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1 Bicycle tracks
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A simple mathematical model for bicycle motion consists of a directed line seg-
ment in R2 of length ℓ (the ‘bicycle frame’), with end pts b and f (the ‘back’
and ‘front’ wheels), moving so that (1) its length is unchanged, |f(t)− b(t)| = ℓ
for all t, and (2) the back end moves in the direction of the frame, ie b′(t) is
a multiple of f(t) − b(t) for all t. Condition (2) is called the no-skid condition.
The pair of curves traced by the front and back ends of the line segment are the
bicycle front and back track (resp.).
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Exercise 3.1. Here is an example of such a pair of curves. Can you tell which
is the front and which is the back track?

If the back track b(t) is given then clearly the front track is f(t) = b(t) +
ℓb′(t)/|b′(t)|, provided b′(t) does not vanish. Suppose the front track f(t) =
(x(t), y(t)) is given. Can we determine the back track b(t)? From condition (1)
we can write b(t) = f(t) + ℓr(t), for some r(t) ∈ S1, ie |r(t)| = 1 for all t. This
takes care of condition (1). How about the no-skid condition (condition (2))?

Proposition. Let b(t) = f(t) + ℓr(t), where f(t) = (x(t), y(t)) and r(t) =
(cos θ(t), sin θ(t)). Then the no skid condition is equivalent to

ℓθ′ = x′ sin θ − y′ cos θ. (1)

The last equation is the bicycle equation.
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Exercise 3.2. Solve the bicycle eqn for f(t) = (t, 0). Draw the back track b(t)
for θ(0) ̸= 0. (Ans. A tractrix.)

Let us fix two points along the front track, say f(t0), f(t1). For each θ0,
solving the bicycle eqn (1) with the initial condition θ(0) = θ0, defines a terminal
condition θ1 = θ(t1). This defines a map M : S1 → S1, eiθ0 7→ eiθ1 .

Exercise 3.3. Show that M is a diffeomorphism (a smooth map with a smooth
inverse). Suggestion: use the basic existence and uniqueness theorem for solu-
tions of ODE.

Proposition. M is a Möbius transformation.
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A reminder on Möbius transformations. This is a class of diffeomor-
phisms of S1, forming a group (ie the composition of two such maps is also a
Mobius transformation, same for the inverse). They are also defined for Sn,
n > 1, but here we are concerned only with S1.

Consider a 2 by 2 invertible real matrix g ∈ GL2(R),

g =

(
a b
c d

)
, ad− bc ̸= 0.
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It maps each 1-dimensional subspace of R2 (a line through the origin) to the
same kind of object, so g acts on RP1, the space of 1-dimensional subspaces of
R2, the projectivization of the linear action on R2. We assign to a line through
the origin in the xy plane, distinct from the y-axis, tits slope p, ie its intersection
with the line x = 1 is (1, p).

Exercise 3.4. Show that with this parametrization, g acts on RP1 by

p 7→ c+ dp

a+ bp
.

In the coordinate q = 1/p, the formula is

q 7→ aq + b

cq + q
.
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We can also identify RP1 with S1 = {z ∈ C | |z| = 1}, by assigning to a line

through the origin the point z2 ∈ S1, where ±z ∈ S1 are the intersection pts of
the line with S1.

Exercise 3.5. Let z2 = eiθ, express the p coordinate on RP1 in terms of θ.
(Ans. p = tan(θ/2).)

Note that the action of GL2(R) on RP1 is not effective: the non-zero scalar
multiples of the identity matrix act trivially on RP1. The quotient group is the
projective group, PGL2(R) := GL2(R)/R∗Id.

Exercise 3.6. (a) The action of PGL2(R) on RP1 is triply transitive: for every
two triples of distinct pts, pi, qi ∈ RP1, i = 1, 2, 3, there is a g ∈ GL2(R) mapptng
the 1st triple to the 2nd. (b) Furthermore, g is unique up to multiplication of
a non-zero scalar; ie, [g] ∈ PGL2(R) is unique. (c) The PGL2(R)-action on RP1

preserves the cross ratio: [x1, x2, x2, x4] := (x1−x3)/(x1−x4)÷ (x2−x3)/(x2−
x4). (d)

∗ A diffeomorphism of S1 which preserves the cross ratio is a Möbius
transformation. (e) Every Mobius transformation is a composition of dilation,
x 7→ ax, a ̸= 0, a translation, x 7→ x+ b, and inversion, x 7→ −1/x.

Proposition. A non-trivial Mobius transformation [g] ∈ PGL2(R) may have
0,1, or 2 fixed points in S1. If det(g) = 1 then there are 0, 1, or 2 fixed points
according to |tr(g)| < 2, = 2 or > 2 (resp.).

Proof. The equation g · x = x is quadratic in x. Its discriminant is given by
|tr(g)|.
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Definition. A Mobius tranformation is called elliptic, parabolic or hyperbolic
according to having 0, 1 or 2 fixed points (resp.).

Exercise 3.7. A Mobius transformation is elliptic iff it is conjugate to a rota-
tion, θ 7→ θ+ θ0; it is parabolic iff it is conjugate to a translation, x 7→ x+x0; it
is hyperbolic if it is conjugate to a dilation, x 7→ λx, λ ̸= 0, 1. The corresponding
matrices are (

cos θ0 − sin θ0
sin θ0 cos θ0

)
,

(
1 x0

0 1

)
,

(
λ
0 1/λ

)
.

Now given 4 functions a(t), b(t), c(t), d(t), consider the linear system of ODE,

ẋ = A(t)x, (2)

where

x(t) =

 x1(t)

x2(t)

 , A(t) =

 a(t) b(t)

c(t) d(t)

 .

Let g(t) be the fundamental system of solutions of (2), that is, the 1st and
2nd columns are the solutions satisfying x(0 = (1, 0)t (1st column), x(0 = (0, 1)t

(2nd column). In other words, g(0) = Id and ġ = A(t)g.

Exercise 3.8. If tr(A(t)) = 0, ie d(t) = −a(t), then det(g(t)) = 1.

Proposition. Let x(t) = (x1(t), x2(t)) be a solution of (2). Then p(t) :=
x2(t)/x1(t) is a solution of

ṗ = c(t)− 2ap(t)− b(t)p2. (3)

The last type of eqn is called a Ricatti equation. It is the vector field induced
on RP1 by the linear system (2).

Exercise 3.9. Write down the ODE on RP1 satisfied by θ(t), corresponding to
the linear system (2). (Suggestion. Make the change of variable p = tan(θ/2) in
eqn (3).)

Now given a front track f(t) = (x(t), y(t)), let

A(t) = − 1

2ℓ

 x(t) y(t)

y(t) −x(t).

 .

Exercise 3.10. Show that the Ricatti eqn ion RP1, in the coordinate θ, is the
bicycle eqn. This proves that the bicycle monodromy is a Mobius transformation.
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