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PART I 

NON-DEGENERATE SMOOTH FUNCTIONS ON A MANIFOLD. 

$ 1 .  Introduction. 

I n  this sec t ion  we w i l l  i l l u s t r a t e  by a spec i f i c  example the s i t u -  

a t ion  that we w i l l  inves t iga te  l a t e r  for a rb i t r a ry  manifolds. 

s ider  a torus M, tangent t o  the plane V, as indicated i n  D i a g r a m  1 .  

Let us con- 

D i a g r a m  1 .  

Let f :  M+R (R always denotes the r e a l  numbers) be the  height 
above the V plane, and l e t  I@‘ be the s e t  of a l l  points  x E M such that 

f ( x )  5 a. Then the following things are  true:  

( 1 )  If a < 0 < f ( p ) ,  then M& i s  vacuous. 

( 2 )  If f ( P )  < a < f ( q ) ,  then I@’ i s  homeomorphic t o  a 2-cell. 

( 3 )  I f  f ( q )  < a < f ( r ) ,  then @ i s  homeomorphic t o  a cylinder: w 
( 4 )  If f ( r )  < a < f ( s ) ,  then M” is homeomorphic t o  a compact 

manifold of genus one having 6. c i r c l e  as boundary: 
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The boundary 

3 

i.k = ( x  E Rk : ((x((  = 11 

will be denoted by Sk-' . If g: Sk-' -+ Y i s  a continuous map then 
( 5 )  I f  f ( s )  < a, then M& is the f u l l  torus .  

I n  order t o  describe the change i n  Mi" a s  a passes through one 

of the points  f ( p ) , f ( q ) , f ( r ) , f ( s )  

type ra ther  than homeomorphism type. 
For as f a r  as 

homotopy type i s  concerned, the space Ma, f ( p )  < a < f ( q ) ,  cannot be d is-  

tinguished from a 0- cel l :  

it is convenient to consider homotopy 

I n  terms of homotopy types: 

( 1 )  + ( 2 )  i s  the operation of a t taching a 0- cel l .  

- G 3  
Here "J" means "is of the same homotopy type as." 

( 2 )  + ( 3 )  is the operation of a t taching a 1- cel l :  

n 

W 
( 3 )  -+ ( 4 )  i s  again the operation of a t taching a 1- cel l :  

0 
( 4 )  + ( 5 )  

The prec ise  de f in i t i on  of "attaching a k-cell" can be given as 

is the operation of a t taching a 2-cell .  

follows. Le t  Y be any topological  space, and l e t  

ek = (x c~~ : \(XI\ < 1 )  

be the k- cel l  consist ing of a l l  vectors i n  Euclidean k-space w i t h  length 5 1 

Y vg ek 

( y  with a k-cell  attached by g) i s  obtained by f i r s t  taking the topologi- 

ca1 sum ( =  d i s j o i n t  union) of Y and ek, and then ident i fy ing each 

x E Sk-' with g(x) E Y. To take care of the case k = o l e t  eo be a 

point  and l e t  

j u s t  the union of Y and a d i s j o i n t  point .  

6' = S-l be vacuous, so tha t  Y with a 0-ce l l  attached i s  

A s  one might expect, the points p,q,r  and s a t  which the homo- 

topy type of M& changes, have a simple characterization i n  terms of f .  

They a re  the c r i t i c a l  poin ts  of the function. 

system (x,y) near these points,  then the der iva t ives  

both zero. A t  p we can choose (x,y) so  that f = x + y , a t  s so 

that f = constant -x - y , and a t  q and r so that f = constant + 

x - Y . Note that the number of minus signs In  the expression for f a t  

each point  is the dimension of the  c e l l  we must a t t a c h  t o  go from 

Mb, where a < f ( p o i n t )  < b. O u r  f i r s t  theorems w i l l  generalize these 

f a c t s  f o r  any d i f f e ren t i ab le  function on a manifold. 

If we choose any coordinate 
and ar a re  

2 2  

2 2  

2 2  

Ma t o  
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$2. Definit ions and Lemmas. 

The words "smooth" and "di f ferent iable"  w i l l  be used interchange- 

ably t o  mean d i f f e ren t i ab le  of c l a s s  
manifold M a t  a point  p w i l l  be denoted by T%. I f  g: M +  N i s  a 

smooth map with g(p) = q, 

w i l l  be denoted by 

Cm. The tangent space of a smooth 

then the induced l i nea r  map of tangcnt spaces 

&: TMp -+ TNq. 

Now l e t  f be a smooth r e a l  valued function on a manifold M. A 

point  p E M i s  ca l led  a c r i t i c a l  point  of f i f  the  induced map 

f,: T% +TRAP) 

(x ,..., xn) i n  a neighborhood U of p this means that 

i s  zero. I f  we choose a loca l  coordinate system 

1 

since f has p a s  a c r i t i c a l  poin t .  

Therefore f,, i s  symmetric. It i s  now c l ea r ly  well-defined since 

$ (w"(f)) = v(w"(f)) i s  independent of the extension v" of v, while 

Gn(?(f)) i s  independent of w". 
P 

I 

I f  (x' , . . . ,xn) i s  a loca l  coordinate system and v = C ai -1 a 
ax: P' 

b j  now denotes a con- w = c b j  -$Ip we can take ij = c b .  - a where 
J axj  

s t an t  function.  Then 

so  the matrix ( i- a2f (p ) )  represents the b i l i n e a r  function f,, with 
ax axJ 

respect  t o  the bas i s  a 

The r e a l  number f ( p )  i s  called a c r i t i c a l  value of f .  

We denote by M" the s e t  of a l l  points  x E M such that f ( x )  a .  

I f  a i s  not a c r i t i c a l  value of f then it follows from the impl ic i t  

function theorem t h a t  I@ i s  a smooth manifold-with-boundary. The boundary 

f - ' ( a )  i s  a smocth submanifold of M .  

A c r i t i c a l  point  p i s  called non-degenerate i f  and only i f  the 

matrix 

i s  non-singular. 

depend on the coordinate system. 

i n t r i n s i c  de f in i t i on .  

