent to the same conic. See Figure 2 (left).
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Theorem 1. Let O be a non-focal point inside an ellipse C, and let E and H
be the ellipse and hyperbola (respectively), passing through O and confocal to C.
Consider the four rays emanating from O and tangent to E and H (two each).
Then after n reflections, the 4 rays are tangent to E and H at 4 points which
are cusps of the n-th caustic by reflection from O. See Figure 2 (right).

C

O

H H

E

C

Figure 2. Left: a light ray reflected off an elliptical table C stays tangent to
the same confocal conic, either an ellipse (blue) or a hyperbola (red). Right: the
first (red) and the second (blue) caustics by reflection from O each have cusps at
the four tangency points with the confocal conics through O of the four reflected
rays emanating from O tangent to these conics.

Remark 2. (a) If O lies on one of the axes of C, then the role of H in the
above theorem is played by this axis. The location of the correspond-
ing cusps along this axis is then determined by the “mirror equation” of
geometric optics. See Section 5.2 below.

(b) The limiting case when C is a circle is not excluded: in this case, the role
of the two confocal conics through O are played by the concentric circle
through O and the line through O and the center. See Figure 3 (left).

O

C

Figure 3. Left: Theorem 1 for a circle. Right: The n-th caustic from a focus of
an ellipse is the other focus for odd n, the same focus for even n.

(c) If the point O is a focus of the ellipse, then the n-th caustic by reflection
degenerates to one of the two foci, depending on the parity of n. See
Figure 3 (right).
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(d) The stated location of the 4 cusps in Theorem 1 can be deduced from
the conjectures made in [17] about the location of the cusps of caustics of
envelopes of geodesics from a point on an ellipsoid.

(e) It is straightforward to extend Theorem 1 to an arbitrary non-degenerate
conic section C (parabola and hyperbola). The complement of the closure
of C in RP2 consists of two components, diffeomorphic to a disc and to
a Möbius band, respectively. The former can serve as a billiard table,
and our proof of Theorem 1 applies, mutatis mutandis, to it as well. See
Figure 4.

O

O

Figure 4. Theorem 1 holds for any convex billiard table in the projective plane,
bounded by a conic; shown are a parabola (left) and a hyperbola (right). Some
cusps are out of sight.

(f) In Section 5.1 below Theorem 1 is further extended to “Liouville billiards”,
where the billiard table is formed by a coordinate line on a Liouville sur-
face.

Thus, after Theorem 1, proving Conjecture 1 amounts to showing that the 4
cusps described by Theorem 1 are the only cusps of the n-th caustic by reflection
from O and that all 4 cusps are ordinary. We were able to show this only in the
case when C is a circle, which is our next result.

Theorem 2. Conjecture 1 holds if C is a circle. Namely, if O is an interior
point of a circle C, different from its center, then for every n ≥ 1 there are
exactly 4 cusps on the n-th caustic by reflection from O; two of these cusps lie
on the line passing through O and the center of the circle, the other two on the
circle through O concentric with C. Furthermore, these 4 cusps are ordinary.

The content of this article is as follows. In Section 2 we recall relevant facts
about billiards in ellipses, envelopes of families of lines and their cusps. In
Section 3 we prove Theorem 1 and in Section 4 we prove Theorem 2. Section 5
contains various additional results and suggested problems.

Acknowledgements. GB acknowledges hospitality of the Toulouse Mathe-
matics Institute during visits in 2023-4 and a CONAHCYT Grant A1-S-45886.
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2 Preliminaries

2.1 Billiards in ellipses

Let us recall relevant facts concerning billiards in ellipses, in particular, their
complete integrability, see, e.g., [9, 11], or [20].

Consider a billiard table C bounded by an ellipse

x2

a2
+

y2

b2
= 1, where 0 < b ≤ a.

Associated with the billiard table C is a dynamical system whose phase space
L (topologically a cylinder) is the space of rays (oriented lines) that intersect
the interior of C. The billiard transformation T is the transformation of the
phase space that sends an incoming ray to the outgoing one upon reflection off
C. See Figure 6 (left).

The phase cylinder L admits a T -invariant area form. If a ray is characterized
by its direction α and the signed distance from the origin p (see Figure 5), then
the area form is dp ∧ dα. This fact is not specific to ellipses: this area form is
invariant under the billiard transformation in a billiard table of any shape.

p > 0

p < 0

O

α
al
ph
a

α

Figure 5. The coordinates (α, p) on the space of oriented lines.

The ellipse C is included in a confocal family of conics

Cλ :
x2

a2 − λ
+

y2

b2 − λ
= 1, λ ∈ (−∞, b2) ∪ (b2, a2).

This is an ellipse for λ < b2 and a hyperbola for b2 < λ < a2. For 0 < λ < b2

the confocal ellipse Cλ is contained in the interior of C, for λ < 0 it is contained
in the exterior of C. For λ = 0 one has C0 = C.

As λ tends to b2 on the left, the confocal ellipse Cλ tends to the line segment
on the x-axis connecting the two foci of C; the right limit is the closure of the
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complement of this segment in the x-axis. As λ tends to a2 on the left, Cλ tends
to the y-axis.

A ray r ∈ L, not incident to one of the foci of C, is tangent to a unique conic
Cλ from this confocal family, so λ can be considered as a function on L. As is
easy to show, it is given by

λ = (a sinα)2 + (b cosα)2 − p2.

