Tarea num. 3

11 mar, 2013

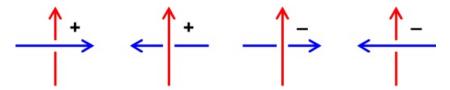
- 1. Sean M, N dos variedades diferenciales compactas conexas y orientadas de la misma dimensión n y $f: M \to N$ una función suave. Demuestra que las siguientes definiciones del grado ("degree") de f son equivalentes:
 - a) Sea $\omega \in \Omega^n(N)$ un generador de $H^n_{DR}(N)$ (i.e. $\int_N \omega = 1$). Entonces $\operatorname{grado}(f) = \int_M f^*(\omega)$.
 - b) Sean c_M, c_N generadores orientados de $H_n(M), H_n(N)$ (resp.). Entonces $f_*[c_M] = grado(f)[c_N]$
 - Nota: H_n aquí denota tu homología favorita; por ejemplo, la de cadenas cúbicas singulares (módulo degeneradas). Un generador orientado es una n-cadena cerrada c tal que $\int_c \omega = 1$, donde ω es una n-forma generadora de H_{DR}^n .
 - c) Para cada $x \in M$ tal que df(x) es invertible se define $\sigma(x) \in \{\pm 1\}$ según si df(x) preserva o invierte la orientación. Luego para un valor regular $y \in N$ (df(x) es invertible para todo $x \in f^{-1}(y)$) se define $grado(f) = \sum_{x \in f^{-1}(y)} \sigma(x)$. (En particular, el grado no depende del valor regular escogido y es entero).
- 2. Calcula los grados de las siguientes funciones (la orientación en cada caso es la "obvia"):
 - a) $f: \mathbb{C}P^1 \to \mathbb{C}P^1$ dada, en coordenada inhomogenea $z \in \mathbb{C}$, por (i) z^n , $n \in \mathbb{Z}$ (ii) \bar{z}^n (iii) $\frac{az+b}{cz+d}$, $ad-bc \neq 0$ (iv) una función racional (cociente de dos polinomios p(z)/q(z)).
 - b) La composición $S^2 \to S^3 \to S^2$, donde $i: S^2 \to S^3$ es la inclusión $(x,y,z) \mapsto (x,y,z,0)$, y $\pi: S^3 \to S^2$ es la fibración de Hopf: se piensa en S^3 como la esfera unitaria en \mathbb{C}^2 y S^2 como $\mathbb{C}P^1$ (el espacio de las lineas complejas en \mathbb{C}^2 que pasan por el origen); luego π asocia con un punto en S^3 la linea compleja que genera.
 - c) El mapeo de Gauss $G: M \to S^2$, donde $M \subset \mathbb{R}^3$ es una superficie compacta conexa co-orientada y G(x) es el vector unitario en x perpendicular a la superficie y en la dirección positiva.
 - (Respuesta: $\chi/2$, donde $\chi=2-2g$ es la característica de Euler. Esto es esencialemente el Teorema de Gauss Bonnet).
 - d) $\sigma: S^1 \times S^1 \to S^2$ dado por $\sigma(x_1, x_2) = f(x_1) g(x_2)/\|f(x_1) g(x_2)\|$ donde $f, g: S^1 \to \mathbb{R}^3$ es un enlace, i.e. dos funciones suaves tal que $f(x_1) \neq g(x_2)$ para todo $x_1, x_2 \in S^1$.

(Respuesta: el linking number de f, g.)

e) $M=\{(x:y:z)\in \mathbb{C}P^2|y^2z=x(x^2-z^2)\}$ y $p:M\to \mathbb{C}P^1$ dada por $(x:y:z)\mapsto (x:y).$

(Nota: en coordenadas inghomogeneas X=x/z, Y=y/z, p es la proyección al eje de X de la curva en el plano dada por $Y^2=X(X^2-1)$.)

3. Demuestra que el Linking number $L(f_1, f_2)$ (ver inciso (d) del problema anterior) se puede calcular de la siguente manera: se deforma las curvas f_1, f_2 tal que las intersecciones de sus proyecciones al plano x, y son transversales, así que hay un número finito de ellas. Luego $L(f_1, f_2) = n_+ - n_-$, donde n_+, n_- son los números de intersecciones potivas y negativas según el siguiente diagrama



- 4. Sea $S^3 \subset \mathbb{C}^2$ la esfera unitaria y $p,q \in S^3$ dos puntos en fibras distintas de la fibración de Hopf $(\pi(p) \neq \pi(q))$. Sean $f,g: S^1 \to S^3$ dados por $f(\theta) = e^{i\theta}p$, $g(\theta) = e^{i\theta}q$. Calcula el linking number de f,g. (Nota: el linking number en S^3 se define mediante una proyeccion stereografica a \mathbb{R}^3 por un punto que no está en la unión de las imagenes de f,g.)
- 5. (El invariante de Hopf). Para cada función suave $f: S^3 \to S^2$ se define el número H(f) de la manera siguiente. Sea ω una 2-forma en S^2 tal que $\int_{S^2} \omega = 1$. Entonces se define

$$H(f) := \int_{S^3} f^* \omega \wedge \alpha,$$

donde $\alpha \in \Omega^1(S^3)$ satisface $f^*\omega = d\alpha$.

- a) H(f) está bien definida, i.e. tal α existe y la definición no depende de la elección de ω y α .
- $b) \ H(f) \in \mathbb{Z}.$
- c) Calcula a $H(\pi)$ para la fibración de Hopf $\pi:S^3\to S^2$ del problema 2b.
- d) H(f) es invariante bajo homotopía.
- e) (reto) H(f) define un isomorfismo $\pi_3(S^2) \to \mathbb{Z}$.