I t  can be checked d i r ec t ly  that non-degeneracy does not 

T h i s  w i l l  follow a l s o  from the following 

I f  p i s  a c r i t i c a l  point  of f we define a symmetric b i l i nea r  
functional  f,, on TMp, ca l led  the Hessian of f a t  p .  I f  v,W E T Mp 

then v and w have extensions v" and $ t o  vector f i e l d s .  We l e t *  

f,,(v,w) = v" (w"(f)) ,  whe1.e v" P i s ,  of course, j u s t  v .  We must show that 

this i s  symmetric and well-defined. 
P 

I t  i s  symmetric because 

v" P ( i j ( f ) )  - $p(v ( f ) )  = [v",?lp(f) = 0 

where [?,%I i s  the Poisson bracket of v" and %, and where [?,$lp(f) = 0 

We can now t a l k  about the index and the n u l l i t y  of the b i l i nea r  

functional  f,, on TMp. The of a b i l i nea r  functional  H, on a vec- 

t o r  space V,  i s  defined t o  be the maximal dimension of a subspace of V 

on which H 

space, i . e . ,  the subspace cons is t ing  of a l l  v E V such that H(v,w) = o 

for  every w E V. The point  p i s  obviously a non-degenerate c r i t i c a l  

Point of f if and only if f,, 

index of f,, on T% w i l l  be refer red  t o  simply a s  the index of f p. 

The Lemma of Morse shows t h a t  the behaviour of f a t  p can be completely 

described by this index. 

following: 

i s  negative de f in i t e ;  the n u l l i t y  i s  the dimension of the s- 

on T% has n u l l i t y  equal t o  0 .  The 

Before s t a t i n g  this lemma we f i r s t  prove the 

LEMMA 2 . 1 .  Let f be a Cm function i n  a convex neigh- 
borhood V of 0 i n  Rn, with f ( 0 )  = 0 .  Then 

f ( X l , .  . . ,xn) = 

i = l  
for some su i t ab le  Cm functions gi defined i n  V, with 

PROOF : 

~ 

* Here G ( f )  denotes the d i r ec t iona l  der iva t ive  of f i n  the d i rec t ion  3. 
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m m  2 . 2  (Lemma of Morse). L e t  p be a non-degenerate 
c r i t i c a l  point  fo r  f. Then there  i s  a loca l  coordinate 
system (7  ,.. . ,yn) i n  a neighborhood U of p with 
y (p)  = 0 for a l l  i and such that the iden t i ty  

1 

i 

1 2  
f = f ( p )  - ( y  ) - . . .  - (yX)* + (yX+l)* + . . .  + ( y 9 2  

holds throughout U ,  where X i s  the index of f a t  p .  

PROOF: We f i rs t  show that i f  there  i s  any such expression fo r  f ,  

then x must be the index of f a t  p.  For any coordinate system 

( z ’ ,  ..., z n ) ,  if 

f ( q )  = f ( p )  - ( z ’ ( q ) ) 2 -  ... - ( z h ( q ) ) 2  + (zX+’(q))2  + . .. + ( z” (q ) I2  

then we have 
( - 2  i f  i = j l h ,  

2 i f  i = j > h , 
0 otherwise , aZi  azJ  

which shows that the matrix representing f,, with respect  t o  the bas i s  

2*. I 
\ . I  

\ ‘1. 
Therefore there  i s  a subspace of T% of dimension X where f,, i s  nega- 

t i v e  de f in i t e ,  and a subspace V of dimension n-A where f,, i s  pos i t ive  

de f in i t e .  If there  were a subspace of T% of dimension greater  than X 

on which f,, were negative de f in i t e  then this subspace would i n t e r s e c t  V,  

which i s  c l ea r ly  impossible. Therefore X i s  the index of f,,. 
1 

We now show that a sui table  coordinate system ( y  , . . . , y  n, e x i s t s .  

Obviously we can assume that p i s  the o r ig in  of Rn and that f ( p )  = f ( 0 )  = 

By 2.1 we can wri te  
n - 

for ( x l , .  . . ,xn) i n  some neighborhood of 0 .  Since 0 i s  assumed t o  be a 

c r i t i c a l  point:  af g j (o )  = -p) = 0 . 
ax 

Therefore, applying 2.1 t o  the g j  we have 

g j  (x l  , * a .  ,xn) = 
i = l ”  

hi j .  It follows that f o r  ce r t a in  smooth functions 

xixjhij (x ,  , . . . ,xn) . t f ( x l ,  ..., xn) = 

i, j = 1  

hji, hij = since we can w r i t e  Eiij = l ( h  
2 i j +  h j i ) J  

We can assume that 

i j  . Moreover the matrix (li ( 0 ) )  
i j  

and then have Kij = Eji and f = Z X X F I  

i s  equal t o  ( 1 a2f (o)) ,  and hence i s  non-singular. 
2 Z F - S  

There i s  a non-singular transformation o f  the coordinate functions 

which gives us the desired expression f o r  

borhood of 0 .  

f o r  quadratic forms. 

modern algebra,“ p. 271 .) 

f ,  i n  a perhaps smaller neigh- 

To see this we j u s t  imi ta te  the usual  diagonalization proof 

(See f o r  example, BirkhoffandMacLane, “A survey of 

The key s tep  can be described as follows. 

Suppose by induction that there e x i s t  coordinates u l ,  ..., un i n  

a neighborhood U, of 0 so  that 

f = + ( u 1 ) 2  ... 5 ( U r J 2  + 1 UiUjHij (5 , . . * 9 % )  - 
i , j I r  

throughout U , ;  where the matrices ( % j ( u l , . . . , u n ) )  a r e  symmetric. After 

a l i nea r  change i n  the last 

Let g ( u l ,  ...,%) denote the square root  of ( q r ( u l ,  ..., un) 1 .  T h i s  w i l l  

be a smooth, non-zero function of u l , .  . . ,un throughout some smaller neigh- 

borhood U, C U, 

n-r+l coordinates we may assume t h a t  Krr(o) f 0 .  

of 0 .  Now introduce new coordinates v1 ,  ..., vn by 

v i  = u i  f o r  i f r 

It follows from the inverse function theorem that v l ,  ..., vn w i l l  serve as 

coordinate functions within some su f f i c i en t ly  small neighborhood U3 of 0 .  

It is e a s i l y  ve r i f i ed  that f can be expressed as 
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thoughout u3'  his completes the induction; and proves Lemma 2 .2 .  