(This formula shows that λ extends smoothly to all of L, including rays incident
to the foci.)

After reflection, the ray T (r) is tangent to the same conic [20, Theorem 4.4].
Thus the level curves of λ define a (singular) T -invariant foliation of the phase
space L, whose leaves consist of the rays tangent to a fixed conic, see Figure 6
(right).

Note that the resulting foliation is non-singular away from the 4 marked
points on the α-axis (the critical points of λ), corresponding to the rays aligned
with the major and minor axes of C. Note also that each level curve of a regular
value λ ∈ (0, b2) ∪ (b2, a2) has two connected components. For λ ∈ (0, b2)
(rays tangent to a fixed confocal ellipse), each of the two components is T -
invariant. For λ ∈ (b2, a2) (rays tangent to a fixed confocal hyperbola, including
its asymptots), the two components are interchanged by T . The figure ∞ (the
level curve λ = b2) corresponds to rays passing through the foci. Orientation
reversing acts on L by R : (α, p) 7→ (α + π,−p), satisfying R2 = (RT )2 = id.
The two reflections about the major and minor axes of C induce maps of L
commuting with T .

The following proposition is a special case of the Arnold-Liouville theorem on
completely integrable Hamiltonian systems [21]. We shall give a self-contained
proof in our case, following Chapter 4 of [20].

Proposition 1. On each leaf γ of the T -invariant foliation of L there is a
T -invariant non-vanishing 1-form, well defined up to multiplicative constant.
Consequently, there is a local coordinate t on γ in which T is given by T (t) = t+c
for some constant c.

Proof. Choose a smooth function f without critical points in a neighborhood
of γ, which is constant on each leaf of the T -invariant foliation (for example,
f = λ). Then f ◦ T = f implies T ∗df = df. Let Xf be the Hamiltonian
vector field associated to f, that is, ω(Xf , · ) = df, where ω = dp ∧ dα is the
T -invariant area form on L. Since both df and ω are T -invariant, the same
holds for Xf . Since Xf is non-vanishing and tangent to γ, there is a unique
1-form α on γ such that α(Xf ) = 1. Since Xf is T -invariant, so is α. In
neighborhoods of a point r ∈ γ and its image T (r), one can find coordinates t
and t1, respectively, such that α = dt near r and α = dt1 near T (r). It follows
that 0 = T ∗α− α = d(t1 ◦ T − t), thus t1 ◦ T − t = c for some constant c; that
is, T is given near r by t1 = t+ c.

If one replaces f by another function, say g = ϕ(f), then the corresponding
vector field changes to Xg = (ϕ′ ◦f)Xf , i.e., a non-zero constant multiple of Xf

along γ, so α is also changed by a constant multiple.
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O

C

r T (r)

Cλ

T 2(r)

p

α

Figure 6. Left: a billiards trajectory in an ellipse and the associated confocal
conic. Right: the phase space L of the billiard transformation T in an elliptical
table (topologically a cylinder), and its T -invariant foliation, which is regular away
from the 4 marked points on the α axis, corresponding to rays aligned with the
major and minor axis of the table. Reversing the orientation of a ray corresponds
to the ‘glide-reflection’ (α, p) 7→ (α + π,−p). The ∞-shaped curve corresponds
to rays incident to the foci of the ellipse, phase curves inside it correspond to
rays tangent to confocal hyperbolas (including their asymptotes), phase curves
outside it to rays tangent to confocal ellipses.

Once a choice of coordinate t is made on each level curve of λ, one can use
(t, λ) as coordinates on L (away from singular leaves); the ray r(t, λ) is tangent
to the confocal conic corresponding to the parameter λ, such that T (r(t, λ)) =
r(t+ c(λ), λ).

Remark 3. It is important to note that the choice of the t coordinate in the
last proposition depends only on the T -invariant foliation of L, which in turn
depends on the family of conics confocal to the billiard table C, and not on a
particular choice of conic within this family as a billiard table. That is, if one
chooses, as a billiard table, any conic confocal to C, say C1, then the associated
billiard map T1 with respect to C1 admits the same invariant foliation of L as
T , and is thus given in each invariant leaf by the same formula, T1(r(t, λ)) =
r(t+ c1(λ), λ).

For example, consider an ellipse E from a confocal family. One may think
of t as a coordinate on E. Then the locus of the intersection points of the
tangent to E, whose t-coordinates differ by a constant, is a confocal ellipse, and
if the half-sum of the two t-coordinates is constant, then this locus is a confocal
hyperbola. We refer to [9, 11] and to a detailed discussions in [18,19].

Remark 4. Note that the T -invariant leaf γ in Proposition 1 need not be
connected for the proposition to hold. Indeed, each level curve of λ has two
components (each topologically a circle); in the elliptic case (level curves above
and below the ∞ shape in Figure 6 (right)), each of these components is T -
invariant, while in the hyperbolic case (level curves inside the ∞ shape in Figure
6 (right)), the two components are interchanged by T . By Proposition 1, even
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in this hyperbolic case, one can put a coordinate on each of the two components,
say t on one component and t1 on the other, such that T is given by T (t, λ) =
(t1 + c, λ), T (t1, λ) = (t+ c, λ), for some constant c (depending in λ).

