Solid VOLUME OTHER

 $V = \frac{1}{3}\pi r^2 h$ L = clRight circular cone V = volumeL = lateral area

r = radiusc = circumference of base

h = heightl =slant height

 $V = \frac{4}{3}\pi r^3 \qquad S = 4\pi r^2 \qquad V = \text{volume}$ Sphere r = radius

S = surface area

 $V = \frac{1}{3}Bh$ V = volume B = area of basePyramid

h = height

PRACTICE TEST 1

MATH LEVEL IIC

50 Questions • Time—60 Minutes

- 1. The number of roots of the equation $9 + \sqrt{x-3} = x$, is
 - **(A)** 0
 - **(B)** 1
 - **(C)** 2
 - **(D)** 3
 - (E) ∞
- **2.** The operation \Box is defined as $a \Box b = a^b b^a$. What is the approximate value of $\left(\frac{1}{2}\right)^3 \Box (3)^{\frac{1}{2}}$?
 - **(A)** 2.36
 - **(B)** 1.93
 - **(C)** .47
 - **(D)** -.75
 - **(E)** -1.04
- 3. If $f(x) = 3x^2 5x 4$ then f(-2x) is equal to
 - (A) 2f(-x) (B) -f(x)

 - (C) 4f(x)
 - **(D)** -4f(x)
 - (E) none of these

- **4.** If $P = Ke^{-xt}$, then x equals

 - **(B)** $\frac{P}{Ke}$
 - (C) $\frac{Pe^t}{K}$
 - $\textbf{(D)} \quad \frac{\log K \log P}{t \log e}$
 - (E) none of these
- 5. The vertices of a triangle are the intersections of the lines whose equations are y = 0, x = 3y, and 3x + y = 7. This triangle is
 - (A) isosceles
 - (B) equilateral
 - (C) right
 - (D) acute
 - (E) obtuse
- **6.** The area bounded by the closed curve whose equation is $x^2 6x + y^2 + 8y = 0$ is
 - (A) 12π
 - **(B)** 25π
 - (C) 36π
 - **(D)** 48π
 - (E) cannot be determined
- 7. The ratio of the diagonal of a cube to the diagonal of a face of the cube is
 - **(A)** $2:\sqrt{3}$
 - **(B)** $3:\sqrt{6}$
 - **(C)** $3:\sqrt{2}$
 - **(D)** $\sqrt{3}:1$
 - **(E)** $\sqrt{6}:3$
- 8. A regular octagon is inscribed in a circle of radius 1. Find a side of the octagon.
 - **(A)** $\sqrt{2}$
 - **(B)** $\frac{\sqrt{3}}{2}$
 - (C) $\sqrt{2+\sqrt{2}}$
 - **(D)** $\sqrt{2-\sqrt{2}}$
 - (E) none of these
- 9. Two circles of radii 3 inches and 6 inches have their centers 15 inches apart. Find the length in inches of the common internal tangent.
 - **(A)** 8"
 - **(B)** 10"
 - **(C)** 12"
 - **(D)** 14"
 - **(E)** 15"

GO ON TO THE NEXT PAGE

ARCO SAT II Math

www.petersons.com/arco

- **(B)** $\frac{2\pi}{5}$
- (C) 3π
- **(D)** 5
- **(E)** 4

11. If $2^x = 8^{y+1}$ and $9^y = 3^{x-9}$ then y equals

- **(A)** 3
- **(B)** 6
- **(C)** 9
- **(D)** 12
- **(E)** 21

12. Express in terms of an inverse function the angle formed at the intesection of the diagonals of a cube.

- **(A)** $\sin^{-1} 2/3$
- **(B)** $\cos^{-1} 2/3$
- (C) $tan^{-1} 1/3$
- **(D)** $\sin^{-1} 1/3$
- **(E)** $\cos^{-1} 1/3$

13. If $y = \frac{10^{\log x}}{x^2}$, for x > 0, then

- (A) y varies directly with x
 - **(B)** y is independent of x
 - (C) y varies as the square of x
 - **(D)** $(xy)^2 = 3$
 - **(E)** y varies inversely with x

