Notes no. 3

April 2, 2024

1 Bicycle tracks

A simple mathematical model for bicycle motion consists of a directed line segment in \mathbb{R}^{2} of length ℓ (the 'bicycle frame'), with end pts \mathbf{b} and \mathbf{f} (the 'back' and 'front' wheels), moving so that (1) its length is unchanged, $|\mathbf{f}(t)-\mathbf{b}(t)|=\ell$ for all t, and (2) the back end moves in the direction of the frame, ie $\mathbf{b}^{\prime}(t)$ is a multiple of $\mathbf{f}(t)-\mathbf{b}(t)$ for all t. Condition (2) is called the no-skid condition. The pair of curves traced by the front and back ends of the line segment are the bicycle front and back track (resp.).

Exercise 3.1. Here is an example of such a pair of curves. Can you tell which is the front and which is the back track?

If the back track $\mathbf{b}(t)$ is given then clearly the front track is $\mathbf{f}(t)=\mathbf{b}(t)+$ $\ell \mathbf{b}^{\prime}(t) /\left|\mathbf{b}^{\prime}(t)\right|$, provided $\mathbf{b}^{\prime}(t)$ does not vanish. Suppose the front track $\mathbf{f}(t)=$ $(x(t), y(t))$ is given. Can we determine the back track $\mathbf{b}(t)$? From condition (1) we can write $\mathbf{b}(t)=\mathbf{f}(t)+\ell \mathbf{r}(t)$, for some $\mathbf{r}(t) \in S^{1}$, ie $|\mathbf{r}(t)|=1$ for all t. This takes care of condition (1). How about the no-skid condition (condition (2))?

Proposition. Let $\mathbf{b}(t)=\mathbf{f}(t)+\ell \mathbf{r}(t)$, where $\mathbf{f}(t)=(x(t), y(t))$ and $\mathbf{r}(t)=$ $(\cos \theta(t), \sin \theta(t))$. Then the no skid condition is equivalent to

$$
\begin{equation*}
\ell \theta^{\prime}=x^{\prime} \sin \theta-y^{\prime} \cos \theta \tag{1}
\end{equation*}
$$

The last equation is the bicycle equation.
Exercise 3.2. Solve the bicycle eqn for $\mathbf{f}(t)=(t, 0)$. Draw the back track $\mathbf{b}(t)$ for $\theta(0) \neq 0$. (Ans. A tractrix.)

Let us fix two points along the front track, say $\mathbf{f}\left(t_{0}\right), \mathbf{f}\left(t_{1}\right)$. For each θ_{0}, solving the bicycle eqn (1) with the initial condition $\theta(0)=\theta_{0}$, defines a terminal condition $\theta_{1}=\theta\left(t_{1}\right)$. This defines a map $M: S^{1} \rightarrow S^{1}, e^{i \theta_{0}} \mapsto e^{i \theta_{1}}$.

Exercise 3.3. Show that M is a diffeomorphism (a smooth map with a smooth inverse). Suggestion: use the basic existence and uniqueness theorem for solutions of ODE.

Proposition. M is a Möbius transformation.

A reminder on Möbius transformations. This is a class of diffeomorphisms of S^{1}, forming a group (ie the composition of two such maps is also a Mobius transformation, same for the inverse). They are also defined for S^{n}, $n>1$, but here we are concerned only with S^{1}.

Consider a 2 by 2 invertible real matrix $g \in \mathrm{GL}_{2}(\mathbb{R})$,

$$
g=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right), \quad a d-b c \neq 0
$$

It maps each 1-dimensional subspace of \mathbb{R}^{2} (a line through the origin) to the same kind of object, so g acts on $\mathbb{R P}^{1}$, the space of 1-dimensional subspaces of \mathbb{R}^{2}, the projectivization of the linear action on \mathbb{R}^{2}. We assign to a line through the origin in the $x y$ plane, distinct from the y-axis, tits slope p, ie its intersection with the line $x=1$ is $(1, p)$.
Exercise 3.4. Show that with this parametrization, g acts on $\mathbb{R P}^{1}$ by

$$
p \mapsto \frac{c+d p}{a+b p}
$$

In the coordinate $q=1 / p$, the formula is

$$
q \mapsto \frac{a q+b}{c q+q}
$$

We can also identify \mathbb{R}^{1} with $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$, by assigning to a line through the origin the point $z^{2} \in S^{1}$, where $\pm z \in S^{1}$ are the intersection pts of the line with S^{1}.
Exercise 3.5. Let $z^{2}=e^{i \theta}$, express the p coordinate on $\mathbb{R P}^{1}$ in terms of θ. (Ans. $p=\tan (\theta / 2)$.)