2.2 Families of rays, envelopes, cusps

The conjectures and theorems of the Introduction concern families of rays, their
envelopes (or caustics) and cusps. We briefly review here the pertinent defini-
tions. See, e.g., Section 8.4 of [8].

Define the “line” dual to a point in R2 as the curve in L corresponding to
the set of rays incident to the point (a “pencil” of rays). See the dotted curves
in Figure 7. We also include “lines” dual to “points at infinity”, corresponding
to pencils of parallel rays sharing a common direction (vertical lines in the (α, p)
coordinates on L). This defines a 2-parameter family of curves in L, a unique
curve through each given point in a given tangent direction at this point.

Definition 1. Given a 1-parameter family of rays, that is, a smooth curve
γ ⊂ L, an inflection point of γ is a point where the tangent “line” to γ at this
point has contact of order m ≥ 2 with γ (the tangent “line” to a curve has
typically contact of order 1).

Definition 2. The envelope (or caustic) of γ is an oriented plane curve Γ whose
set of tangent lines is γ.

Definition 3. An m-cusp of a plane curve Γ is a point for which there is
a diffeomorphism taking a neighborhood of the point to a neighborhood of
the origin in the (x, y)-plane, taking the point to (0, 0) and Γ to the curve
ym = xm+1. An ordinary cusp is a 2-cusp (or a semi-cubical cusp).

A useful basic characterization ofm-cusps is the following. Let γ be a smooth
1-parameter family of rays with envelope Γ. Then an m-cusp of Γ corresponds
to an inflection point of γ of order m. See Example 8.2 of [8].

3 Proof of Theorem 1

We restate here Theorem 1 from the Introduction.

Theorem 1. Let O be a non-focal point inside an ellipse C, and let E and H
be the confocal ellipse and hyperbola (respectively) passing through O. Consider
the four rays emanating from O and tangent to E and H (two each). Then after
n reflections, the 4 rays are tangent to E and H at 4 points which are cusps of
the n-th caustic by reflection from O.

To prove Theorem 1, we first reformulate it as a statement about the inflec-
tion points of a curve in the phase cyclinder L, as explained in Section 2.2.

Consider the pencil of rays incident to O and let γ be the corresponding
curve in L (a “line”). There are 4 points on γ, corresponding to the 4 rays
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tangent to the confocal conics E and H at O. The dual statement to Theorem
1 is then that Tn maps these 4 points to inflection points of Tn(γ).

We proceed as follows. Let r0 ∈ γ be one of these 4 rays. We separate the
proof into 3 cases (see Figure 7):

1. The ray r0 is one of the two rays tangent to the confocal ellipse E through
O. In this case, O may not lie on the line segment connecting to two foci.

2. The ray r0 is one of the two rays tangent to the confocal hyperbola H
through O. In this case, O may not lie on the minor axis of C, nor on
the major axis, on the complement of the line segment connecting the two
foci.

3. The point O lies on one of the axes of C and r0 is one of the two rays
aligned with this axis. In this case O may be the center of C.

p

α

1

1

2

2

p

3 3

1

1

p

3

1

3

1

Figure 7. The 3 types of inflection points of pencils. In each figure, the pencil
is the doted curve, with 4 points and their type marked on it. Left: O does not
lie on an axis of C (the generic case). Middle: O lies on the major axis, between
a vertex and the nearby focus. Right: O lies on the minor axis.

Case 1. Let E = Cλ0
, b2 < λ0 < a2, be the confocal ellipse passing through

O and r0 ∈ γ one of the 2 rays tangent to Cλ0
at O. The T -invariant curve in

L passing through r0 is given by λ = λ0 in the (t, λ) coordinates.

Note. We use r0 to denote both a point in L and the corresponding ray in R2.

Lemma 1. r0 is a tangency point of γ with the T -invariant phase curve λ = λ0.

Proof. The rays of the pencil close to r0 are tangent to confocal ellipses with a
greater value of the parameter λ, see Figure 8 (left). It follows that γ, near r0,
drawn in the (t, λ) plane, lies above the horizontal line λ = λ0 and is therefore
tangent to it at r0. See Figure 8 (right).

Lemma 2. T (r0) is an inflection point of T (γ).
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Cλ

O

r0

Cλ0

λ

t

λ0

γ

r0

Figure 8. Lemma 1.

Proof. Let r0 = (t0, λ0), r1 = (t1, λ0) = T (r0), the reflection of r0 by C, where
t1 = t0 + c(λ0). Then r1 is tangent to Cλ0

at some point, O1. Let γ1 be the
“line” dual to O1, corresponding to the pencil of rays through O1. To show that
r1 is an inflection point of T (γ) it is then enough to show that the 2-jets at r1
of T (γ) and γ1 coincide. See Figure 9.

r1

r0

O

O1

Cλ0

C

λ

t

λ0

γ

r0

γ1

r1

t0 t1

Figure 9. Proof of Lemma 2.

First, r1 ∈ γ1, so γ1 and T (γ) intersect at r1 (their 0-jets coincide). Second,
γ is tangent to the T -invariant horizontal line λ = λ0 at r0 (Lemma 1) hence
T (γ) is tangent to λ = λ0 at r1 = T (r0). The same holds for γ1, by Lemma 1,
hence γ1 and T (γ) are tangent at r1 (their 1-jets coincide).