14. If $\log_r 6 = m$ and $\log_r 3 = n$, then $\log_r \left(\frac{r}{2}\right)$ is equal to

- $(\mathbf{A}) \quad \frac{1}{2} \log_2 r$
- **(B)** $\bar{1}-m-n$
- (C) $1 \log_r 2$
- **(D)** $\frac{r}{2}$
- **(E)** 1 m + n

15. The inequality $-x^2 + x - 10 \le -2x^2 - 4$ is satisfied if

- **(A)** x < -3
- (B) |x| < 3(C) -3 < x < 2
- **(D)** -2 < x < 3
- **(E)** x < -3 or x > 2

- **16.** The contrapositive of the sentence $\sim p \rightarrow q$ is equivalent to
 - (A) $p \rightarrow \sim q$
 - **(B)** $q \rightarrow \sim p$
 - (C) $q \rightarrow p$
 - **(D)** $\sim p \rightarrow \sim q$
 - **(E)** $\sim q \rightarrow p$
- 17. A point moves so that its distance from the origin is always twice its distance from the point (3, 0). Its
 - (A) a circle
 - (B) an ellipse
 - (C) a hyperbola
 - (D) a straight line
 - (E) a parabola
- **18.** The function f is defined as $f = \{(x, y) \mid y = \frac{2x+1}{x-3} \text{ where } x \neq 3\}.$

Find the value of K so that the inverse of f will be

$$f^{-1} = \{(x, y) \mid y = \frac{3x+1}{x-K} \text{ where } x \neq K\}.$$

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4
- **(E)** 5
- 19. Find the sum of the reciprocals of the roots of the equation $x^2 + px + q = 0$.
 - (A) $-\frac{p}{q}$
 - **(B)** $\frac{q}{p}$
 - **(C)**
 - **(D)** $-\frac{q}{p}$ **(E)** p+q
- 20. A cube 4 inches on each side is painted red and cut into 64 1-inch cubes. How many 1-inch cubes are painted red on two faces only?
 - **(A)** 8
 - **(B)** 12
 - **(C)** 16
 - **(D)** 24
 - **(E)** 32

- **21.** The set $\{x/|x-L| \le K\}$ is the same for all $K \ge 0$ and for all L, as
 - (A) $\{x/0 < x < L + K\}$
 - **(B)** $\{x/L K < x < L + K\}$
 - (C) $\{x/|L-K| < x < |L+K|\}$
 - **(D)** $\{x/|L-x| > K\}$
 - (E) $\{x/-K < x < L\}$
- **22.** Write $\left[\sqrt{2}\left(\cos 30^{\circ} + i \sin 30^{\circ}\right)\right]^{2}$ in the form a + bi.

 - (A) $2+i\sqrt{3}$ (B) $\frac{3}{2}+\frac{1}{2}i$ (C) $1-i\sqrt{3}$ (D) $\frac{3}{2}-\frac{1}{2}i$
 - **(E)** $1+i\sqrt{3}$
- 23. What is the approximate magnitude of 8 + 4i?
 - **(A)** 4.15
 - **(B)** 8.94
 - **(C)** 12.00
 - **(D)** 18.64
 - **(E)** 32.00
- 24. $\tan \frac{A}{2} + \cot \frac{A}{2}$ is equivalent to
 - (A) 2 sin A(B) 2 sec A

 - (C) $2\cos A$
 - **(D)** $2 \csc A$
 - **(E)** 2 tan A
- **25.** Find the coordinates of the center of a circle whose equation is $x^2 + y^2 4x 2y = 75$.
 - **(A)** (4, 1)

 - (A) (4, 1) (B) (1, 4) (C) (2, 1) (D) (1, 2)
 - **(E)** (3, 1)

- 26. From two ships due east of a lighthouse and in line with its foot, the angles of elevation of the top of the lighthouse are x and y, with x > y. The distance between the ships is m. The distance from the lighthouse to the nearer ship is
 - $m \sin x \cos y$ $\sin(x-y)$
 - $m \cos x \sin y$ $\sin(x-y)$
 - $\cos x \sin y$ (C) $\frac{1}{m\sin(x+y)}$
 - **(D)** $m \cot x \sin y$
 - (E) $m \sec x \cos y$
- 27. What is the probability of getting 80% or more of the questions correct on a 10-question true-false exam merely by guessing?

