REFERENCE DATA

Solid	Volume	Other		
Right circular cone	$V=\frac{1}{3} \pi r^{2} h$	$L=c l$	$\begin{aligned} & V=\text { volume } \\ & r=\text { radius } \\ & h=\text { height } \end{aligned}$	$\begin{aligned} & L=\text { lateral area } \\ & c=\text { circumference of base } \\ & l=\text { slant height } \end{aligned}$
Sphere	$V=\frac{4}{3} \pi r^{3}$	$S=4 \pi \mathrm{r}^{2}$	$\begin{aligned} & V=\text { volume } \\ & r=\text { radius } \\ & S=\text { surface area } \end{aligned}$	
Pyramid	$V=\frac{1}{3} B h$		$V=$ volume $B=$ area of base $h=$ height	

PRACTICE TEST 1

MATH LEVEL IIC

50 Questions • Time-60 Minutes

1. The number of roots of the equation $9+\sqrt{x-3}=x$, is
(A) 0
(B) 1
(C) 2
(D) 3
(E) ∞
2. The operation \square is defined as $a \square b=a^{b}-b^{a}$. What is the approximate value of $\left(\frac{1}{2}\right)^{3} \square(3)^{\frac{1}{2}}$?
(A) 2.36
(B) 1.93
(C) .47
(D) -.75
(E) -1.04
3. If $f(x)=3 x^{2}-5 x-4$ then $f(-2 x)$ is equal to
(A) $2 f(-x)$
(B) $-f(x)$
(C) $4 f(x)$
(D) $-4 f(x)$
(E) none of these
4. If $P=K e^{-x t}$, then x equals
(A) $\frac{\log K}{t \log e \log P}$
(B) $\frac{P}{K e^{t}}$
(C) $\frac{P e^{t}}{K}$
(D) $\frac{\log K-\log P}{t \log e}$
(E) none of these
5. The vertices of a triangle are the intersections of the lines whose equations are $y=0, x=3 y$, and $3 x+y=7$. This triangle is
(A) isosceles
(B) equilateral
(C) right
(D) acute
(E) obtuse
6. The area bounded by the closed curve whose equation is $x^{2}-6 x+y^{2}+8 y=0$ is
(A) 12π
(B) 25π
(C) 36π
(D) 48π
(E) cannot be determined
7. The ratio of the diagonal of a cube to the diagonal of a face of the cube is
(A) $2: \sqrt{3}$
(B) $3: \sqrt{6}$
(C) $3: \sqrt{2}$
(D) $\sqrt{3}: 1$
(E) $\sqrt{6}: 3$
8. A regular octagon is inscribed in a circle of radius 1 . Find a side of the octagon.
(A) $\sqrt{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\sqrt{2+\sqrt{2}}$
(D) $\sqrt{2-\sqrt{2}}$
(E) none of these
9. Two circles of radii 3 inches and 6 inches have their centers 15 inches apart. Find the length in inches of the common internal tangent.
(A) $8^{\prime \prime}$
(B) $10 "$
(C) $12^{\prime \prime}$
(D) $14 "$
(E) $15^{\prime \prime}$
10. The graph of the equation $y=5 \cos 3 x$ has a period, in radians, of
(A) $\frac{2 \pi}{3}$
(B) $\frac{2 \pi}{5}$
(C) 3π
(D) 5
(E) 4
11. If $2^{x}=8^{y+1}$ and $9^{y}=3^{x-9}$ then y equals
(A) 3
(B) 6
(C) 9
(D) 12
(E) 21
12. Express in terms of an inverse function the angle formed at the intesection of the diagonals of a cube.
(A) $\sin ^{-1} 2 / 3$
(B) $\cos ^{-1} 2 / 3$
(C) $\tan ^{-1} 1 / 3$
(D) $\sin ^{-1} 1 / 3$
(E) $\cos ^{-1} 1 / 3$
13. If $y=\frac{10^{\log x}}{x^{2}}$, for $x>0$, then
(A) y varies directly with x
(B) y is independent of x
(C) y varies as the square of x
(D) $(x y)^{2}=3$
(E) y varies inversely with x
14. If $\log _{r} 6=m$ and $\log _{r} 3=n$, then $\log _{r}\left(\frac{r}{2}\right)$ is equal to
(A) $\frac{1}{2} \log _{2} r$
(B) $1-m-n$
(C) $1-\log _{r} 2$
(D) $\frac{r}{2}$
(E) $1-m+n$
15. The inequality $-x^{2}+x-10<-2 x^{2}-4$ is satisfied if
(A) $x<-3$
(B) $|x|<3$
(C) $-3<x<2$
(D) $-2<x<3$
(E) $x<-3$ or $x>2$
16. The contrapositive of the sentence $\sim p \rightarrow q$ is equivalent to
(A) $p \rightarrow \sim q$
(B) $q \rightarrow \sim p$
(C) $q \rightarrow p$
(D) $\sim p \rightarrow \sim q$
(E) $\sim q \rightarrow p$
17. A point moves so that its distance from the origin is always twice its distance from the point $(3,0)$. Its locus is
(A) a circle
(B) an ellipse
(C) a hyperbola
(D) a straight line
(E) a parabola
18. The function f is defined as $f=\left\{(x, y) \left\lvert\, y=\frac{2 x+1}{x-3}\right.\right.$ where $\left.x \neq 3\right\}$.