Next, the curve γ intersects the horizontal line at a level λ > λ0 at two
points, corresponding to the rays shown in Figure 8 (left). The billiard reflection
in the ellipse with parameter λ0 (the outer ellipse in Figure 8 (left)) takes one
of these rays to the other one. The difference of the t-coordinates of these two
intersection points depends only on λ and λ0, but not on t0 (see Remark 3 of
Section 2.1). It follows that the 2-jets of γ and γ1, at r0 and r1 (respectively),
are parametrized by

γ : ε 7→ (t0 + ε, λ0 + aε2), γ1 : δ 7→ (t1 + δ, λ0 + aδ2), (1)

where a = a(λ0), t1 = t0 + c(λ0).

Note. All calculations for the rest of the proof of this lemma are mod ε3 and
δ3.
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Now T (t, λ) = (t+ c(λ), λ), hence the 2-jet of T (γ) at r1 is parametrized by

T (γ) : ε 7→(t0 + ε+ c(λ0 + aε2), λ0 + aε2)

= (t0 + ε+ c(λ0) + ac′(λ0)ε
2, λ0 + aε2)

= (t1 + ε+ ac′(λ0)ε
2, λ0 + aε2).

Next we reparametrize this 2-jet by setting

δ = ε+ ac′(λ0)ε
2,

with inverse (mod δ3),
ε = δ − ac′(λ0)δ

2.

It follows that the 2-jet of T (γ) at r1 can be reparametrized as

T (γ) : δ 7→ (t1 + δ, λ0 + aδ2),

coinciding with the expression (1) for the 2-jet of γ1 at r1, as needed.

Note that the last two lemmas are statements about the 2-jet of γ at r0. That
is, they remain valid if one replaces γ with a curve whose 2-jet at r0 coincides
with that of γ. We thus conclude: if r0 is an inflection point of a curve γ ⊂ L,
which is also a point of tangency of γ with the leaf of the T -invariant foliation
of L dual to an ellipse E confocal to C, then the same holds for T (r0) ∈ T (γ). It
follows by induction on n that the same holds for Tn(r0) ∈ Tn(γ). This proves
Case 1 of Theorem 1.

Case 2. This case is very similar to the previous one, so we omit the details.
We only note that in this case, like in case 1, the T -invariant leaf λ = λ0

consists of two components, but unlike case 1, Tn, for n odd, interchanges the
two components; the argument however is unaffected. See Remark 4 and Figure
10.

O

Cλ

Cλ0

r0

λ

t

λ0

γ

r0

Figure 10. Case 2 of Lemma 2. Compare to Figure 8.
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Case 3. This case is simpler then the previous two. First, a lemma.

Lemma 3. Let ρ denote the involution of L induced by the reflection about one
of the axes of C, major or minor. Let r0 be one of the two fixed points of ρ (a
ray aligned with the axis of reflection) and γ ⊂ L a ρ-invariant curve containing
r0. Then r0 is an inflection point of γ.

Proof. Assume that ρ is given by reflection about the major axis of C (the x-
axis) and r0 is the ray along this axis, oriented eastwards. We use the coordinates
(α, p) on L, see Figure 5. Then ρ(α, p) = (−α,−p) and r0 = (0, 0). Assume the
tangent to γ at r0 is not vertical. Then the 2-jet of γ at r0 can be parametrized
by

ε 7→ (ε, aε+ bε2), (2)

for some a, b ∈ R. This is mapped by ρ to

ε 7→ (−ε,−aε− bε2).

Renaming −ε by ε, this 2-jet of ρ(γ) at r0 can be reparametrized as

ε 7→ (ε, aε− bε2). (3)

Since ρ(γ) = γ and r0 is a fixed point of ρ, the 2-jets (2) and (3) must coincide.
It follows that b = 0, hence the 2-jet of γ at r0 is parametrized by

ε 7→ (ε, aε). (4)

On the other hand, the tangent “line” to γ at r0 is the graph of p = a sinα
(see Lemma 4 below). Its 2-jet at r0 is given by formula (4). This shows that
r0 is an inflection point of γ.

If the tangent to γ at r0 is vertical then the tangent “line” at r0 is α = 0 and
we can parametrize the 2-jet of γ at r0 by ε 7→ (aε2, ε). As before, ρ-invariance
of γ implies that a = 0, hence the 2-jets of γ and the α = 0 at r0 coincide. Thus
in this case r0 is an inflection point of γ as well.

The other 3 cases, where r0 = (π, 0) and ρ is the reflection about the x-axis,
or ρ is the reflection about the y-axis and r0 = (±π/2, 0), are treated similarly
and their proof is omitted.

We can now complete the proof of Case 3 of Theorem 1. Let O be a point
on one of the axes of C (major or minor, or both, when O is the center of C, if
C is not a circle). Let γ ⊂ L be the dual “line” (the curve corresponding to the
pencil of rays through O). Let r0 ∈ γ be one of the two rays aligned with the
axis through O. Then γ is ρ-invariant and r0 is a fixed point of ρ. Clearly, ρ and
T commute, hence Tn(γ) is ρ-invariant and Tn(r0) ∈ Tn(γ) is a fixed point of
ρ. Lemma 3 implies that Tn(r0) is an inflection point of Tn(γ), as needed.
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4 Proof of Theorem 2

4.1 Two lemmas

The billiard table C here is the unit circle x2 + y2 = 1. We use the same
coordinates (α, p) in the space of oriented lines in R2 that were introduced in
Section 2.1, Figure 5.