Note that the action of $\mathrm{GL}_{2}(\mathbb{R})$ on $\mathbb{R} \mathbb{P}^{1}$ is not effective: the non-zero scalar multiples of the identity matrix act trivially on $\mathbb{R P}^{1}$. The quotient group is the projective group, $\mathrm{PGL}_{2}(\mathbb{R}):=\mathrm{GL}_{2}(\mathbb{R}) / \mathbb{R}^{*} \mathrm{Id}$.
Exercise 3.6. (a) The action of $\mathrm{PGL}_{2}(\mathbb{R})$ on $\mathbb{R} \mathbb{P}^{1}$ is triply transitive: for every two triples of distinct pts, $p_{i}, q_{i} \in \mathbb{R P}^{1}, i=1,2,3$, there is a $g \in \mathrm{GL}_{2}(\mathbb{R})$ mapptng the 1st triple to the 2nd. (b) Furthermore, g is unique up to multiplication of a non-zero scalar; ie, $[g] \in \mathrm{PGL}_{2}(\mathbb{R})$ is unique. (c) The $\mathrm{PGL}_{2}(\mathbb{R})$-action on $\mathbb{R} \mathbb{P}^{1}$ preserves the cross ratio: $\left[x_{1}, x_{2}, x_{2}, x_{4}\right]:=\left(x_{1}-x_{3}\right) /\left(x_{1}-x_{4}\right) \div\left(x_{2}-x_{3}\right) /\left(x_{2}-\right.$ $\left.x_{4}\right)$. (d) ${ }^{*}$ A diffeomorphism of S^{1} which preserves the cross ratio is a Möbius transformation. (e) Every Mobius transformation is a composition of dilation, $x \mapsto a x, a \neq 0$, a translation, $x \mapsto x+b$, and inversion, $x \mapsto-1 / x$.

Proposition. A non-trivial Mobius transformation $[g] \in \mathrm{PGL}_{2}(\mathbb{R})$ may have 0,1 , or 2 fixed points in S^{1}. If $\operatorname{det}(g)=1$ then there are 0,1 , or 2 fixed points according to $|\operatorname{tr}(g)|<2,=2$ or >2 (resp.).
Proof. The equation $g \cdot x=x$ is quadratic in x. Its discriminant is given by $|\operatorname{tr}(g)|$.

Definition. A Mobius tranformation is called elliptic, parabolic or hyperbolic according to having 0,1 or 2 fixed points (resp.).

Exercise 3.7. A Mobius transformation is elliptic iff it is conjugate to a rotation, $\theta \mapsto \theta+\theta_{0}$; it is parabolic iff it is conjugate to a translation, $x \mapsto x+x_{0}$; it is hyperbolic if it is conjugate to a dilation, $x \mapsto \lambda x, \lambda \neq 0,1$. The corresponding matrices are

$$
\left(\begin{array}{rr}
\cos \theta_{0} & -\sin \theta_{0} \\
\sin \theta_{0} & \cos \theta_{0}
\end{array}\right), \quad\left(\begin{array}{rr}
1 & x_{0} \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{rr}
\lambda & \\
0 & 1 / \lambda
\end{array}\right)
$$

Now given 4 functions $a(t), b(t), c(t), d(t)$, consider the linear system of ODE,

$$
\begin{equation*}
\dot{\mathbf{x}}=A(t) \mathbf{x} \tag{2}
\end{equation*}
$$

where

$$
\mathbf{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
\\
x_{2}(t)
\end{array}\right), \quad A(t)=\left(\begin{array}{cc}
a(t) & b(t) \\
c(t) & d(t)
\end{array}\right)
$$

Let $g(t)$ be the fundamental system of solutions of (2), that is, the 1st and 2 nd columns are the solutions satisfying $\mathbf{x}\left(0=(1,0)^{t}(1\right.$ st column $), \mathbf{x}\left(0=(0,1)^{t}\right.$ (2nd column). In other words, $g(0)=\mathrm{Id}$ and $\dot{g}=A(t) g$.
Exercise 3.8. If $\operatorname{tr}(A(t))=0$, ie $d(t)=-a(t)$, then $\operatorname{det}(g(t))=1$.
Proposition. Let $\mathbf{x}(t)=\left(x_{1}(t), x_{2}(t)\right)$ be a solution of (2). Then $p(t):=$ $x_{2}(t) / x_{1}(t)$ is a solution of

$$
\begin{equation*}
\dot{p}=c(t)-2 a p(t)-b(t) p^{2} \tag{3}
\end{equation*}
$$

The last type of eqn is called a Ricatti equation. It is the vector field induced on $\mathbb{R} \mathbb{P}^{1}$ by the linear system (2).
Exercise 3.9. Write down the ODE on $\mathbb{R P}^{1}$ satisfied by $\theta(t)$, corresponding to the linear system (2). (Suggestion. Make the change of variable $p=\tan (\theta / 2)$ in eqn (3).)

Now given a front track $\mathbf{f}(t)=(x(t), y(t))$, let

$$
A(t)=-\frac{1}{2 \ell}\left(\begin{array}{cc}
x(t) & y(t) \\
y(t) & -x(t)
\end{array}\right)
$$

Exercise 3.10. Show that the Ricatti eqn ion $\mathbb{R P}^{1}$, in the coordinate θ, is the bicycle eqn. This proves that the bicycle monodromy is a Mobius transformation.

