¿De dónde vienen las varidif. y la funciones suares?

- Restricción

\mathbb{R}^{n}		\mathbb{R}^{m}
u	f	
U		
X	V	
n	Y	
\mathbb{R}^{n}	$\longrightarrow \mathbb{R}^{m}$	

- composición

a fir manán: la gríflia de $f: \mathbb{R}^{\prime} \rightarrow \mathbb{R}^{\prime}$ es una Reecs
- grá ficas de funaones

$$
\begin{gathered}
\substack{x \\
\text { graph }(f) \\
\tilde{\varphi}(x, y)=x, \varphi=\left.\tilde{\varphi}\right|_{x}}
\end{gathered} \xrightarrow[R^{\prime}]{y_{p}}
$$

$$
\begin{gathered}
\frac{\operatorname{lo}_{0} 13 \rightarrow 1: 20}{y=f(x)} \\
\operatorname{graph}(f) \subset \mathbb{R} \times \mathbb{R}
\end{gathered}
$$

$$
\left.\left.\varphi^{-1} \frac{\{(x, f(x)))}{f: X \rightarrow Y} \right\rvert\, x \in \mathbb{R}\right\}
$$ vuriedad dedim 1.

$$
\operatorname{graph}(f)<X \times Y
$$

$$
\begin{aligned}
& \cup \xrightarrow{\widetilde{f} l} Y \xrightarrow{\widetilde{J}} R^{e} \\
& X \xrightarrow{f} Y \xrightarrow{g} Z \\
& \mathbb{R}^{n} \quad \mathbb{R}^{m} \quad \mathbb{R}^{\prime} l
\end{aligned}
$$

Derivada
$\frac{\operatorname{lif}^{\prime}}{1}$
$R \vec{F} \quad f(x)=x^{2}$
$f^{\prime}(1)=2$
$f^{\prime}(1): \mathbb{R} \rightarrow \mathbb{R}, x \mapsto 2 y$
$\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m}, d f_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
$\stackrel{4}{\times}$
transf. lineal
Netanin; $D f(x), d f_{x}, f^{\prime}(x), f_{*}(x), \ldots$ aqui-

$f: \mathbb{R} \rightarrow \mathbb{R}$
$y=f(x)=x^{2}$

$$
\begin{aligned}
& (x)=x^{2} \\
& f^{\prime}(1)=2^{5} ?
\end{aligned}
$$

$f^{\prime}(1): \mathbb{R} \rightarrow \mathbb{R}$ $f^{\prime}(1) v=2 v$

Tes: sifes C^{\prime}

$$
\Rightarrow d f \times \text { es lin. } \forall \times x<\mathbb{R}^{n}, T_{x} x \subset \mathbb{R}^{n}
$$

e subesp.K.dim

$$
\begin{aligned}
& 0 x^{2}+2 y^{2}=1 \\
& x \quad y=\sqrt{1-x^{2}} / 2
\end{aligned}
$$

$$
f^{(n)}(0)=0
$$

$$
\begin{aligned}
& f(x)= \begin{cases}e^{-1 / x^{2}} & x \geqslant 0 \\
0 & x<\infty\end{cases} \\
& e^{-\frac{1}{x^{2}}}=\frac{1}{e^{1 / x^{2}}} \xrightarrow[x \rightarrow 0]{\longrightarrow}
\end{aligned}
$$

Ej 1.5 (p. 6)

$$
\begin{aligned}
& \mathbb{R}^{n} \\
& V \xrightarrow{\varphi} \stackrel{\mathbb{R}^{k}}{ } \quad e_{1}, e_{2}, i, e_{k} \\
& \underset{\operatorname{sub} \operatorname{esp}}{\tilde{e}_{1}} \ldots, \widetilde{e}_{k}, \ldots, \tilde{e}_{n} \quad e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), e_{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \ldots \\
& \begin{array}{ll}
\begin{array}{l}
\text { subesp } \\
\text { vat } \\
k-d i m
\end{array} & \varphi^{-1}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right)=\sum x_{i} \widetilde{e}_{i}
\end{array} \\
& \varphi\left(\sum_{i=1}^{k} x_{i} \tilde{e}_{i}\right)=\sum^{k} x_{i} e_{i} \\
& \tilde{\varphi}\left(\sum_{i}^{n} x_{i} \tilde{e}_{i}\right)=-1-
\end{aligned}
$$