Lemma 4. The pencil of rays through a point (a, b) ∈ R2, the “line” dual to
(a, b), is given by the equation

p(α) = a sinα− b cosα. (5)

See Figure 11.

p

α

α

(a, b)

p

θ

r

α′

Figure 11. Left: the solid curve represents the pencil of rays through a point
inside a circular table C. The dotted curve is its image under the billiard map
T . The 4 marked points on it are its inflection points. The horizontal lines are
the T invariant foliation of the phase cylinder L. Right: the proof of Lemma 4.

Proof. Let (a, b) = r(cos θ, sin θ) and α′ = π/2− α. Then

p = r cos(θ + α′) = r(cos θ cosα′ − sin θ sinα′)

= r(cos θ sinα− sin θ cosα) = a sinα− b cosα.

Let γ be a curve in the phase space L. Using the same terminology as in
Section 3, an inflection point of γ is a second order tangency with the “line”
tangent to γ at the point. If γ is the graph of a function p(α), the tangent “line”
is a graph of a function given by (5), i.e., a solution to the ODE f ′′+f = 0, hence
the inflection points of γ are given by the zeros of the function p′′(α) + p(α).

If a line tangent to γ is vertical, i.e., γ is tangent at r0 = (α0, p0) to the
vertical line α = α0, then γ is the graph of a function α(p) near r0, and r0
is an inflection point if and only if α(p) = α0 + O(|p − p0|3), degenerate if
α(p) = α0 +O(|p− p0|4).

Next consider a map T : L → L given by

T (α, p) = (α̃, p), α̃ = α+ ϕ(p) (mod 2π),

14



where ϕ(p) is some function. Let (α0, p0) be the coordinates of a point r0 on a
curve γ ⊂ L, the graph of a function p(α). We ask: what is the condition on
the 2nd order jets of p(α) and ϕ(p) at α0 and p0 (respectively) so that T (γ) has
an inflection point at T (r0)? The answer is given by the following lemma.

Lemma 5. Let γ be the graph of p(α), r0 = (α0, p0) ∈ γ, with

p(α0 + ε) = p0 + p1ε+
p2
2
ε2 +O(ε3),

ϕ(p0 + δ) = ϕ0 + ϕ1δ +
ϕ2

2
δ2 +O(δ3).

Then T (r0) is an inflection point of T (γ) if and only if

p2 + p0(1 + p1ϕ1)
3 = p31ϕ2. (6)

Proof. Calculating mod ε3, δ3 throughout, set

δ = p1ε+
p2
2
ε2,

then

ϕ(p(α0 + ε)) = ϕ(p0 + δ) = ϕ0 + ϕ1δ +
ϕ2

2
δ2

= ϕ0 + ϕ1p1ε+
p21ϕ2 + p2ϕ1

2
ε2.

The 2-jet of γ at r0 = (α0, p0) is parametrized by

ε 7→
(
α0 + ε, p0 + p1ε+

p2
2
ε2
)
,

hence the 2-jet of T (γ) at T (r0) = (α0 + ϕ0, p0) is parametrized by

ε 7→
(
α0 + ϕ0 + (1 + p1ϕ1)ε+

p21ϕ2 + p2ϕ1

2
ε2, p0 + p1ε+

p2
2
ε2
)
.

Let

ε̃ := (1 + p1ϕ1)ε+
p21ϕ2 + p2ϕ1

2
ε2,

then, assuming 1 + p1ϕ1 ̸= 0, one can invert this (mod ε̃3),

ε =
ε̃

1 + p1ϕ1
− p21ϕ2 + p2ϕ1

2(1 + p1ϕ1)3
ε̃2.

Thus the 2-jet of T (γ) at T (r0) is parametrized by

ε̃ 7→
(
α0 + ϕ0 + ε̃, p0 + p̃1ε̃+

p̃2
2
ε̃2
)
,

15



where

p̃1 =
p1

1 + p1ϕ1
, p̃2 =

p2 − p31ϕ2

(1 + p1ϕ1)3
.

The inflection condition at r1 is then p̃2 + p0 = 0, which reduces to the stated
formula (6).

If 1 + p1ϕ1 = 0 then p1 = p′(α0) ̸= 0 so one can invert p(α) near α0,

α(p0 + δ) = α0 + α1δ +
α2

2
δ2,

where

α1 =
1

p1
, α2 = −p2

p31
(7)

and

p1 =
1

α1
, p2 = −α2

α3
1

. (8)

The inflection condition for p(α) at α0 is p2 + p0 = 0. Substituting for p2
from equation (8), this is

α2 = p0(α1)
3. (9)

Now T (γ) is the graph of α(p) +ϕ(p), hence the inflection condition at T (r0) is

α2 + ϕ2 = p0(α1 + ϕ1)
3.

Substituting for α1, α2 from equation (7), one obtains equation (6).

4.2 Cusps by reflection in a circle

The billiard ball map inside the unit circle C is given by T (α, p) = (α +
2arccos p, p). Fix a point O = (a, b) inside C and let γ be the dual “line”
(5). This takes us to the setting of Lemma 2 with

p(α) = a sinα− b cosα, ϕ(p) = 2n arccos(p), −1 < p < 1.

