Tarea núm. 11

(Para el jueves 4 nov 2021)

DEFINICIONES

- Una función $Q: \mathbb{R}^2 \to \mathbb{R}$ es una forma cuadrática si es de la forma $Q(x,y) = Ex^2 + 2Fxy + Gy^2$ para unas constantes $E, F, G \in \mathbb{R}$. La forma es diagonal si F = 0.
- Una transformación lineal $L: \mathbb{R}^2 \to \mathbb{R}^2$ diagonaliza una forma cuadrática Q si $Q \circ L$ es diagonal.

Proposiciones vistas en clase

Toda forma cuadrática es diagonalizable mediante una rotación.

Problemas

- 1. Cada una de las siguientes ecuaciones describe alguna curva de segundo grado en el plano de algun tipo: circunferencia, parábola, elipse, hipérbola o un "caso degenerado" (par de rectas, una sola recta, un punto, o el conjunto vacío). En cada caso, indentifica el tipo la curva, y encuentra: en caso de circunferencia el centro y el radio, en caso de parábola el foco y la directriz, en caso de elipse los focos, los tamaños de los ejes (mayor y menor), el centro y los vertices, en caso de hipérbola los focos, los vértices y las asíntotas. También hay que dibujar la curva.
 - a) $x^2 + 4x + y^2 + 8y + 19 = 0$
 - b) $x^2 + 4x + 2y^2 + 16y + 19 = 0$
 - c) $x^2 + 4x 2y^2 + 16y + 19 = 0$
 - d) $x^2 + 4x + 16y + 19 = 0$

Sugerencia: encuentra un cambio de coordenadas $x = X + x_0, y = Y + y_0$ tal que en las nuevas coordenadas desaparezcan los términos lineales. Por ejemplo, en (a), $x^2 + 4x = (x+2)^2 - 4$, $y^2 + 8y = (y+4)^2 - 16$, así que tomamos $x_0 = -2, y_0 = -4$ ("completando el cuadrado").

2. Para cada una de las siguientes formas cuadráticas, encuentra una rotación que la diagonaliza: (a) xy, (b) $x^2 + xy$, (c) $(x + y)^2$, (d) $(x - y)^2$, (e) $3x^2 + 4xy + 5y^2$.

Sugerencia. Por ejemplo, en (b), si tomamos x = aX - bY, y = bX + aY, entonces el coeficiente de XY en $x^2 + xy$ es $-2ab + a^2 - b^2$. Ahora tenemos que resolver las ecuaciones $-2ab + a^2 - b^2 = 0$, $a^2 + b^2 = 1$. Si tomamos por ejemplo b = 1 en la 1era ecuación, entonces $a^2 - 2a + 1 = (a - 1)^2 = 0$, así que a = 1. Para satisfacer la 2nda ecuación ajustamos los a, b multipliandolos ambos por un factor adecuado.

- 3. Sea $Q(x,y)=Ex^2+2Fxy+Gy^2$ una forma cuadrática en $\mathbb{R}^2,$ $C=\{(x,y)\in\mathbb{R}^2\mid Q(x,y)=1\}$ y $\Delta=EG-F^2.$
 - a) Si $\Delta > 0$ y E > 0 entonces C es una elipse. Encuentra sus focos en términos de E, F, G.
 - b) Si $\Delta > 0$ y E < 0 entonces C es el conjunto vacio.
 - c) Si $\Delta = 0$ y $Q \neq 0$ entonces C es un par de rectas paralelas o el conjunto vacio.
 - d) Si $\Delta < 0$ entonces C es una hipérbola. Encuentra sus focos en términos de E, F, G.

Sugerencia: sea $M = \begin{pmatrix} E & F \\ E & G \end{pmatrix}$ la matriz simétrica asociada a Q. Entonces $\Delta = det(M)$. Luego existe una rotación R tal que RMR^{-1} es diagonal, con elementos en la diágonal λ_1, λ_2 , los valores propios de M, y $\Delta = \lambda_1 \lambda_2$. Luego $Q \circ R^{-1}$ es diagonal, $(QR^{-1})(X,Y) = \lambda_1 X^2 + \lambda_2 Y^2$.

4. * (Opcional) Cierto o falso: para todo $z \in \mathbb{R}$ existen $x, y \in \mathbb{R}$ tal que $6x^2 + 11xy + 5y^2 + z = 0$.

1