Examen parcial

6 nov, 2024

Parte A: El teorema de mapeo de Riemann

- 1. (5 pts) Enunciar el teorema.
- 2. (45 pts) Dar un bosquejo de la demostración, los ingredientes/lemmas principales (max una hoja). ¿Cuál de estos ingredientes te parece el más importante?

Parte B: (50 pts) Cierto o Falso

En caso de "Cierto" dar un argumento breve, de 1-2 frases (no demostración completa). En caso de "Falso" dar un contraejemplo. Cada inciso son 5 pts. Si haces más que 10 cuentan los mejores 10.

- 1. Si f es holomorfa en un abierto $U \subset \mathbb{C}$ entonces $\int_{\gamma} f(z)dz = 0$ para cualquier curva cerrada γ en U.
- 2. Toda función holomorfa acotada en un abierto conexo no acotado $U \subset \mathbb{C}$ es constante.
- 3. La suma de los residuos de una función meromorfa en $\widehat{\mathbb{C}}$ es 0.
- 4. Si f es holomorfa en un abierto $U \subset \mathbb{C}$ y no se anula a lo largo de una curva cerrada γ en U entonces $\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0.$
- 5. La serie $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converge uniformemente en cualquier subconjunto compacto de D.
- 6. Si f, g son dos funciones enteras tal que f(k) = g(k) para todo $k \in \mathbb{Z}$ entonces f = g.
- 7. Si f, g son dos funciones holomorfas en \mathbb{C}^* tal que f(1/n) = g(1/n) para todo $n \in \mathbb{N}$ entonces f = g.
- 8. Dados $z_1, z_2 \in \mathbb{C}$ distintos, los abiertos $\mathbb{C} \setminus \{0,1\}$ y $\mathbb{C} \setminus \{z_1, z_2\}$ son biholomorfos.
- 9. Dados $z_1, z_2 \in D$ distintos, existe una $g \in \operatorname{Aut}(D)$ tal que $g(0) = z_1, g(1/2) = z_2$.
- 10. Dados $z_1, z_2, z_3 \in \widehat{\mathbb{C}}$ distintos, existe una $g \in \operatorname{Aut}(\widehat{\mathbb{C}})$ tal que $g(z_1) = 0, g(z_2) = 1, g(z_3) = \infty$.
- 11. Si una función meromorfa $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ no es suprayectiva entonces es constante.
- 12. Si f es holomorfa en D entonces se extiende a una función continua en \overline{D} .
- 13. Si f, g son dos funciones meromorfas en $\mathbb C$ con los mismos ceros y polos (contados con multiplicidad), entones f/g es una constante.
- 14. Si f es holomorfa en un abierto $U \subset \mathbb{C}$ entonces tiene una primitiva (una función holomorfa en U cuya derivada es f).