Find the value of K so that the inverse of f will be
$f^{-1}=\left\{(x, y) \left\lvert\, y=\frac{3 x+1}{x-K}\right.\right.$ where $\left.x \neq K\right\}$.
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
19. Find the sum of the reciprocals of the roots of the equation $x^{2}+p x+q=0$.
(A) $-\frac{p}{q}$
(B) $\frac{q}{p}$
(C) $\frac{p}{q}$
(D) $-\frac{q}{p}$
(E) $p+q$
20. A cube 4 inches on each side is painted red and cut into 641 -inch cubes. How many 1 -inch cubes are painted red on two faces only?
(A) 8
(B) 12
(C) 16
(D) 24
(E) 32
21. The set $\{x /|x-L|<K\}$ is the same for all $K>0$ and for all L, as
(A) $\{x / 0<x<L+K\}$
(B) $\{x / L-K<x<L+K\}$
(C) $\{x /|L-K|<x<|L+K|\}$
(D) $\{x /|L-x|>K\}$
(E) $\{x \mid-K<x<L\}$
22. Write $\left[\sqrt{2}\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)\right]^{2}$ in the form $a+b i$.
(A) $2+i \sqrt{3}$
(B) $\frac{3}{2}+\frac{1}{2} i$
(C) $1-i \sqrt{3}$
(D) $\frac{3}{2}-\frac{1}{2} i$
(E) $1+i \sqrt{3}$
23. What is the approximate magnitude of $8+4 i$?
(A) 4.15
(B) 8.94
(C) 12.00
(D) 18.64
(E) 32.00
24. $\tan \frac{A}{2}+\cot \frac{A}{2}$ is equivalent to
(A) $2 \sin A$
(B) $2 \sec A$
(C) $2 \cos A$
(D) $2 \csc A$
(E) $2 \tan A$
25. Find the coordinates of the center of a circle whose equation is $x^{2}+y^{2}-4 x-2 y=75$.
(A) $(4,1)$
(B) $(1,4)$
(C) $(2,1)$
(D) $(1,2)$
(E) $(3,1)$
26. From two ships due east of a lighthouse and in line with its foot, the angles of elevation of the top of the lighthouse are x and y, with $x>y$. The distance between the ships is m. The distance from the lighthouse to the nearer ship is
(A) $\frac{m \sin x \cos y}{\sin (x-y)}$
(B) $\frac{m \cos x \sin y}{\sin (x-y)}$
(C) $\frac{\cos x \sin y}{m \sin (x+y)}$
(D) $m \cot x \sin y$
(E) $m \sec x \cos y$
27. What is the probability of getting 80% or more of the questions correct on a 10 -question true-false exam merely by guessing?
(A) $\frac{1}{16}$
(B) $\frac{5}{32}$
(C) $\frac{3}{16}$
(D) $\frac{7}{32}$
(E) $\frac{7}{128}$
28. The expression $\frac{3-4 i}{5+3 i}$ is equivalent to
(A) $\frac{27-29 i}{34}$
(B) $\frac{27-29 i}{16}$
(C) $\frac{3-29 i}{34}$
(D) $\frac{1}{8}$
(E) $15-8 i$
29. Evaluate $\lim _{n \rightarrow \infty} \frac{3 n^{2}}{n^{2}+10,000 n}$.
(A) 0
(B) 1
(C) 2
(D) 3
(E) ∞
30. If $w=w_{0} e^{-k t}$, find the approximate value of t when $w=7, w_{0}=50$, and $k=3.4$.
(A) .52
(B) .54
(C) .56
(D) .58
(E) .60
31. Find the cube root of $27\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$ that, when represented graphically, lies in the second quadrant.
(A) $3\left(\cos 10^{\circ}+i \sin 10^{\circ}\right)$
(B) $3\left(\cos 170^{\circ}+i \sin 170^{\circ}\right)$
(C) $3\left(\cos 100^{\circ}+i \sin 100^{\circ}\right)$
(D) $3\left(\cos 130^{\circ}+i \sin 130^{\circ}\right)$
(E) $3\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$
32. If $y=\frac{\pi}{5}$, find the value of $2 \cos \pi \sin (\pi-y) \sin \left(\frac{3}{2} \pi+y\right)$.
(A) $\cos \frac{2}{5} \pi$
(B) $-\cos \frac{2}{5} \pi$
(C) $\sin \frac{2}{5} \pi$
(D) $-\sin \frac{2}{5} \pi$
(E) $\tan \frac{2}{5} \pi$
33. Figure 33 is a graph of which of the following?
(A) $x^{2}+y^{2}=9$
(B) $|x|=3$ and $|y|=3$
(C) $|x+y|=3$
(D) $|x|+|y|=3$
(E) $x-y=3$