Non-degenerate c r i t i c a l  points  a r e  i so la ted .  COROlL&3y 2 .3  

Examples of degenerate c r i t i c a l  poin ts  ( f o r  f'unctions on R and 

R2) a re  given below, together with p ic tures  of t h e i r  graphs. 

7 

9 

(d) 

a r e  degenerate, i s  the x axis ,  which i s  a sub-manifold of R2. 

f (x ,y )  = x2. The set of c r i t i c a l  poin ts ,  a l l  of which 

(a)  f ( x )  = x3. The o r ig in  (b)  F(x) = e-'ix2sin2(1/X) . 
i s  a degenerate c r i t i c a l  point .  The o r ig in  i s  a degenerate, and 

non-isolated, c r i t i c a l  point .  

( e )  

degenerate, cons is ts  of the Union of the x and g axis ,  which i s  

not  even a sub-manifold of R2. 

W e  conclude this sec t ion  with a discussion of 1-parameter groups of 

f(x,y) = x2y2. The set of c r i t i c a l  points ,  a l l  of which are 

diffecpnorphisms. 

e n t i a l  Oeometrg," f o r  more d e t a i l s .  
The reader i s  refer red  t o  K. Nomizu,"Lie Groups and Differ-  

A 1-parameter group of diffeomorphisms of a manifold M i s  a C" 

f ( x , y )  = x3 - 3xy2 = R e a l  p a r t  of 

(0 .0 )  

(x + i ~ ) ~ .  

i s  a degenerate c r i t i c a l  poin t  (a  "monkey saddle"). 
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such that 

1 )  for each t E R the map cpt :  M -+ M defined by 

cpt(q) = cp(t,q) i s  a diffeomorphism of M onto i t s e l f ,  

2)  for a l l  t , s  E R we have cpt+s  = cpt 0 cp, 

Given a 1-parameter p o u p  cp of diffeomorphisms of M we define 

a vector f i e l d  X on M as follows. For every smooth r e a l  valued function 

f l e t  

T h i s  vector f i e l d  X i s  said t o  generate the group cp,  

LEMMA 2 . 4 .  A smooth vector f i e l d  on M which vanishes 
outside of a compact s e t  
parameter group of diffeomorphisms of 

K C M generates a unique 1 -  

M. 

PROOF: Given any smooth curve 

t - c ( t )  E M 

i t  i s  convenient t o  define the ve loci ty  vector 

dc 
aT TMc(t) 

dc lim f ( t + h )  - f ( t )  
by the iden t i ty  =( f )  = h-r -h. . (Compare $ 8 . )  Now l e t  cp 

be a 1-parameter group of diffeomorphisms, generated by the vector f i e l d  

Then f o r  each fixed q the curve 

X. 

t + cpt(4) 

s a t i s f i e s  the d i f f e r e n t i a l  equation 
dcpt(q) 
-a€--- = Xcpt(q) ' 

with i n i t i a l  condit ion cpo(q) = q. T h i s  i s  t r u e  since 

where p = cpt(q). 

loca l ly ,  has a unique solu t ion  which depends smoothly on the i n i t i a l  condi- 

t ion .  (Compare Graves, "The Theory of Functions of Real Var iables i 'p .  166. 

Note that, i n  terms of l o c a l  coordinates 

t i o n  takes on the more fami l iar  form: & = xi(,' ,..., un), i = 1 ,..., n. )  

But it i s  well  known that such a d i f f e r e n t i a l  equation, 

u' , . . . ,un, the d i f f e r e n t i a l  equa- 

i 

Thus for each point  of M there e x i s t s  a neighborhood U and a 

number E > 0 so that the d i f f e r e n t i a l  equation 

dTt(9) -=x rpo(q) = q cpt(9) ' 
has a unique smooth solu t ion  for 

The compact s e t  

q 6 U, It1 < E .  

K can be covered by a f i n i t e  number of such 

neighborhoods U. Let E~ > 0 denote the smallest of the corresponding 

numbers E .  Se t t ing  cpt(q) = q for q 6 K, i t  follows that this differen-  

t ia l  equation has a unique solu t ion  q t (q)  fo r  It( < E~ and for a l l  

q E M. T h i s  so lu t ion  i s  smooth as a function of both var iables .  

more, i t  i s  c l ea r  t h a t  

Therefore each such m t  i s  a diffeomorphism. 

Further- 

cpt+s = cpt 0 cp, providing that l t ( ,1s) , l t+s1 < c O .  

It only remains t o  define cpt for It1 2 E ~ .  Any number t can 

be expressed as a mult iple of ~ ~ / 2  plus  a remainder r with 

If t = k ( E 0 / 2 )  + r with k 2 0 ,  s e t  
Irl < c 0 / 2  . 

't = 'E0/2 O 'E0/2 * . *  ' 'E0/2 ' 'r 

i s  i t e r a t e d  k times. I f  k < 0 i t  i s  
' p E 0 / 2  

where the transformation 

i t e r a t e d  -k times. Thus cpt only necessary t o  replace cp 

i s  defined for a l l  values of t. It i s  not d i f f i c u l t  t o  ve r i fy  that qt i s  

well  defined, smooth, and s a t i s f i e s  the condition cpt+s = cpt 

completes the proof of Lemma 2.4  

E o / 2  by 'p-E0/2 

cp, , T h i s  

RFMARK: The hypothesis that X vanishes outside of a compact s e t  

cannot be omitted. For example l e t  M be the open u n i t  i n t e r v a l  

d and l e t  X be the standard vector f i e l d  on M. Then X does not 

generate any 1-parameter group of diffeomorphisms of 

( 0 , l )  C R, 

M. 
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$ 3 .  Homotopy Type i n  Terms of C r i t i c a l  Values. 

Throughout this section,  i f  f i s  a r e a l  valued function on a 

manifold M, we l e t  
M& = f - ’ ( -  m , a l  = ( p  E M : f ( p )  5 a) . 