 - (A) $\frac{1}{16}$ (B) $\frac{5}{32}$ (C) $\frac{3}{16}$ (D) $\frac{7}{32}$ (E) $\frac{7}{128}$
- **28.** The expression $\frac{3-4i}{5+3i}$ is equivalent to
 - (A) $\frac{27-29i}{34}$ (B) $\frac{27-29i}{16}$

 - **(D)** $\frac{1}{8}$ **(E)** 15 8i
- **29.** Evaluate $\lim_{n \to \infty} \frac{3n^2}{n^2 + 10,000n}$
 - **(A)** 0
 - **(B)** 1
 - **(C)** 2
 - **(D)** 3
 - **(E)** ∞

GO ON TO THE NEXT PAGE

www.petersons.com/arco

- **30.** If $w = w_0 e^{-kt}$, find the approximate value of t when w = 7, $w_0 = 50$, and k = 3.4.

 - **(B)** .54
 - **(C)** .56
 - **(D)** .58
 - **(E)** .60
- 31. Find the cube root of 27 (cos $30^{\circ} + i \sin 30^{\circ}$) that, when represented graphically, lies in the second quadrant.
 - (A) $3 (\cos 10^{\circ} + i \sin 10^{\circ})$
 - **(B)** $3 (\cos 170^{\circ} + i \sin 170^{\circ})$
 - (C) $3 (\cos 100^{\circ} + i \sin 100^{\circ})$
 - **(D)** $3 (\cos 130^{\circ} + i \sin 130^{\circ})$
 - **(E)** $3 (\cos 150^{\circ} + i \sin 150^{\circ})$
- 32. If $y = \frac{\pi}{5}$, find the value of 2 cos π sin (πy) sin $(\frac{3}{2}\pi + y)$.

 - **(B)** $-\cos\frac{2}{5}\pi$
 - (C) $\sin \frac{2}{5}\pi$
 - **(D)** $-\sin\frac{2}{5}\pi$
 - **(E)** $\tan \frac{2}{5}\pi$
- **33.** Figure 33 is a graph of which of the following?
 - **(A)** $x^2 + y^2 = 9$
 - **(B)** |x| = 3 and |y| = 3
 - **(C)** |x + y| = 3
 - **(D)** |x| + |y| = 3
 - **(E)** x y = 3

Fig. 33

- **34.** What is the degree measure of the second quadrant angle θ for which $8 \sin^2 \theta + 6 \sin \theta = 9$?
 - **(A)** 48.6°
 - **(B)** 101.6°
 - (C) 121.4°
 - **(D)** 131.4°
 - **(E)** 172.8°
- **35.** Find the set of values satisfying the inequality $\left| \frac{10 x}{3} \right| < 2$.
 - **(A)** 4 < x < 16
 - **(B)** -4 > x > -16
 - (C) 4 > x > -16
 - **(D)** x < 16
 - **(E)** x > 4
- **36.** If the circle $(x-1)^2 + (y-3)^2 = r^2$ is tangent to the line 5x + 12y = 60, the value of r is
 - **(A)** $\sqrt{10}$
 - **(B)** $\frac{19}{13}$
 - (C) $\frac{13}{12}$
 - **(D)** $\frac{60}{13}$
 - **(E)** $2\sqrt{3}$
- **37.** In a coordinate system in which the *y*-axis is inclined 60° to the positive *x*-axis, find the distance PQ between the points P(-3, 7) and Q(6, -5).
 - **(A)** $\sqrt{117}$
 - **(B)** 15
 - (C) $\sqrt{189}$
 - **(D)** $\sqrt{333}$
 - **(E)** $\sqrt{108}$
- **38.** What is the remainder when $3x^4 2x^3 + 3x^2 2x + 1$ is divided by x 3?
 - **(A)** 70
 - **(B)** 102
 - **(C)** 200
 - **(D)** 211
 - **(E)** 241
- **39.** For what positive value(s) of *K* will the graph of the equation 2x + y = K be tangent to the graph of the equation $x^2 + y^2 = 45$?
 - **(A)** 5
 - **(B)** 10
 - (C) 15
 - **(C)** 20
 - **(E)** 25