We are looking for points r0 = (α0, p0) ∈ γ such that Tn(r0) is an inflection
point of T (γ). Using circular symmetry, we may assume, without loss of gen-
erality, that α0 = 0, 0 ≤ b < 1 and 0 < a2 + b2 < 1. We substitute in formula
(6)

p1 = a, p2 = −p0 = b, ϕ1 =
−2n√
1− b2

, ϕ2 =
2bn

(1− b2)3/2
,

obtaining the inflection condition at Tn(r0):

b− b

[
1− 2an√

1− b2

]3
=

2a3bn

(1− b2)3/2
. (10)

This is satisfied if a = 0 or b = 0, corresponding to four inflection points of the
curve Tn(γ), as described by Theorem 2.
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We claim that there are no other solutions to equation (10) with n ≥ 1 and
0 < a2 + b2 < 1. Set x = a/

√
1− b2. Assuming a, b ̸= 0, equation (10) becomes

(4n2 − 1)x2 − 6nx+ 3 = 0. (11)

The discriminant of this quadratic equation in x is a positive multiple of 1−n2.
Thus equation (11) has a solution with n ≥ 1 only for n = 1. But in this case
the solution is x = 1, that is, a2 + b2 = 1, which is out of range.

4.3 The four cusps are ordinary

Dually, this amounts to proving the non-degeneracy of the 4 inflection points
of Tn(γ). Suppose, without loss of generality, that O = (a, 0), a > 0, hence γ
is given by p = a cosα, and the inflection points of Tn(γ) are Tn(r0), where
r0 = (0, 0), (π, 0) or ±(π/2, a).

Begin with r0 = (0, 0). The 3-jet of γ at this point is parametrized by

ε 7→ (ε, aε− a

6
ε3).

Then rn := Tn(r0) = (nπ, 0). We calculate mod ε4:

arccos(aε− a

6
ε3) =

π

2
− aε+

a(1− a2)

6
ε3,

hence the 3-jet of Tn(γ) at rn is parametrized by

ε 7→

(
nπ + (1− 2na)ε+

na
(
1− a2

)
3

ε3, aε− a

6
ε3

)
. (12)

Let

ε̃ := (1− 2na)ε+
na
(
1− a2

)
3

ε3.

If 1− 2na ̸= 0 this can be inverted,

ε =
ε̃

1− 2na
−

na
(
1− a2

)
ε̃3

3(1− 2na)4
,

so that

aε− a

6
ε3 =

a

1− 2na
ε̃−

a
(
1− 2na3

)
6(1− 2na)4

ε̃3.

The 3-jet of Tn(γ) at rn can thus be reparametrized as

ε̃ 7→

(
nπ + ε̃,

a

1− 2na
ε̃−

a
(
1− 2na3

)
6(1− 2na)4

ε̃3

)
.

The tangent “line” at rn = (nπ, 0) is the graph of

p(α) =
a

1− 2na
sin(α− nπ),
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with 3-jet at rn parametrized by

ε 7→
(
nπ + ε,

a

1− 2na
ε− a

6(1− 2na)
ε3
)
.

This coincides with the 3-jet of Tn(γ) at rn if and only if

a
(
1− 2na3

)
(1− 2na)4

=
a

1− 2na
,

which simplifies to
(4n2 − 1)a2 − 6na+ 3 = 0. (13)

The only solution is a = n = 1, which is excluded.

Remark 5. We notice a mysterious coincidence between Equations (11) and
(13). We could not find an explanation.

If 1− 2na = 0 then the parametrized 3-jet (12) becomes

ε 7→
(
nπ +

1− a2

6
ε3, aε− a

6
ε3
)
. (14)

Let
ε̃ := aε− a

6
ε3,

with inverse

ε =
ε̃

a
+

ε̃3

6a3
.

Then (14) can be reparametrized as

ε̃ 7→

(
nπ +

(
1− a2

)
6a3

ε̃3, ε̃

)
.

This is vertical at rn = (nπ, 0), so the tangent “line” at rn is the vertical line
α = nπ. It coincides with the 2-jet of the above, but not with the 3-jet, as
claimed. The argument for r0 = (π, 0) is similar and is omitted.

For r0 = (π/2, a) we proceed in a similar way. The “line” γ is the graph of
p = a sinα, whose 3-jet at r0 is parametrized by

ε 7→
(π
2
+ ε, a− a

2
ε2
)
.

The image of this 3-jet under Tn is the 3-jet at Tn(r0) parametrized by

ε 7→
(
αn + ε+

an√
1− a2

ε2, a− a

2
ε2
)
, αn =

π

2
+ 2n arccos a.

Let
ε̃ := ε+

an√
1− a2

ε2,
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with inverse

ε = ε̃− an√
1− a2

ε̃2 +
2a2n2

1− a2
ε̃3.

We get the parametrization of the 3-jet of Tn(γ) at Tn(r0),

ε̃ 7→
(
αn + ε̃, a− a

2
ε̃2 +

a2n√
1− a2

ε̃3
)
. (15)

The “line” tangent to Tn(γ) at Tn(r0) is given by p = a cos(α−αn), with 3-jet
at Tn(r0) parametrized by

ε 7→
(
αn + ε, a− a

2
ε2
)
.