Fig. 33
34. What is the degree measure of the second quadrant angle θ for which $8 \sin ^{2} \theta+6 \sin \theta=9$?
(A) 48.6°
(B) 101.6°
(C) 121.4°
(D) 131.4°
(E) 172.8°
35. Find the set of values satisfying the inequality $\left|\frac{10-x}{3}\right|<2$.
(A) $4<x<16$
(B) $-4>x>-16$
(C) $4>x>-16$
(D) $x<16$
(E) $x>4$
36. If the circle $(x-1)^{2}+(y-3)^{2}=r^{2}$ is tangent to the line $5 x+12 y=60$, the value of r is
(A) $\sqrt{10}$
(B) $\frac{19}{13}$
(C) $\frac{13}{12}$
(D) $\frac{60}{13}$
(E) $2 \sqrt{3}$
37. In a coordinate system in which the y-axis is inclined 60° to the positive x-axis, find the distance $P Q$ between the points $P(-3,7)$ and $Q(6,-5)$.
(A) $\sqrt{117}$
(B) 15
(C) $\sqrt{189}$
(D) $\sqrt{333}$
(E) $\sqrt{108}$
38. What is the remainder when $3 x^{4}-2 x^{3}+3 x^{2}-2 x+1$ is divided by $x-3$?
(A) 70
(B) 102
(C) 200
(D) 211
(E) 241
39. For what positive value(s) of K will the graph of the equation $2 x+y=K$ be tangent to the graph of the equation $x^{2}+y^{2}=45$?
(A) 5
(B) 10
(C) 15
(C) 20
(E) 25
40. What positive value(s) of x, less than 360°, will give a minimum value for $4-2 \sin x \cos x$?
(A) $\frac{\pi}{4}$ only
(B) $\frac{5 \pi}{4}$ only
(C) $\frac{\pi}{2}$ and $\frac{5 \pi}{2}$
(D) $\frac{3 \pi}{2}$
(E) $\frac{\pi}{4}$ and $\frac{5 \pi}{4}$
41. Express in radians the period of the graph of the equation $y=\frac{1}{3}\left(\cos ^{2} x-\sin ^{2} x\right)$.
(A) $\frac{\pi}{2}$
(B) π
(C) $\frac{3 \pi}{2}$
(D) 2π
(E) 3π
42. For what value of m is $4 x^{2}+8 x y+m y^{2}=9$ the equation of a pair of straight lines?
(A) 0
(B) 1
(C) $\frac{3}{2}$
(D) $\frac{9}{4}$
(E) 4
43. Two roots of the equation $4 x^{3}-p x^{2}+q x-2 p=0$ are 4 and 7 . What is the third root?
(A) $\frac{11}{27}$
(B) $\frac{11}{13}$
(C) 11
(D) $\frac{11}{15}$
(E) $-\frac{22}{27}$
44. In figure 44, what is the approximate area of parallelogram DAWN?
(A) 11.57
(B) 13.64
(C) 14.63
(D) 17.25
(E) 20.00