GO ON TO THE NEXT PAGE

ARCO SAT II Math

www.petersons.com/arco

- (B) $\frac{4}{4}$ only (C) $\frac{\pi}{2}$ and $\frac{5\pi}{2}$ (D) $\frac{3\pi}{2}$ (E) $\frac{\pi}{4}$ and $\frac{5\pi}{4}$

41. Express in radians the period of the graph of the equation $y = \frac{1}{3}(\cos^2 x - \sin^2 x)$.

- (A) $\frac{\pi}{2}$ (B) π
- (C) $\frac{3\pi}{2}$ (D) 2π
- (E) 3π

42. For what value of m is $4x^2 + 8xy + my^2 = 9$ the equation of a pair of straight lines?

- **(A)** 0
- **(B)**
- **(C)**
- (D) $\frac{9}{4}$ (E) 4

43. Two roots of the equation $4x^3 - px^2 + qx - 2p = 0$ are 4 and 7. What is the third root?

- $\frac{11}{27}$ **(A)**
- $\frac{11}{13}$ **(B)**
- (C) 11
- (D)
- **(E)** $-\frac{22}{27}$

- **44.** In figure 44, what is the approximate area of parallelogram DAWN?
 - **(A)** 11.57
 - **(B)** 13.64
 - **(C)** 14.63
 - **(D)** 17.25
 - **(E)** 20.00

- **45.** If $\log_{6.2} x = e$, what is the approximate value of x?
 - (A) 142.54
 - **(B)** 173.82
 - (C) 227.31
 - **(D)** 386.42
 - **(E)** 492.75
- **46.** If $x = 1 e^t$ and $y = 1 + e^{-t}$, find y in terms of x.
 - $(\mathbf{A}) \quad y = x$
 - **(B)** y = 1 x
 - **(C)** $y = \frac{x-1}{x}$

 - (C) $y = \frac{x}{x}$ (D) $y = \frac{x}{x+1}$ (E) $y = \frac{2-x}{1-x}$
- **47.** Find the value of $\log_8(\sqrt[3]{.25})$.
 - **(A)**
 - (B)

GO ON TO THE NEXT PAGE

www.petersons.com/arco

268 Part VI

- **48.** If two sides of a parallelogram are 6 and 8 and one diagonal is 7, what is the length of the other diagonal?

 - (B) $\sqrt{11}$ (C) $\sqrt{131}$

 - (D) $\sqrt{151}$ (E) 9
- **49.** When $5x^{13} + 3x^{10} K$ is divided by x + 1, the remainder is 20. The value of K is
 - **(A)** −22
 - **(B)** −12

 - (C) 8 (D) 28
 - **(E)** 14
- **50.** What is the smallest possible value of x (in degrees) for which $\cos x \sin x = \frac{1}{\sqrt{2}}$?
 - **(A)** 5°
 - **(B)** 12°
 - **(C)** 15°
 - **(D)** 18°
 - **(E)** 30°

STOP

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON THIS TEST ONLY. DO NOT WORK ON ANY OTHER TEST IN THIS BOOK.

PRACTICE TEST I

Answer Key

Math Level IIC

1.	В	11.	В	21.	В	31.	D	41.	В
2.	E	12.	E	22.	E	32.	C	42.	Е
3.	E	13.	E	23.	В	33.	D	43.	В
4.	D	14.	E	24.	D	34.	D	44.	C
5.	C	15.	C	25.	C	35.	A	45.	Α
6.	В	16.	E	26.	В	36.	В	46.	Е
7.	В	17.	A	27.	E	37.	A	47.	C
8.	D	18.	В	28.	C	38.	D	48.	D
9.	C	19.	A	29.	D	39.	C	49.	Α
10.	A	20.	D	30.	D	40.	E	50.	C

SOLUTIONS

1. The correct answer is (B).

$$\sqrt{x-3} = x-9 \text{ Square both sides}$$

$$x-3 = x^2 - 18x + 81$$

$$x^2 - 19x + 84 = 0$$

$$(x-12)(x-7) = 0$$

$$x = 12 \text{ and } x = 7$$
Check: $\sqrt{12-3} = 12-9$

$$\sqrt{9} = 3$$
Check: $\sqrt{7-3} = 7-9$

$$\sqrt{4} = -2$$
does not check
$$\text{reject } x = 7$$

So there is only 1 root.