THEOREM 3 . 1  . Let f be a smooth r e a l  valued function 
on a manifold M.  Let a < b and suppose that the  s e t  
f - l  [ a , b l ,  cons is t ing  of a l l  p E M with a L f ( p )  L b ,  
i s  compact, and contains no c r i t i c a l  poin ts  of f. Then 
M& i s  diffeomorphic t o  Mb. Furthermore, i s  a de- 
formation r e t r a c t  of Mb, so t h a t  the inc lus ion  map 
Ma -+ Mb i s  a homotopy equivalence. 

The idea  of the proof is t o  push Mb down t o  M& along the orthogo- 

n a l  t r a j e c t o r i e s  of the hypersurfaces f = constant. (Compare D i a g r a m  2 . )  

\ 
I I I I I I I Y  \ 

D i a g r a m  2. 

C :  R + M i s  a curve with ve loci ty  vector $ note the iden t i ty  

< E , g r a d f > = T  dc d(foc) . 

Let p :  M + R  be a smooth function which i s  equal t o  

1 / <grad f ,  grad f> throughout thecompact s e t  f - l  [ a , b ] ;  and which vanishes 

outside of a compact neighborhood of this s e t .  

defined by 
Then the  vector f i e l d  X,  

Xq = p(q) (grad f ) s  
s a t i s f i e s  the conditions of Lema 2 . 4 .  Hence X generates a 1-parameter 

group of diffeomorphisms 

v t :  M + M. 

For fixed q E M consider the function t +  f(cpt(q)) .  If Tt(q) 

l i e s  i n  the s e t  f - ’ [ a , b l ,  then 

.dt df(Vt(q)  ) = <-, dcpt(q) 
grad f> = < X ,  grad f >  = + 1 .  

Thus the correspondence 

t -* f ( v t ( 9 ) )  

i s  l i nea r  with der iva t ive  + 1  as long as f(cpt(q))  l ies between a and b. 

M& diffeomorphically onto Mb. T h i s  proves the f i r s t  half of 7 . 1 .  

Now consider the diffeomorphism M +  M .  Clearly this ca r r i e s  

Define a 1-parameter family of maps 

rt: M~ 4 ~b 
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Choosing a sui table  c e l l  ex C H, a d i r e c t  argument ( i . e . ,  push- 

in@; i n  along the horizontal  l i n e s )  w i l l  show t h a t  

r e t r a c t  of M ~ - ~  u H. F ina l ly ,  by applying 3 . 1  t o  the function F and the 
M C - E ~  ex i s  a deformation 

region F- 1 [ C - E , C + E I  we w i l l  see that M ~ - ~  u H i s  a deformation r e t r a c t  

of MC+& . T h i s  w i l l  complete the proof. 

Choose a coordinate system u 1 ,..., un i n  a neighborhood U of p 
90 that the iden t i ty  

f = c - ( U 1 l 2 -  ... - (uA)2 + ( U X + l ) 2 ,  ... + ( U n ) 2  

holds throughout U. Thus the c r i t i c a l  point  p w i l l  have coordinates 

u 1 (p)  = ... = u”(p) = 0 . 
Choose E > 0 su f f i c i en t ly  s m a l l  so  that 

( 1  ) The region f-’ [c-E , C + E  1 i s  compact and contains no c r i t i c a l  

points  other than p. 

( 2 )  The image of U under the diffeomorphic imbedding 

(u 1 , . . . ,un) : U -Rn 

contains the closed b a l l .  

“u 1 ,..., un) :  c ( u i ) 2  5 2El . 
Now define e k  t o  be the s e t  of points i n  U with 

( u ’ ) ~ +  . . .  + ( u ‘ ) ~  5 E and u ’ + ~ =  ... = un = 0 .  

The r e su l t i ng  s i t u a t i o n  i s  i l l u s t r a t e d  schematically i n  D i a g r a m  5 .  

Diagram 3 .  

THEOREM 3 . 2 .  L e t  f :  M +  R be a smooth function, and l e t  
p be a non-degenerate c r i t i c a l  point  with index A .  Set- 
t i n g  f ( p )  = c ,  suppose that f - ’ [c-E,c+E~ i s  compact, 
and contains no c r i t i c a l  point  of f other then p, fo r  
some E > 0 .  Then, fo r  a l l  su f f i c i en t ly  s m a l l  E ,  the s e t  
MC+E has the homotopy type of MCFE with a k- cell  at tached.  

The idea of the proof of this theorem i s  indicated i n  D i a g r a m  4, 

f o r  the specia l  case of the height function on a torus .  The region 

MC-E = f - l  ( - m , C - E  1 

i s  heavily shaded. 

coincides with the height  function f except that F < f i n  a s m a l l  neigh- 
t o -  borhood of p.  Thus the region F-’ ( -m,c -~ l  w i l l  cons is t  of 

gether with a region H near p. I n  D i a g r a m  4 ,  H i s  the horizontal ly 

We w i l l  introduce a new function F: M -+ R which 

MC -E 

shaded region. 

D i a g r a m  4. 

f r  c’ f C + E  I f . C i E  ‘ f . c  

D i a g r a m  5 .  
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The coordinate l i n e s  represent  the planes 

u = ... = ux = 0 respectively;  the c i r c l e  represents  the boundary of the 

b a l l  of radius  G; 
and f-' ( c + E )  . 
i s  heavily dotted;  and the region f - ' [ c , c+e l  i s  l i g h t l y  dotted.  The hori-  

zontal  dark l i n e  through p represents the c e l l  e . 

ux+l = . . . = un = 0 and 

1 

and the hyperbolas represent  the hypersurfaces 

The region MC-€ i s  heavily shaded; the region f- l  [ c - E , c ]  

f-' ( c - E )  

x 

Note that eh  n MC-E i s  prec ise ly  the boundary &', so that ex  

i s  attached t o  MC-E a s  required. We must prove t h a t  MCeE u ex  i s  a de- 

formation r e t r a c t  of M ' + ~ .  

Construct a new smooth function F: M - R as follows. Let 

p : R - R  

be a C" function sa t i s fy ing  the conditions 

U(0) > E 

I u ( r )  = o fo r  r 2 2~ 

- 1  < p I ( r )  o for a l l  r ,  

where ~ ' ( r )  = . Now l e t  F coincide with f outside of the coordinate 

neighborhood U, and l e t  

F = f - V ( ( U ' ) ~ +  ...+ ( u ' ) ~  + Z ? ( U ' + ' ) ~ + . . . + ~ ( U ~ ) ~ )  

within this coordinate neighborhood. It i s  e a s i l y  ve r i f i ed  that F i s  a 

well  defined smooth function throughout M. 