This coincides with the 2-jet of (15), but not the 3rd, as claimed. The case
r0 = (−π/2,−a) is similar and is omitted.

5 Miscellanea

We present here briefly some results and conjectures, inspired by the previous
sections.

5.1 Liouville billiards

Recall that a Riemannian metric in a 2-dimensional domain is called a Liouville
metric if there exist coordinates (x, y) in which it is given by the formula

(f(x) + g(y))(dx2 + dy2),

where f and g are smooth functions of one variable, such that f(x) + g(y) > 0
for all x, y. The coordinate lines form a Liouville net, consisting of two families
of mutually orthogonal curves.

The Euclidean metric in the plane admits a Liouville net consisting of con-
focal conics, corresponding to the respective elliptic coordinates. The degener-
ations of this net include the net of confocal parabolas and the net consisting
of concentric circles and the radial lines (as well as the trivial net consisting of
the horizontal and vertical lines).

The elliptic coordinates in 3-space, restricted to a triaxial ellipsoid which is a
level surface of one of the coordinates, define a Liouville metric whose Liouville
net consists of the lines of curvature, see Figure 12.

One considers a billiard system in a geodesically convex domain with a
smooth closed boundary on a Riemannian surface: the trajectories are made
of geodesic segments, and the law of reflection is the same as in the Euclidean
case (the angle of incidence equals the angle of reflection). Similar to the case
of billiards in an ellipse in the plane, the billiard system on a Liouville surface
whose billiard table is bounded by a coordinate line from the Liouville net is
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Figure 12. The lines of curvature on an ellipsoid form a Liouville net, associated
with the elliptic coordinates in R3. The billiard bounded by such a curve is a
completely integrable.

integrable: a generic trajectory has all its segments tangent to a fixed curve of
the Liouville net. See [9, 11,14–16] for details.

The main ingredient in the proof of Theorem 1 was the complete integrability
of the billiard ball map in ellipses and its consequences, such as a version of the
Arnold-Liouville theorem (Proposition 1). For this reason, Theorem 1 and its
proof extend, with appropriate adjustments, to Liouville billiards as well.

We note that this set-up includes billiards bounded by conics in the hyper-
bolic and spherical geometries, the closest “relatives” of the Euclidean billiard
inside an ellipse. Concerning spherical and hyperbolic conics, see, e.g., [12].

5.2 Cusps on axes

As noted in Remark 2(a), when a light source O is placed on one of the axes
of an ellipse, two of the cusps on the n-th caustic by reflection from O will be
located on this axis, but Theorem 1 does not give their location. Here we fill
this gap, using the classical “mirror equation” of geometric optics (Equation
(5.9) of [20]).

Proposition 2. Let O = (x0, 0), |x0| < a, and let On (resp. O′
n) be the cusp

of the n-th caustic by reflection from O along the trajectory leaving O in the
positive (resp. negative) direction of the x-axis. Then

On = (−1)nfn(O), O′
n = (−1)n+1fn(−O),

where f is a hyperbolic Möbius transformation of the x-axis with fixed points at
the foci ±F = (±c, 0), c =

√
a2 − b2. Furthermore, F is an unstable fixed point

of f and −F is stable. Thus, as n → ∞,

O2n → −F, O2n+1 → F, O′
2n → F, O′

2n+1 → −F.

Explicitly,

f(x) =
(a2 + c2)x− 2ac2

−2ax+ a2 + c2
. (16)
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Exception: if C is a circle then f is parabolic, with a single fixed point at (0, 0).
Thus, limOn = limO′

n = (0, 0), as n → ∞.

Proof. Let (R(x), 0) be the image of (x, 0) after reflection off C at (a, 0) and
(L(x), 0) the image after reflection at (−a, 0). The x-coordinate of the successive
images of (x0, 0), starting with a reflection at (a, 0), are then

R(x0), LR(x0), RLR(x0) . . . .

Note that L(x) = −R(−x), hence the n-th term in the above sequence is

xn = (−1)n(−R)n(x0).

It remains to find an explicit formula for f(x) := −R(x).
The “mirror equation” states that if an object is placed on the line normal

to a convex mirror, where the curvature of the mirror is k, at a distance d from
the mirror, then a reflected image of the object will form at a distance d′ from
the mirror, given by

1

d
+

1

d′
= 2k. (17)

The curvature of C at (a, 0) is a/b2, so setting d = a−x, d′ = a+f(x) in formula
(17), we obtain

1

a− x
+

1

a+ f(x)
=

2a

b2
. (18)

Formula (16) for f(x) follows. From formula (16) follows that

f ′(c) =
(a+ c)2

(a− c)2
, f ′(−c) =

(a− c)2

(a+ c)2
.

Thus f ′(c) > 1 and 0 < f ′(−c) < 1. It follows that c is an unstable fixed point
of f and −c is stable.

The formula for O′
n is obtained is a similar manner by considering the se-

quence L(x0), RL(x0), LRL(x0), . . ..

Next we study the case when O is on the minor axis.

Proposition 3. Let O = (0, y0), |y0| < b, and let On (resp. O′
n) be the cusp

of the n-th caustic by reflection from O along the trajectory leaving O in the
positive (resp. negative) direction of the y-axis. Then

On = (−1)ngn(O), O′
n = (−1)n+1gn(−O),

where g is an elliptic Möbius transformation of the y-axis, conjugate to a rota-
tion by 4θ, where c + ib = aeiθ (that is, θ is the angle between the x-axis and
line through (0, b) and −F = (−c, 0)).