2. The correct answer is (E). $\left(\frac{1}{2}\right)^3 \Box (3)^{\frac{1}{2}}$ $=\frac{1}{8}\Box \sqrt{3}$ $=\left(\frac{1}{8}\right)^{\sqrt{3}} - \left(\sqrt{3}\right)^{\frac{1}{8}}$ $\approx .027277 - 1.07107$ ≈ -1.044

3. The correct answer is (E).
$$f(-2x) = 3(-2x)^2 5(-2x) - 4$$

= $12x^2 + 10x - 4$

This is not a multiple of the original function

4. The correct answer is (D).

$$\frac{P}{K} = e^{-xt} \text{ or } -tx = \log_e \frac{P}{K}$$

$$x = -\frac{1}{t} (\log_e P - \log_e K) = \frac{\log_e K - \log_e P}{t}$$

$$x = \frac{\log K - \log P}{t \log e}$$

5. The correct answer is (C). Slope of x = 3y is 1/3.

Slope of y = -3x + 7 is -3. Hence, since slopes are negative reciprocals, the lines are \bot , and the \triangle is right.

6. The correct answer is (B). $x^2 - 6x + 9 + y^2 + 8y + 16 = 25$

$$(x-3)^2 + (y+4)^2 = 25$$

Curve is circle of radius 5.

Hence, area is 25π .

7. The correct answer is (B).

Let each side of cube
$$= 1$$

then diagonal of cube:
$$D = \sqrt{1^2 + 1^2 + 1^2}$$

$$=\sqrt{3}$$

diagonal of face:
$$D' = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\frac{D}{D'} = \frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3}{\sqrt{6}}$$
 So the ratio is $3 : \sqrt{6}$

8. The correct answer is (D). Using the law of cosines:

$$c^{2} = a^{2} + b^{2} - ab \cos C$$

$$c^{2} = 1 + 1 - 2 \cos 45$$

$$c^{2} = 2 - 2 \cos 45$$

$$c^{2} = 2 - \sqrt{2}$$

$$c = \sqrt{2 - \sqrt{2}}$$

9. The correct answer is (C).

Extend \overline{OT} 3" to T' and draw $\overline{O'T'}$. Then in right $\Delta OT'O'$, OO' = 15" and OT' = 9" so that O'T' = 12".

10. The correct answer is (A). The cosine function $y = \cos x$ has a period of 2π radians.

Hence $y = 5 \cos 3x$ has a period of $\frac{2\pi}{3}$ radians.

11. The correct answer is **(B)**. $2x = 2^{3(y+1)}$

$$x = 3y + 3$$

$$3^{2y} - 3^{x-9}$$

$$2y = x - 9$$

$$2y = 3y + 3 - 9$$

$$y = 6$$

12. The correct answer is (E).

Let each edge =1 PQRS is a rectangle

$$PR = SQ = \sqrt{3}$$

$$PO = SO = \frac{\sqrt{3}}{2}$$
then $I^2 = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - 2\frac{\sqrt{3}}{2}\frac{\sqrt{3}}{2}\cos\theta$

$$\frac{3}{2}\cos\theta = 1/2$$

$$\cos\theta = 1/3$$

$$\theta = \cos^{-1}\left(\frac{1}{3}\right)$$

13. The correct answer is (E).

$$x^{2}y = 10^{\log x}$$

$$\log x^{2}y = \log x$$

$$x^{2}y = x$$

$$xy = 1$$

$$y = \frac{1}{x}$$

y varies inversely with x.

14. The correct answer is (E).
$$\log_r \left(\frac{r}{2}\right) = \log_r r - \log_r 2 = 1 - \log_r 2$$

$$\log_{r} 2 = \log_{r} \left(\frac{6}{3}\right) = \log_{r} 6 - \log_{r} 3 = m - n$$

$$\log_{r} \left(\frac{r}{2}\right) = 1 - (m - n) = 1 - m + n$$

15. The correct answer is (C).

$$x^2 + x - 6 < 0$$

 $(x+3)(x-2) < 0$
Either $(x+3) > 0$ and $(x-2) < 0$
or $(x+3) < 0$ and $(x-2) > 0$
Either $x > -3$ and $x < 2 \implies -3 < x < 2$
or $x < -3$ and $x > 2 \implies$ Impossible
Therefore, $-3 < x < 2$.