It i s  convenient t o  define two functions 

5,q: u- [o,m) 

by 
= ( u ' ) 2  + ... + ( u 5 2  

q = ( u  X + 1 ) 2  + ... + ( U n l 2  

Then f = c - 5 + q; so that: 

F(q)  = c - S(q) + q(q) - P(C(q) + 211(9)) 

f o r  a l l  q E U. 

ASSERTION 1 .  The region F-' ( -m ,c+~I  coincides with the region 

MCfE = f - l ( -  ~ , c + E  1 .  

PROOF: Outside of the e l l i p so id  5 + 2q 1. 2a the functions f and 

13. HOMOTOPY TYPE 

F coincide. Within this e l l i p so id  we have 

F 5 f = c-c+q < c+ ls+q < C + E  2 -  - 

T h i s  completes the proof. 

ASSERTION 2. The c r i t i c a l  poin ts  of F a re  the  same as those of f .  

PROOF: Note that 

aF 
= -1 - L l f ( E + 2 q )  < 0 

Since 

where the covectors dk and dq are simultaneously zero only a t  the origin,  

it follows that F has no c r i t i c a l  poin ts  i n  U other than the origin.  

Now consider the region F- 1 [ c - E , c + E ] .  By Assertion 1 together 

with the inequal i ty  F 6 f we see that 

F-'[C-E,C+EI c f- l  [ C - E , C + E I  . 
Therefore this region i s  compact. It can contain no c r i t i c a l  poin ts  of F 

except possibly p. But 

F(p) = C - P ( 0 )  < C - E . 
Hence F - ' [ c - E , C + E I  contains no c r i t i c a l  points .  Together with 3 . 1  this 

Proves the following. 

ASSERTION 3. The region F-l ( - w , c - E ]  i s  a deformation r e t r a c t  of 
MC+E 

It w i l l  be convenient t o  denote this region F-' (-m,c-E 1 by 
p E  u H; where H denotes the  closure of F-'(-m,C-El - . 

REMARK: I n  the terminology of Smale, the  region MC-E u H i s  

described as MC-E w i t h  a "handle" at tached.  It follows from Theorem 3.1 

. T h i s  that the manifold-with-boundary MC-E u H i s  diffeomorphic t o  MC+E 

f a c t  i s  important i n  Smale's theory of d i f f e ren t i ab le  manifolds. 

3. h l e ,  Generalized PoincarB's conjecture i n  dimensions grea ter  than four,  

h l s  of Mathematics, Vo l .  74 (1961), pp. 391-406.) 

(Compare 
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Now consider the c e l l  eh  consist ing of all points q with 

t ( q )  5 E ,  q ( 9 )  = 0 .  

Note that ex  i s  contained i n  the "handle" H. I n  f a c t ,  since 

we have 

F(q)  5 F(P)  < C-E 

h 
but  f ( q )  2 c-e for q E e . 

03. HOMOTOPY TYPE 

D i a g r a m  6 .  

The present  s i t ua t ion  i s  i l l u s t r a t e d  i n  D i a g r a m  6 .  The region 

MC-" i s  heavily shaded; the handle H i s  shaded with v e r t i c a l  arrows; 

and the region F-l [ C - E , C + E ]  i s  dotted.  

u H. ASSERTION 4 .  MC-€ ex  i s  a deformation r e t r a c t  of MC-€ 

PROOF: A deformation r e t r ac t ion  r t :  MC-€ u H -. M ~ - "  H i s  

More prec ise ly  indicated schematically by the v e r t i c a l  arrows i n  D i a g r a m  6 .  

l e t  rt be the iden t i ty  outside of U; 

lows. 

and define rt within U as f o l -  

It i n  necessary t o  d is t inguish  three  cases as indicated i n  Diagram 7. 

CASE 1 .  Within the region 5 5 E l e t  rt correspond t o  the t rans-  

formation 
(U') ..., un, -+ ( u ' , .  . . , u A , t u h + l , .  .. , tun, . 

D i a g r a m  7. 

Thus r l  i s  the iden t i ty  and ro maps the e n t i r e  region i n t o  e x .  The 

f ac t  t ha t  each rt maps F - ' ( - m , c - ~ l  i n t o  i t s e l f ,  follows from the in-  
equali ty aF > 0. 

'I 
CASE 2 .  Within the region E I. q + E l e t  r t  correspond t o  

the transformation 

n A h + l  ( u  1 )..., u") -+ (u 1 ,...) u ,stu , . . . )  StU ) 

where the number s t  E [ 0 , 1 1  i s  defined by 

St  = t + ( l - t ) ( ( I . - E ) / r l ) ' ' 2  . 
Thus r l  i s  again the i d e n t i t y ,  and ro maps the e n t i r e  region i n t o  the 

hypersurface f - l (  C- E )  . stui 
remain continuous as I. --c E ,  q -+ 0 .  Note that this de f in i t i on  coincides 

with that of Case 1 when I. = E .  

The reader should ve r i fy  that the functions 

CASE 2 .  Within the region 11 + E 5 ( i . e . ,  within M C - € )  l e t  

T h i s  coincides with the preceeding de f in i t i on  when r t  be the iden t i ty .  

E = q + E .  

T h i s  completes the proof that M C - € u  ex  i s  a deformation r e t r a c t  
Of F-l ( - m , C + E I .  

Theorem 3 . 2 .  

Together with Assertion 3, i t  completes the proof of 

R E m K  3 . 3 .  More generally suppose tha t  there are k non-degenerate 

c r i t i c a l  points  p , ,  . . . , pk  w i t h  indices x l ,  ... ,xk i n  f - ' ( c ) .  Then a 
x 1  'k similar  proof shows that MC+" has the homotopy type of M C - E ~  e u . .  . U  e . 
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REMARK 2 . 4 .  A simple modification of the proof of 3.2 shows t h a t  

the s e t  MC i s  a l s o  a deformation r e t r a c t  of M C C E .  I n  f a c t  MC i s  a 

deformation r e t r a c t  of F-' (-m,cI, which i s  a deformation r e t r a c t  of M C + & .  