Explicitly,

g(y) =
y
(
c2 − b2

)
− 2bc2

2by + c2 − b2
. (19)
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Proof. The proof of formula (19) is very similar to the above proof of formula
(16) and is omitted. Using formula (19), one finds that g(y) has no fixed points,
hence it is elliptic, i.e., conjugate to a rotation. The angle of rotation is given
by the derivative at the complex fixed points. The complex fixed points of (19)
are ±ic, with

g′(ic) =

(
c− ib

c+ ib

)2

, g′(−ic) =

(
c+ ib

c− ib

)2

.

Let c + ib = aeiθ. Then g′(ic) = e−4iθ, g′(−ic) = e4iθ, from which follows the
statement about the angle of rotation.

5.3 A light source outside an ellipse

Let us place a light source O outside an ellipse C. For each line through O inter-
secting the interior of C we consider the two billiard trajectories in the interior
of C, whose initial rays are aligned with the line. One then finds analogues
of the 2 conjectures and 2 theorems of this article, with “4” replaced by “2”
throughout: the n-th caustic by reflection of these rays is tangent to C at the
contacts points with C of the two tangents to C through O, and has 2 cusps,
located on the hyperbola confocal with C and passing through O. See Figure
13.

O

C

O

C

O

(a) (b)

(c) (d)

Figure 13. Caustics by reflection from an external light source O: (a) each line
through O, incident to the interior of C, produces 2 billiards trajectories, tangent
to the same conic confocal to C; (b) the 1st caustic by reflection off an ellipse,
showing 2 cusps, lying on the confocal hyperbola through O. (c) The 1st two
caustics by reflection off a circle, from an exterior light source O, showing two
cusps for each caustic, lying on the line through O and the center of the cicrcle.
(d) A coffee cup “half-caustic”, showing a single cusp.
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5.4 The complexity of the caustics by reflection

Figure 14 illustrates the observation that the complexity of the n-th caustic
by reflection in an ellipse increases with n. There are many ways to measure
“complexity”; for example, one may consider the number of times that the
caustic goes to infinity (these points correspond to the vertical tangents of the
curve Tn(γ) ⊂ L). It would be interesting to make conjectures in this direction.

Figure 14. The 2nd, 5th, and 8th caustics by reflection in an ellipse. The cusps
are marked by gray circles.

5.5 Pseudo-integrable billiards

One may consider billiard tables bounded by arcs of confocal conics; such bil-
liards were introduced in [7]. Since confocal conics intersect at right angles,
these billiard tables have angles that are multiples of π/2. Figure 15 shows
caustics by reflection in a table bounded by two confocal parabolas. Although
four cusps still lie on the confocal parabolas that pass through the source of
light, there are additional cusps, and their number increases with n.

Figure 15. The first three caustics by reflection in a table bounded by two
confocal parabolas.
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5.6 Caustics by refraction

One could extend the experimental study and make conjectures about caustics
by refraction in ellipses. Cayley considered the first such caustic in the case of
a circle in [6]. See Figure 16, taken from p. 286 of Cayley’s text.

286 ME. A. CAYLEY’S MEMOIR UPON CAUSTICS.

refraction (a, is the same curve as the caustic by refraction for parallel rays of a con-

centric circle radius % index of refraction -•
fA, [A

XV.
We may consequently in tracing the caustic confine our attention to the case in which

the index of refraction is greater than unity. The circle radius -  will in this case be*
within the refracting circle, and it is easy to see that if from the extremity of the diameter 
of the refracting circle perpendicular to the direction of the incident rays, tangents are

drawn to the circle radius -? the points of contact are the points of triple intersection of

the caustic with the last-mentioned circle, and these points of intersection being, as 
already observed, cusps, the tangents in question are the tangents to the caustic at these 
cusps. The points of intersection with the axis of x are also cusps' of the caustic, the 
tangents at these cusps coinciding with the axis of x : two of the last-mentioned cusps,

viz. those whose distances from the centre are ±  lie within the circle radius -  theP* "r A jM.’
other two of the same four cusps, viz. those whose distances from the centre are 4 - —1 ,

lie without the circle radius - ;  the last-mentioned two cusps lie without the refracting

circle, when (a <2, upon this circle when <a=2, and within it, and therefore between the 
two circles when ^ > 2 . The caustic is therefore of the forms in the annexed figures 

5, in each of which the outer circle is the refracting circle, and [a is > 1, but the
Eig. 3. Eig. 4, Fig. 5.

three figures correspond respectively to the cases /a < 2, (a= 2  and The same
three figures will represent the different forms of the caustic when the inner circle is 
the refracting circle and (a is < 1, the three figures then respectively corresponding to 
the cases (a >J, p —hand

XVI.
To find the tangential equation, I retain Tc instead of its value -> the equation of the 

refracted ray then is
x(lc cos (p—\ / l — k2sin2 <p)-\-y(k sin <p+ cot sin2 ^ = 0,
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Figure 16. Caustics by refraction of a parallel beam in a circle. The figures
show 3 distinct values of the index of refraction µ (from left to right): 1 < µ < 2,
µ = 2, µ > 2. The 4 cusps occur on the concentric circle of radius 1/µ.
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