- 16. The correct answer is (E). The contrapositive is the converse of the inverse. Thus, form the converse and negate the hypothesis and conclusion. Hence $\sim q \rightarrow p$.
- 17. The correct answer is (A).

$$\sqrt{x^2 + y^2} = 2\sqrt{(x - 3)^2 + y^2}$$

$$x^2 + y^2 = 4(x^2 - 6x + 9 + y^2)$$

$$3x^2 - 24x + 36 + 3y^2 = 0$$

$$x^2 - 8x + y^2 = -12$$

Hence, a circle.

18. The correct answer is (B). Solve for x in terms of y:

$$xy - 3y = 2x + 1$$
$$xy - 2x = 3y + 1$$
$$x = \frac{3y + 1}{x - 2}$$

Now interchange x and y.

$$y = \frac{3x+1}{x-2}$$

Hence K = 2.

19. The correct answer is (A). Let the roots be r and s.

Then
$$r + s = -p$$
 and $rs = q$.

$$\frac{1}{r} + \frac{1}{s} = \frac{r+s}{rs} = -\frac{p}{q}$$

- 20. The correct answer is (D). A 1-inch cube will be painted on two sides only if it lies on one edge of the 4-inch cube but does not touch a vertex of the original cube. On each edge there are two such cubes. Since a cube has 12 edges, there are 24 such cubes.
- **21.** The correct answer is (B). If x > L, then |x L| < K means x L < K or x < L + K

If
$$x < L$$
, then $|x - L| < K$ means $L - x < K$
or $-x < K - L$ or $x > L - K$
so that $L - K < x < L + K$

ARCO SAT II Math

22. The correct answer is (E). By De Moivre's Theorem,

$$\left[\sqrt{2}(\cos 30^\circ + i\sin 30^\circ)\right]^2 = 2(\cos 60^\circ + i\sin 60^\circ)$$
$$= 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$
$$= 1 + i\sqrt{3}$$

- 23. The correct answer is (B). The magnitude = $|8+4i| = \sqrt{8^2 + 4^2}$ = $\sqrt{80}$ ≈ 8.94
- 24. The correct answer is (D).

$$\tan \frac{A}{2} + \cot \frac{A}{2} = \tan \frac{A}{2} + \frac{1}{\tan \frac{A}{2}}$$
$$= \frac{\tan^2 \frac{A}{2} + 1}{\tan \frac{A}{2}} = \frac{\sec^2 \frac{A}{2}}{\tan \frac{A}{2}}$$

$$= \frac{1}{\cos^2 \frac{A}{2}} \cdot \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}$$

$$= \frac{1}{\sin \frac{A}{2} \cos \frac{A}{2}}$$

$$= \frac{1}{\frac{1}{2} \sin A} = \frac{2}{\sin A}$$

$$= 2 \csc A$$

25. The correct answer is (C).

$$x^{2}-4x+4+y^{2}-2y+1=75+4+1$$

 $(x-2)^{2}+(y-1)^{2}=80$
Center is at (2, 1).

26. The correct answer is (B). In $\triangle PQR$, by law of sines,

$$\frac{m}{\sin(x-y)} = \frac{\frac{L}{\cos x}}{\sin y}$$

$$m\sin y = \frac{L\sin(x-y)}{\cos x}$$

$$\frac{m\cos x \sin y}{\sin(x-y)} = L$$

27. The correct answer is (E). May get 8 or 9 or 10 correct

Probability of getting 10 right = $\left(\frac{1}{2}\right)^{10}$

Probability of getting 9 right =

$${}_{10}C_{1}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right) = 10\left(\frac{1}{2}\right)^{10}$$