45. If $\log _{6.2} x=e$, what is the approximate value of x ?
(A) 142.54
(B) 173.82
(C) 227.31
(D) 386.42
(E) 492.75
46. If $x=1-e^{t}$ and $y=1+e^{-t}$, find y in terms of x.
(A) $y=x$
(B) $y=1-x$
(C) $y=\frac{x-1}{x}$
(D) $y=\frac{x}{x+1}$
(E) $y=\frac{2-x}{1-x}$
47. Find the value of $\log _{8}(\sqrt[3]{25})$.
(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) $-\frac{2}{9}$
(D) $\frac{2}{9}$
(E) $-\frac{1}{3}$
48. If two sides of a parallelogram are 6 and 8 and one diagonal is 7 , what is the length of the other diagonal?
(A) $\sqrt{123}$
(B) $\sqrt{11}$
(C) $\sqrt{131}$
(D) $\sqrt{151}$
(E) 9
49. When $5 x^{13}+3 x^{10}-K$ is divided by $x+1$, the remainder is 20 . The value of K is
(A) -22
(B) -12
(C) 8
(D) 28
(E) 14
50. What is the smallest possible value of x (in degrees) for which $\cos x-\sin x=\frac{1}{\sqrt{2}}$?
(A) 5°
(B) 12°
(C) 15°
(D) 18°
(E) 30°

STOP

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON THIS TEST ONLY. DO NOT WORK ON ANY OTHER TEST IN THIS BOOK.

PRACTICETEST I

Answer Key

Math Level IIC

1. B	11. B	21. B	31. D	41. B
2. E	12. E	22. E	32. C	42. E
3. E	13. E	23. B	33. D	43. B
4. D	14. E	24. D	34. D	44. C
5. C	15. C	25. C	35. A	45. A
6. B	16. E	26. B	36. B	46. E
7. B	17. A	27. E	37. A	47. C
8. D	18. B	28. C	38. D	48. D
9. C	19. A	29. D	39. C	49. A
10. A	20. D	30. D	40. E	50. C

SOLUTIONS

1. The correct answer is (B).

$\sqrt{x-3}$	$=x-9$ Square both sides
$x-3$	$=x^{2}-18 x+81$
$x^{2}-19 x+84$	$=0$
$(x-12)(x-7)$	$=0$
x	$=12$ and $x=7$
Check: $\sqrt{12-3}=12-9$	
$\sqrt{9}=3$	Check: $\sqrt{7-3}=7-9$
$\sqrt{4}=-2$	
does not check	
reject $x=7$	

So there is only 1 root.
2. The correct answer is (E). $\left(\frac{1}{2}\right)^{3} \square(3)^{\frac{1}{2}}$
$=\frac{1}{8} \square \sqrt{3}$
$=\left(\frac{1}{8}\right)^{\sqrt{3}}-(\sqrt{3})^{\frac{1}{8}}$
$\approx .027277-1.07107$
≈-1.044
3. The correct answer is (E). $f(-2 x)=3(-2 x)^{2} 5(-2 x)-4$

$$
=12 x^{2}+10 x-4
$$

This is not a multiple of the original function
4. The correct answer is (D).

$$
\begin{aligned}
& \frac{P}{K}=e^{-x t} \text { or }-t x=\log _{e} \frac{P}{K} \\
& x=-\frac{1}{t}\left(\log _{e} P-\log _{e} K\right)=\frac{\log _{e} K-\log _{e} P}{t} \\
& x=\frac{\log K-\log P}{t \log e}
\end{aligned}
$$

5. The correct answer is (C). Slope of $x=3 y$ is $1 / 3$.

Slope of $y=-3 x+7$ is -3 . Hence, since slopes are negative reciprocals, the lines are \perp, and the Δ is right.