(Compare Diagram 8.)  

MC-" ex i s  a deformation r e t r a c t  of M C .  

Combining this f a c t  with 3 . 2  we see e a s i l y  that 

I 

I 

PROOF: Define k by the formulas 

f o r  x E X k(x) = x 
1 - A  k ( tu )  = 2 t ~  fo r  O < t L s ,  U E ~  

k( tu )  = v2-2t(u) for 5 t I ,  u E & A  
1 

Here rpt denotes the homotopy between 9, and ' p l ;  and t u  denotes the 

product of the sca lar  t with the unit vector u. A corresponding map 

i s  defined by similar  formulas. 

compositions kP and Pk a re  homotopic t o  the respective iden t i ty  maps. 

Thus k i s  a homotopy equivalence. 

It i s  now not d i f f i c u l t  t o  ve r i fy  that the 

For fu r the r  d e t a i l s  the reader i s  refer red  to ,Lema  5 of J .  H. C .  

On Simply Connected 4-Dimensional Polyhedra, Commentarii Math. Whitehead, 

Helvetici ,  Vol. 2 2  ( 1 9 4 9 ) ,  pp. 48-92. 

LEMMA 3 . 7 .  Let q :  6 ' -  X be an at taching map. Any 
homotopy equivalence f: X - Y  extends t o  a homotopy 
equivalence 

F : x u e A + Y  uf'P e A . 
'P 

D i a g r a m  8 :  MC i s  heavily shaded, and F - ' [ c , c+E]  i s  dotted.  

THEOREM 3 . 5 .  If f i s  a d i f f e ren t i ab le  function on a manifold 
M with no degenerate c r i t i c a l  poin ts ,  and i f  each Ma i s  
compact, then M has the homotopy type of a CW-complex, with 
one c e l l  of dimension A for each c r i t i c a l  point  of index A .  

(For the de f in i t i on  of CW-complex see J .  H.  C .  Whitehead, Combin- 

a t o r i a l  Homotopy I, Bu l l e t in  of the American Mathematical Society, Vol. 55, 

( 1 9 4 9 ) ,  Pp. 21 3-245.) 

The proof w i l l  be based on two l e m a s  concerning a topological  

space X with a c e l l  at tached.  

LEMMA 3 .6 .  (Whitehead) L e t  'po and 'p, be nnotopic maps 
from the sphere 6' t o  X. Then the i d e n t i t y  map of X ex- 
tends t o  a homotopy equivalence 

A k : X u e ' + X u e  . 
'PO 'P1 

PROOF: (Following an unpublished paper by P .Hi l ton . )  Define F 

by the conditions 

FIX = f 

Fie' = i den t i ty  . i 
k t  g: Y - -cX be a homotopy inverse t o  f and define 

G: Y ex  - x  u eA 
f'P gf'P 

bg the corresponding conditions G I Y  = g, G(eA = i den t i ty .  

Since gfcp i s  homotopic t o  9 ,  i t  follows from 3.6  that there i s  

a homotopy equivalence 

k: X u ex --cX u ex . 
gf'P m 

we w i l l  f i rs t  prove that the composition 

GF: x ex. - X  e A  
'P 'P 

is homotopic t o  the i d e n t i t y  map. 
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Let ht be a homotopy between gf and the iden t i ty .  Using the 

speci f ic  de f in i t i ons  of k, G,  and F, note t h a t  

kGF(x) = gf(X) f o r  x E X, 

kGF(tu) = 2 t U  f o r ' o  5 t L ~ ,  u E e , 
kGF(tu) = h2-2tcp(u) fo r  t 1 ,  u E e . 

1 a x  

1 .h 

The required homotopy 

qT: x ex  - x ex 
cp cp 

i s  now defined by the formula 

qT(x) = h,(x) f o r  x E X , 
- A  f o r  o L t L T ,  l t T  u e , 2 

q,(tu) = t u  
.x 

q,(tu) = h2-2t+Tcp(u) fo r  5 t 5 1 ,  u E e . 
Therefore F has a l e f t  homotopy inverse.  

The proof that F i s  a homotopy equivalence w i l l  now be purely 

formal, based on the following. 

ASSERTION. I f  a map F has a l e f t  homotopy inverse L and a 

right homotopy inverse R ,  then F i s  a homotopy equivalence; and 

R (or L) i s  a 2-sided homotopy inverse.  

PROOF : The re l a t ions  

LF 2 i den t i ty ,  FR 2 i den t i ty ,  

imply that 

L z L ( F R )  = (LF)R"R. 

Consequently 

RF 2 LF 2 i den t i ty  , 
which proves that R i s  a 2-sided inverse.  

The proof of Lemma 3.7 can now be completed as follows. The r e l a -  

t ion  

kGF 2 i den t i ty  

a s s e r t s  that F 

G has a l e f t  homotopy inverse.  

has a l e f t  homotopy inverse;  and a s i m i l a r  proof shows that 

Step 1 .  Since k(GF) 2 i den t i ty ,  and k i s  known t o  have a l e f t  

inverse,  it follows that (GF)k 2 i den t i ty .  

Step 2.  Since G(Fk) 2 i den t i ty ,  and G i s  known t o  have a l e f t  

inverse,  it follows t h a t  (Fk)G 2 i den t i ty .  

Step 3 .  Since F(kG) 2 i den t i ty ,  and F has kG as l e f t  inverse 

a lso ,  it follows tha t  F i s  a homotopy equivalence. T h i s  completes the 

proof of 3.7. 

PROOF OF THEOREM 3 . 5 .  Let c, < c2 < c3  < . . .  be the c r i t i c a l  

values of f :  M - R .  The sequence (cil has no c lus t e r  point  since each 

M& i s  compact. The s e t  M& i s  vacuous fo r  a < c , .  Suppose 

a 4 c , , c2 , c3  ,... and that Ma i s  of the homotopy ,type of a CW-complex. 

kt c be the smallest ci > a. By Theorems 3 . 1 ,  3 . 2 ,  and 3 . 3 ,  MCtE 

the homotopy type of M C - E ~  e x l  u . .  . U  e J( ')  f o r  ce r t a in  maps ql,. . . , c p j ( c )  

when E i s  s m a l l  enough, and there  i s  a homotopy equivalence h: MC-E - M&. 
We have assumed that there  i s  a homotopy equivalence h ' :  M& - K, where K 

is a CW-complex. 

has x 

'p1 cp j ( c )  

Then each h '  0 h 0 c p j  

x 
q j :  6 j - ( x j - l )  - skeleton of K. 

i s  homotopic by ce l lu l a r  approximation t o  

a map 

A 
Then K u e h l  V . . . u  e j(') i s  a CW-complex, and has the same homotopy 

$1 * j ( c )  

tme as M'+", by Lemmas 3 . 6 ,  3 .7 .  