Probability of getting 8 right =

$$_{10} C_{2} \left(\frac{1}{2}\right)^{8} \left(\frac{1}{2}\right)^{2} = \frac{10}{1} \cdot \frac{9}{2} \left(\frac{1}{2}\right)^{10} =$$

$$45 \left(\frac{1}{2}\right)^{10}$$

Probability of getting 8 or 9 or 10 right =

$$\left(\frac{1}{2}\right)^{10} + 10\left(\frac{1}{2}\right)^{10} + 45\left(\frac{1}{2}\right)^{10} =$$

$$\left(\frac{1}{2}\right)^{10} \cdot 56 = \frac{7}{2^7} = \frac{7}{128}$$

28. The correct answer is (C).

$$\frac{3-4i}{5+3i} \cdot \frac{5-3i}{5-3i} = \frac{15-29i-12}{25+9} = \frac{3-29i}{34}$$

29. The correct answer is **(D).** Divide numerator and denominator by n^2 .

$$\lim_{n \to \infty} \frac{3n^2}{n^2 + 10,000n} = \lim_{n \to \infty} \frac{3}{1 + \frac{10,000}{n}} = \frac{3}{1} = 3$$

30. The correct answer is (D).

$$w = w_0 e^{-ht}$$

$$7 = 50 e^{-3.4t}$$

$$\frac{7}{50} = e^{-3.4t}$$

$$ln\left(\frac{7}{50}\right) = ln\left(e^{-3.4t}\right) = -3.4t$$

$$\downarrow \downarrow$$

$$-3.4t = ln\left(\frac{7}{50}\right)$$

$$t = \frac{ln\left(\frac{7}{50}\right)}{-3.4} \approx \frac{-1.966}{-3.4} \approx .578$$

31. The correct answer is (D).

32. The correct answer is (C).

$$\cos \pi = -1, \sin (\pi - y) = \sin y$$

$$\sin \left(\frac{3}{2}\pi + y\right) = \sin \frac{3}{2}\pi \cos y + \cos \frac{3}{2}\pi \sin y = (-1)\cos y + 0 = -\cos y$$

$$\operatorname{So}, 2 \cos \pi \sin (\pi - y) \sin \left(\frac{3}{2}\pi + y\right)$$

$$= 2(-1) \sin y(-\cos y)$$

$$= 2 \sin y \cos y = \sin 2y$$

$$= \sin \frac{2\pi}{5}$$

33. The correct answer is (D).

- (A) Graphs as a circle.
- (B) Graphs as vertical and horizontal lines.
- (C) |x + y| = 3 consists of 2 lines, x + y = 3 and -x y = 3.
- (E) Graphs as one straight line.
- (D) Graphs as x + y = 3, x y = 3, -x + y = 3, and x + y = 3, which are the four lines in the graph.

34. The correct answer is (D).

$$8 \sin^{2}\theta + 6 \sin\theta - 9 = 0$$

$$(4 \sin\theta - 3)(2 \sin\theta + 3) = 0$$

$$\sin\theta = \frac{3}{4}$$

$$\theta = \sin^{-1}\frac{3}{4}$$

$$\sin\theta = -\frac{3}{2}$$
reject, not second quadrant

The second quadrant

solution is
$$180^{\circ} - 48.6^{\circ}$$

= 131.4°

35. The correct answer is (A).

$$\left| \frac{10 - x}{3} \right| < 2$$

$$\left| 10 - x \right| < 6$$

$$-6 < 10 - x < 6$$

$$-16 < -x < -4$$
or $4 < x < 16$

36. The correct answer is (B). The center of the circle is (1, 3). The value of r is then equal to the distance from the center to the given line. Thus

$$r = \left| \frac{5x_1 + 12y_1 - 60}{\sqrt{5^2 + 12^2}} \right| = \left| \frac{5(1) + 12(3) - 60}{13} \right|$$
$$r = \frac{19}{12}$$

37. The correct answer is (A).

From the figure, PQ is the side of ΔPQR opposite $\angle R$ which measures 60° .

$$PR = 9$$
 and $QR = 12$. Thus
 $PQ^2 = 9^2 + 12^2 - 2 \cdot 9 \cdot 12 \cos 60^\circ$
 $= 225 - 108$
 $= 117$
 $PQ = \sqrt{117}$