6. The correct answer is (B). $x^{2}-6 x+9+y^{2}+8 y+16=25$

$$
(x-3)^{2}+(y+4)^{2}=25
$$

Curve is circle of radius 5 .
Hence, area is 25π.
7. The correct answer is (B).

$$
\frac{D}{D^{\prime}}=\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3}{\sqrt{6}}
$$

So the ratio is $3: \sqrt{6}$

$$
\begin{aligned}
& \text { Let each side of cube }=1 \\
& \text { then diagonal of cube: } D=\sqrt{1^{2}+1^{2}+1^{2}} \\
& =\sqrt{3} \\
& \text { diagonal of face: } D^{\prime}=\sqrt{1^{2}+1^{2}}=\sqrt{2}
\end{aligned}
$$

8. The correct answer is (D). Using the law of cosines:

9. The correct answer is (C).

Extend $\overline{O T} 3^{\prime \prime}$ to T^{\prime} and draw $\overline{O^{\prime} T^{\prime}}$.
Then in right $\triangle O T^{\prime} O^{\prime}, O O^{\prime}=15^{\prime \prime}$
and $O T^{\prime}=9^{\prime \prime}$ so that $O^{\prime} T^{\prime}=12^{\prime \prime}$.
10. The correct answer is (A). The cosine function $y=\cos x$ has a period of 2π radians.

Hence $y=5 \cos 3 x$ has a period of $\frac{2 \pi}{3}$ radians.
11. The correct answer is (B). $2 x=2^{3(y+1)}$

$$
\begin{aligned}
3^{2 y} & =3^{x-9} \\
2 y & =x-9 \\
2 y & =3 y+3-9 \\
y & =6
\end{aligned}
$$

12. The correct answer is (E).

Let each edge $=1$
$P Q R S$ is a rectangle

$$
\begin{aligned}
P R & =S Q=\sqrt{3} \\
P O & =S O=\frac{\sqrt{3}}{2} \\
\text { then } 1^{2} & =\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-2 \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} \cos \theta \\
\frac{3}{2} \cos \theta & =1 / 2 \\
\cos \theta & =1 / 3 \\
\theta & =\cos ^{-1}\left(\frac{1}{3}\right)
\end{aligned}
$$

13. The correct answer is (E).

$$
\begin{aligned}
x^{2} y & =10^{\log x} \\
\log x^{2} y & =\log x \\
x^{2} y & =x \\
x y & =1 \\
y & =\frac{1}{x}
\end{aligned}
$$

y varies inversely with x.
14. The correct answer is (E). $\log _{r}\left(\frac{r}{2}\right)=\log _{r} r-\log _{r} 2=1-\log _{r} 2$

$$
\begin{aligned}
\log _{r} 2 & =\log _{r}\left(\frac{6}{3}\right)=\log _{r} 6-\log _{r} 3=m-n \\
\log _{r}\left(\frac{r}{2}\right) & =1-(m-n)=1-m+n
\end{aligned}
$$

15. The correct answer is (C).
```
\(x^{2}+x-6<0\)
\((x+3)(x-2)<0\)
Either \((x+3)>0\) and \((x-2)<0\)
or \((x+3)<0\) and \((x-2)>0\)
Either \(x>-3\) and \(x<2 \Rightarrow-3<x<2\)
or \(x<-3\) and \(x>2 \Rightarrow\) Impossible
Therefore, \(-3<x<2\).
```

16. The correct answer is (E). The contrapositive is the converse of the inverse. Thus, form the converse and negate the hypothesis and conclusion. Hence $\sim q \rightarrow p$.
17. The correct answer is (A).

$$
\begin{aligned}
& \sqrt{x^{2}+y^{2}}=2 \sqrt{(x-3)^{2}+y^{2}} \\
& x^{2}+y^{2}=4\left(x^{2}-6 x+9+y^{2}\right) \\
& 3 x^{2}-24 x+36+3 y^{2}=0 \\
& x^{2}-8 x+y^{2}=-12 \\
& \text { Hence, a circle. }
\end{aligned}
$$

18. The correct answer is (B). Solve for x in terms of y :
$x y-3 y=2 x+1$
$x y-2 x=3 y+1$

$$
x=\frac{3 y+1}{x-2}
$$

Now interchange x and y.
$y=\frac{3 x+1}{x-2}$
Hence $K=2$.
19. The correct answer is (A). Let the roots be r and s.