By induction it follows that each e' has the homotopy type of a 
m-complex. If M i s  compact this completes the proof. I f  M i s  not com- 

Pact, but  all c r i t i c a l  points  l i e  i n  one of the compact s e t s  

Proof similar t o  that of Theorem 3.1 shows tha t  the s e t  M& i s  a deformation 

re t rac t  of M, SO the proof i s  again complete. 

e, then a 

I f  there  a re  i n f i n i t e l y  many c r i t i c a l  poin ts  then the above con- 

s t ruc t ion  gives us an i n f i n i t e  sequence of homotopy equivalences 

M a C Ma2 C M a C ... 
v v v  I l l  
K1 C K2 C K3 C ... , 

each extending the previous one. 

d i r e c t  l i m i t  topology, i .e . ,  the f i n e s t  possible compatible topology, and 
Let K denote the union of the Ki i n  the 
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l e t  g: M - K be the l i m i t  map. Then g induces isomorphisms of homotopy 

moupg i n  a l l  dimensions. W e  need only apply Theorem 1 of Combinatorial - -  
homotopy I t o  conclude that g i s  a homotopy equivalence. 

theorem s t a t e s  that i f  M and K are both dominated by CW-complexes, then 

[Whitehead’s 

any map M -+ K which induces isomorphisms of homotopy groups i s  a homotopy 

equivalence. 

dominated by a W-complex it i s  only necessary t o  consider M as a r e t r a c t  
of tubular neighborhood i n  some Euclidean space.] T h i s  completes the  proof 

of Theorem 3.5.  

Certainly K i s  dominated by i t s e l f .  To prove that M i s  

REMARK. W e  have a l s o  proved that each has the homotopy type 

of a f i n i t e  CW-complex, with one c e l l  of dimension X fo r  each c r i t i c a l  

point  of index A i n  Ma. T h i s  i s  t rue  even i f  a i s  a c r i t i c a l  value. 

(Compare Remark 3.4.  ) 

§4.  EXAMPLES 

94 .  Examples. 

A s  an appl ica t ion  of the  theorems of $ 3  we shall prove: 

THEOREM 4.1 (Reeb). If M i s  a compact manifold and f 
i s  a d i f f e ren t i ab le  function on M with only two c r i t i c a l  
points ,  both of which are non-degenerate, then M i s  
homeomorphic t o  a sphere. 

25 

PROOF: T h i s  follows from Theorem 3.1 together w i t h  the Lemma of 

Morse ( 9 2 . 2 ) .  

points .  Say that f ( p )  = 0 i s  the m i m i m u m  and f ( q )  = 1 i s  the maximum. 

If e i s  small enough then the sets ME = f - l [ o , ~ l  and f - l [ i - E , i ]  a r e  

closed n- cel l s  by 9 2 . 2 .  But I6 i s  homeomorphic t o  M ’ - €  

M i s  the union of two closed n- cel l s ,  M’-€ and f - l [ l - ~ , l l ,  matched 

along t h e i r  common boundary. 

between M and Sn. 

The two c r i t i c a l  points  must be the minimum and maximum 

by 93.1 .  Thus 

It i s  now easy t o  construct  a homeomorphism 

REMARK 1 .  The theorem remains t rue  even i f  the c r i t i c a l  points  are 

degenerate. However, the  proof i s  more d i f f i c u l t .  (Cmpare Milnor, Sommes 

de varietes d i f f e ren t i ab le s  e t  s t ruc tures  d i f f e ren t i ab le s  des sph&res, Bull .  

SOC. Math. de France,Vol. 87  (19591,  pp. 439-444; Theorem l ( 3 ) ;  

Rosen, A weak form of the  star conjecture f o r  manifolds, Abstract 570-28, 

Notices h e r .  Math Soc.,Vol. 7 ( 1 9 6 0 ) ,  p. 380; Lemma I . )  

or  R .  

REMARK 2 .  It i s  not  t rue  that M must be diffeomorphic t o  Sn with 

i t s  usual  d i f f e ren t i ab le  structure.(Compare: Milnor, On manifolds homeomor- 

PNc  t o  the 7-sphere, Annals of Mathematics, V o l .  64 ( 1 9 5 6 ) ,  pp, 399-405. 

I n  this paper a 7-sphere with a non-standard d i f f e ren t i ab le  s t ruc tu re  i s  

Proved t o  be topologically S7 by finding a function on i t  w i t h  two non- 



degenerate c r i t i c a l  poin ts . )  

As another appl ica t ion  of the previous theorems we note that i f  an 

n-manifold b s  a dif ferent iable  function on it with only three c r i t i c a l  

points  then they have index 0 ,  n 'and n/2 (by Poincark dua l i t y ) ,  and the 

&fold has the homotopy type of an n/2-sphere with an n-ce l l  attached. 

T ~ S  s i t ua t ion  i s  studied i n  forthcoming papers by J .  Eel19 and N .  Kuiper. 

Such a function e x i s t s  for example on the r e a l  or complex projective plane. 

Let CPn be complex projec t ive  n-space. We w i l l  think of CPn as 

equivalence c lasses  of (n+ l ) - tup le s  (z,, ..., zn) of complex numbers, with 

c l z j  l 2  = 1 .  Denote the equivalence c l a s s  of (z,, .  . . ,zn) by ( z o : z l  : .  . . :zn) .  

Define a r e a l  valued function f on CPn by the iden t i ty  

27 
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It follows that PO,P , , . .  . ,Pn a re  the Only c r i t i c a l  points  of f .  The 
index of f a t  pk i s  equal t o  twice the number of j with c .  < ck. 

J Thus every possible even index between 0 and 2n occurs exactly once. 