38. The correct answer is (D).

or
$$3 -2 3 -2 1 \frac{3(3)^4 - 2(3)^3 + 3(3)^2 - 2(3) + 1 = 211}{9 21 72 210}$$
or
$$3x^3 + 7x^2 + 24x + 70 + \frac{211}{x - 3}$$

$$x - 3 \overline{3x^4 - 2x^3 + 3x^2 - 2x + 1}$$

39. The correct answer is (C).

$$y = K - 2x$$
$$x^{2} + (K - 2x)^{2} = 45$$
$$x^{2} + 4x^{2} - 4Kx + (K^{2} - 45) = 0$$
$$5x^{2} - 4Kx + (K^{2} - 45) = 0$$

If the line is tangent, the quadratic equation will have two equal roots. Thus the discriminant = 0.

$$16K^{2} - 20(K^{2} - 45) = 0$$
$$4K^{2} = 900$$
$$2K = 30$$
$$K = 15$$

40. The correct answer is (E). If $y = 4 - 2 \sin x \cos x = 4 - \sin 2x$, y will be a minimum when $\sin 2x$ is at a maximum; that is, at

$$2x = \frac{\pi}{2} \text{ and } \frac{5\pi}{2}$$
or $x = \frac{\pi}{4} \text{ and } \frac{5\pi}{4}$

41. The correct answer is (B).

$$y = \frac{1}{3}(\cos^2 x - \sin^2 x) = \frac{1}{3}\cos 2x$$

Since $\cos x$ has a period of 2π radians, $\cos 2x$ has a period of π .

42. The correct answer is (E). In order to make the left member a perfect square, *m* must equal 4. Then

$$4x^{2} + 8xy + 4y^{2} = 4(x + y)^{2} = 9$$

or $(x + y)^{2} = \frac{9}{4}$
and $x + y = \pm \frac{3}{2}$

which graphs as a pair of straight lines.

Thus m = 4.

43. The correct answer is (B). Let r be the root, then

$$4+7+r = \frac{p}{4} = 11+r$$

$$4\cdot 7\cdot r = \frac{p}{2} = 28r \text{ or } \frac{p}{4} = 14r$$
Thus $14r = 11+r$ and $r = \frac{11}{13}$

44. The correct answer is (C).

$$A = ab \sin C$$

$$= (AD)(DN)\sin D$$

$$= (4)(5) \sin 47^{\circ}$$

$$= 20 \sin 47^{\circ}$$

$$\approx 14.627$$

45. The correct answer is (A).

$$\log_{6.2} x = e$$

$$\downarrow \downarrow$$

$$x = (6.2)^e$$
recall $e = 2.71828...$

$$x \approx 142.54$$

46. The correct answer is (E).

$$y = 1 + \frac{1}{e'}$$
 and $e' = 1 - x$
 $y = 1 + \frac{1}{1 - x} = \frac{1 - x + 1}{1 - x} = \frac{2 - x}{1 - x}$

47. The correct answer is (C).

Let
$$x = \log_8 \sqrt[3]{.25}$$

Then $8^x = \sqrt[3]{.25} = \frac{1}{4^{1/3}}$
Or $2^{3x} = 2^{-2/3}$
 $3x = -\frac{2}{3}$
 $x = -\frac{2}{9}$

48. The correct answer is (D).

$$7^{2} = 6^{2} + 8^{2} - 2 \cdot 6 \cdot 8 \cos \theta$$

$$49 = 100 - 96 \cos \theta$$

$$\cos \theta = \frac{51}{96}$$

$$x^{2} = 6^{2} + 8^{2} - 2 \cdot 6 \cdot 8 \cos (180 - \theta)$$

$$x^{2} = 100 - 96 \cos (180 - \theta)$$

$$x^{2} = 100 + 96 \cos \theta = 100 + 96 \left(\frac{51}{96}\right)$$

$$x = \sqrt{151}$$

49. The correct answer is (A).

$$P(x) = 5x^{13} + 3x^{10} - K$$

$$P(-1) = 5(-1)^{13} + 3(-1)^{10} - K = 20$$

$$-5 + 3 - K = 20$$

$$K = -22$$

50. The correct answer is (C).

Square both sides of the equation.

$$(\cos x - \sin x)^2 = \frac{1}{2}$$

$$\cos^2 x + \sin^2 x - 2\sin x \cos x = \frac{1}{2}$$

$$1 - \frac{1}{2} = \sin 2x = \frac{1}{2}$$

$$2x = 30^\circ$$

$$x = 15^\circ$$