Then $r+s=-p$ and $r s=q$.
$\frac{1}{r}+\frac{1}{s}=\frac{r+s}{r s}=-\frac{p}{q}$
20. The correct answer is (D). A 1-inch cube will be painted on two sides only if it lies on one edge of the 4 -inch cube but does not touch a vertex of the original cube. On each edge there are two such cubes. Since a cube has 12 edges, there are 24 such cubes.
21. The correct answer is (B). If $x>L$, then $|x-L|<K$ means $x-L<K$ or $x<L+K$

If $x<L$, then $|x-L|<K$ means $L-x<K$
or $-x<K-L$ or $x>L-K$
so that $L-K<x<L+K$
22. The correct answer is (\mathbf{E}). By De Moivre's Theorem,
$\left[\sqrt{2}\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)\right]^{2}=2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$

$$
\begin{aligned}
& =2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& =1+i \sqrt{3}
\end{aligned}
$$

23. The correct answer is $\mathbf{(B)}$. The magnitude $=|8+4 i|=\sqrt{8^{2}+4^{2}}$

$$
\begin{aligned}
& =\sqrt{80} \\
& \approx 8.94
\end{aligned}
$$

24. The correct answer is (D).

$$
\begin{aligned}
\tan \frac{A}{2}+\cot \frac{A}{2} & =\tan \frac{A}{2}+\frac{1}{\tan \frac{A}{2}} \\
& =\frac{\tan ^{2} \frac{A}{2}+1}{\tan \frac{A}{2}}=\frac{\sec ^{2} \frac{A}{2}}{\tan \frac{A}{2}} \\
& =\frac{1}{\cos ^{2} \frac{A}{2}} \cdot \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} \\
& =\frac{1}{\sin \frac{A}{2} \cos \frac{A}{2}} \\
& =\frac{1}{\frac{1}{2} \sin A}=\frac{2}{\sin A} \\
& =2 \csc A
\end{aligned}
$$

25. The correct answer is (C).
$x^{2}-4 x+4+y^{2}-2 y+1=75+4+1$
$(x-2)^{2}+(y-1)^{2}=80$
Center is at $(2,1)$.
26. The correct answer is (B). In $\triangle P Q R$, by law of sines,

$$
\begin{aligned}
\frac{m}{\sin (x-y)} & =\frac{\frac{L}{\cos x}}{\sin y} \\
m \sin y & =\frac{L \sin (x-y)}{\cos x} \\
\frac{m \cos x \sin y}{\sin (x-y)} & =L
\end{aligned}
$$

27. The correct answer is (E). May get 8 or 9 or 10 correct

Probability of getting 10 right $=\left(\frac{1}{2}\right)^{10}$
Probability of getting 9 right $=$
${ }_{10} \mathrm{C}_{1}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)=$
$10\left(\frac{1}{2}\right)^{10}$
Probability of getting 8 right $=$

$$
\begin{array}{r}
{ }_{10} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{2}=\frac{10}{1} \cdot \frac{9}{2}\left(\frac{1}{2}\right)^{10}= \\
45\left(\frac{1}{2}\right)^{10}
\end{array}
$$

Probability of getting 8 or 9 or 10 right $=$
$\left(\frac{1}{2}\right)^{10}+10\left(\frac{1}{2}\right)^{10}+45\left(\frac{1}{2}\right)^{10}=$
$\left(\frac{1}{2}\right)^{10} \cdot 56=\frac{7}{2^{7}}=\frac{7}{128}$
28. The correct answer is (C).

$$
\frac{3-4 i}{5+3 i} \cdot \frac{5-3 i}{5-3 i}=\frac{15-29 i-12}{25+9}=\frac{3-29 i}{34}
$$

29. The correct answer is (D). Divide numerator and denominator by n^{2}.

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}}{n^{2}+10,000 n}=\lim _{n \rightarrow \infty} \frac{3}{1+\frac{10,000}{n}}=\frac{3}{1}=3
$$

30. The correct answer is (D).

$$
\begin{aligned}
& w=w_{0} e^{-k t} \\
& 7=50 e^{-3.4 t} \\
& \frac{7}{50}=e^{-3.4 t} \\
& \ln \left(\frac{7}{50}\right)=\ln \left(e^{-3.4 t}\right)=-3.4 t \\
& \Downarrow \\
&-3.4 t=\ln \left(\frac{7}{50}\right) \\
& t=\frac{\ln \left(\frac{7}{50}\right)}{-3.4} \approx \frac{-1.966}{-3.4} \approx .578
\end{aligned}
$$

31. The correct answer is (D).
$27\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)=27\left(\cos 390^{\circ}+i \sin 390^{\circ}\right)$
$\left[27\left(\cos 390^{\circ}+i \sin 390^{\circ}\right)\right]^{1 / 3}=3\left(\cos 130^{\circ}+i \sin 130^{\circ}\right)$
32. The correct answer is (C).

$$
\begin{aligned}
\cos \pi & =-1, \sin (\pi-y)=\sin y \\
\sin \left(\frac{3}{2} \pi+y\right) & =\sin \frac{3}{2} \pi \cos y+\cos \frac{3}{2} \pi \sin y=(-1) \cos y+0=-\cos y \\
& \text { So, } 2 \cos \pi \sin (\pi-y) \sin \left(\frac{3}{2} \pi+y\right) \\
& =2(-1) \sin y(-\cos y) \\
& =2 \sin y \cos y=\sin 2 y \\
& =\sin \frac{2 \pi}{5}
\end{aligned}
$$

33. The correct answer is (D).
(A) Graphs as a circle.
(B) Graphs as vertical and horizontal lines.
(C) $|x+y|=3$ consists of 2 lines, $x+y=3$ and $-x-y=3$.
(E) Graphs as one straight line.
(D) Graphs as $x+y=3, x-y=3,-x+y=3$, and $x+y=3$, which are the four lines in the graph.
34. The correct answer is (D).

$$
\left.\begin{gathered}
8 \sin ^{2} \theta+6 \sin \theta-9=0 \\
(4 \sin \theta-3)(2 \sin \theta+3)=0 \\
\sin \theta=\frac{3}{4}
\end{gathered} \right\rvert\, \begin{aligned}
& \sin \theta=-\frac{3}{2} \\
& \theta=\sin ^{-1} \frac{3}{4}
\end{aligned} \begin{aligned}
& \text { reject, not second } \\
& \text { quadrant }
\end{aligned}
$$

The second quadrant
solution is $180^{\circ}-48.6^{\circ}$
$=131.4^{\circ}$
35. The correct answer is (A).

$$
\begin{aligned}
& \left|\frac{10-x}{3}\right|<2 \\
& |10-x|<6 \\
& -6<10-x<6 \\
& -16<-x<-4 \\
& \text { or } 4<x<16
\end{aligned}
$$

36. The correct answer is (B). The center of the circle is $(1,3)$. The value of r is then equal to the distance from the center to the given line. Thus

$$
\begin{aligned}
& r=\left|\frac{5 x_{1}+12 y_{1}-60}{\sqrt{5^{2}+12^{2}}}\right|=\left|\frac{5(1)+12(3)-60}{13}\right| \\
& r=\frac{19}{13}
\end{aligned}
$$

37. The correct answer is (A).

From the figure, $P Q$ is the side of $\triangle P Q R$
opposite $\angle R$ which measures 60°.

$$
\begin{aligned}
P R & =9 \text { and } Q R=12 . \text { Thus } \\
P Q^{2} & =9^{2}+12^{2}-2 \cdot 9 \cdot 12 \cos 60^{\circ} \\
& =225-108 \\
& =117 \\
P Q & =\sqrt{117}
\end{aligned}
$$

38. The correct answer is (D).

$$
\begin{aligned}
& 3(3)^{4}-2(3)^{3}+3(3)^{2}-2(3)+1=211 \\
& \begin{array}{llllll}
3 & -2 & 3 & -2 & 1 & \lfloor 3
\end{array} \\
& \begin{array}{ccccc}
& 9 & 21 & 72 & 210 \\
\hline 3 & 7 & 24 & 70 & \underline{211} \\
\hline
\end{array} \\
& \text { or } \\
& 3 x^{3}+7 x^{2}+24 x+70+\frac{211}{x-3} \\
& x - 3 \longdiv { 3 x ^ { 4 } - 2 x ^ { 3 } + 3 x ^ { 2 } - 2 x + 1 }
\end{aligned}
$$

39. The correct answer is (C).

$$
\begin{aligned}
y & =K-2 x \\
x^{2}+(K-2 x)^{2} & =45 \\
x^{2}+4 x^{2}-4 K x+\left(K^{2}-45\right) & =0 \\
5 x^{2}-4 K x+\left(K^{2}-45\right) & =0
\end{aligned}
$$

If the line is tangent, the quadratic equation will have two equal roots. Thus the discriminant $=0$.

$$
\begin{aligned}
16 K^{2}-20\left(K^{2}-45\right) & =0 \\
4 K^{2} & =900 \\
2 K & =30 \\
K & =15
\end{aligned}
$$

40. The correct answer is (E). If $y=4-2 \sin x \cos x=4-\sin 2 x, y$ will be a minimum when $\sin 2 x$ is at a maximum; that is, at

$$
\begin{aligned}
2 x & =\frac{\pi}{2} \text { and } \frac{5 \pi}{2} \\
\text { or } x & =\frac{\pi}{4} \text { and } \frac{5 \pi}{4}
\end{aligned}
$$

41. The correct answer is (B).
$y=\frac{1}{3}\left(\cos ^{2} x-\sin ^{2} x\right)=\frac{1}{3} \cos 2 x$
Since $\cos x$ has a period of 2π radians, $\cos 2 x$ has a period of π.
42. The correct answer is (E). In order to make the left member a perfect square, m must equal 4 . Then

$$
\begin{aligned}
& 4 x^{2}+8 x y+4 y^{2}=4(x+y)^{2}=9 \\
& \text { or } \quad(x+y)^{2}=\frac{9}{4} \\
& \text { and } \quad x+y= \pm \frac{3}{2}
\end{aligned}
$$

which graphs as a pair of straight lines.
Thus $m=4$.
43. The correct answer is (B). Let r be the root, then

$$
\begin{aligned}
4+7+r & =\frac{p}{4}=11+r \\
4 \cdot 7 \cdot r & =\frac{p}{2}=28 r \text { or } \frac{p}{4}=14 r
\end{aligned}
$$

Thus $14 r=11+r$ and $r=\frac{11}{13}$
44. The correct answer is (C).

$$
\begin{aligned}
A & =a b \sin C \\
& =(A D)(D N) \sin D \\
& =(4)(5) \sin 47^{\circ} \\
& =20 \sin 47^{\circ} \\
& \approx 14.627
\end{aligned}
$$

45. The correct answer is (A).

$$
\begin{gathered}
\log _{6.2} x=e \\
\Downarrow \\
x=(6.2)^{e} \\
\text { recall } e=2.71828 \ldots \\
x \\
\approx 142.54
\end{gathered}
$$

46. The correct answer is (E).

$$
y=1+\frac{1}{e^{t}} \text { and } e^{t}=1-x
$$

$$
y=1+\frac{1}{1-x}=\frac{1-x+1}{1-x}=\frac{2-x}{1-x}
$$

47. The correct answer is (C).

$$
\begin{aligned}
\text { Let } \begin{aligned}
x & =\log _{8} \sqrt[3]{25} \\
\text { Then } 8^{x} & =\sqrt[3]{25}=\frac{1}{4^{1 / 3}} \\
\text { Or } \quad 2^{3 x} & =2^{-2 / 3} \\
3 x & =-\frac{2}{3} \\
x & =-\frac{2}{9}
\end{aligned}
\end{aligned}
$$

48. The correct answer is (D).

$$
\begin{aligned}
7^{2} & =6^{2}+8^{2}-2 \cdot 6 \cdot 8 \cos \theta \\
49 & =100-96 \cos \theta \\
\cos \theta & =\frac{51}{96} \\
x^{2} & =6^{2}+8^{2}-2 \cdot 6 \cdot 8 \cos (180-\theta) \\
x^{2} & =100-96 \cos (180-\theta) \\
x^{2} & =100+96 \cos \theta=100+96\left(\frac{51}{96}\right) \\
x & =\sqrt{151}
\end{aligned}
$$

49. The correct answer is (A).

$$
\begin{aligned}
P(x) & =5 x^{13}+3 x^{10}-K \\
P(-1) & =5(-1)^{13}+3(-1)^{10}-K=20 \\
-5+3-K & =20 \\
K & =-22
\end{aligned}
$$

50. The correct answer is (C).

Square both sides of the equation.

$$
\begin{aligned}
&(\cos x-\sin x)^{2}=\frac{1}{2} \\
& \cos ^{2} x+\sin ^{2} x-2 \sin x \cos x=\frac{1}{2} \\
& 1-\frac{1}{2}=\sin 2 x=\frac{1}{2} \\
& 2 x=30^{\circ} \\
& x=15^{\circ}
\end{aligned}
$$