Theorem 3 .5 :  

cpn  has the homotopy type of a CW-complex of the form 

e0 u e2  u e4  u..." e2n . 
It follows tha t  the  i n t e g r a l  homology groups of  CPn a re  given by 

Z for  i = 0 , 2 , 4  ,..., 2n 
0 fo r  other values of  i 

Hi(CPn;Z) = 

where cO,c l ,  ..., cn a re  d i s t i n c t  r e a l  constants. 

In  order t o  determine the c r i t i c a l  poin ts  of f ,  consider the 

following loca l  coordinate system. Let U, be the set of ( z o : z l :  . . .  : 'n) 

Then 

a re  the required coordinate functions,  mapping U, diffeomorphically onto 

the open u n i t  b a l l  i n  R2". Clearly 
2 2 1z0 l2  = 1 - c (Xj  2 + yj2) I Z j I 2  = x j  + Yj 

so t h a t  

throughout the coordinate neighborhood U,. 

f within U, l i e s  a t  the center  point  

Thus the only c r i t i c a l  point  of 

p, = ( 1 : o : o :  ... :o) 

of the coordinate system. A t  this point  f i s  non-degenerate; and has 

index equal t o  twice the  number of j with c j  < co .  

Similarly one can consider other coordinate systems centered a t  the 

points 

p,  = (0 :1:0:  ... :o),  . . . , p ,  = ( 0 : 0 :  . . .  : 0 :1 )  . 
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9 5 .  THE: MORSE INEQUALITIES 

5 5 .  The Morse Inequa l i t i e s .  

I n  Morse's o r ig ina l  treatment of this subject ,  Theorem 3 . 5  was not 

The re la t ionship  between the topolo@p of M and the c r i t i c a l  avai lable .  

points  of a r e a l  valued function on M were described instead i n  terms of 

a col lec t ion  of i nequa l i t i e s .  

point  of view. 

T h i s  section w i l l  describe this o r i e ina l  

DEFINITION: Let S be a function from ce r t a in  p a i r s  of spaces t o  

the in tegers .  

S(X,y) + S(Y,Z). I f  equal i ty  holds, S i s  ca l led  addi t ive .  

S i s  subadditive i f  whenever X3Y3 2 we have S(X,Z) 5 

A s  an example, given any f i e l d  F as coeff ic ient  group, l e t  

R,(X,Y) = Xth Be t t i  number of ( X , Y )  

= rank over F of H,(X,Y;F) , 

for  any pa i r  ( X , Y )  such that t h i s  rank i s  f i n i t e .  R, i s  subadditive, a s  

i s  eas i ly  seen by examining the following port ion of the exact sequence fo r  

(x ,y ,Z) :  
. . . - H,(Y,Z) - H,(X,Z) -. %(X,Y) + . . . 

I 

The Euler cha rac t e r i s t i c  X(X,Y)  i s  addi t ive ,  where X(X,Y)  = 

C ( - 1 ) '  R , ( X , Y ) .  

LEMMA 5 . 1 .  Let S be subadditive and l e t  XoC ... C %. 
Then S(Xn,Xo)5 2 S(Xi,Xi-l). I f  S i s  addi t ive  then 

equal i ty  holds. 

PROOF: Induction on n.  For n = 1 ,  equal i ty  holds t r i v i a l l y  and 

i= 1 

the case n = 2 i s  the de f in i t i on  of [sub] add i t iv i ty .  n- 1 

If the  r e s u l t  i s  t rue  f o r  n - 1 ,  then S(Xn-, ,Xo) 5 c 1 S(Xi,Xi-l). 

Let  M be a compact manifold and f a d i f f e ren t i ab le  function 

on M with i so la ted ,  non-degenerate, c r i t i c a l  points .  Let a1 (...( ak 
a 

be such tha t  Mai contains exactly i c r i t i c a l  points ,  and M = M. 

Then a 
9 ) H,(M i J M a i - i )  = H,(Mai-i exi Mai- i  

where Xi i s  the  index of the 

c r i t i c a l  point ,  
xi = H,(e ,&Ii) by excision, 

= { 0 otherwise. 

coeff ic ient  group i n  dimension Xi 

&k Applying ( 1 )  t o  0 = Ma' C . .  .C M = M with S = R, we have 

where C, denotes the number of c r i t i c a l  points  of index A .  

formula t o  the case S = x we have 
Applying this 

Thus we have proven: 

THEOREM 5 . 2  (Weak Morse Inequa l i t i e s ) .  I f  C, denotes the 

number of c r i t i c a l  poin ts  of index h on the compact mani- 
fold M then 

R,(M) 5 CX , and 

C ( - 1 ) '  RX(M) = C ( - 1 ) '  C, 

S l ight ly  sharper i nequa l i t i e s  can be proven by the  following 

( 2 )  

( 3 )  . 
argument. 

LEMMA 5 . 3 .  The function SX i s  subadditive, where 

s,(x,y) = R x ( X , Y )  - RX- , (X ,Y)  + R,-,(X,Y) - +. . .?  R o ( X , Y )  . 

PROOF: Given an exact sequence 

LALBJ-CL ... . . . +  D + O  

of vector spaces note t h a t  the rank of the homomorphism h p lus  the  rank 

of i i s  equal t o  the rank of A .  Therefore, 



3 0  I. NON-DEGENERATE FUNCTIONS 

rank h = rank A - rank i 

= rank A - rank B + rank j 

= rank A - rank B + rank C - rank k 

... 
= rank A - rank B + rank C - +. . .+  rank D . 

Hence the  last expression i s  

of a t r i p l e  X 2 Y 1 2 .  

2 0. Now consider the homoiogy exact sequence 

Applying this computation t o  the  homomorphism 

Hx+l (X,Y) a- % ( Y , Z )  

we see that 

rank a = R,(Y,Z)  - R,(X,Z) + R,(X,Y) - R,- l (Y,Z)  + ... 2 0 

Collecting terms, this means that 

which completes the ?roof.  

Applying this subadditive function S, t o  the spaces 

&k a 
0 C Ma1 C M 2  C . . . C  M 

we obtain the Morse inequa l i t i e s  

or 

( 4,) R,(M) - R,-l ( M )  +-. . .+ Ro(M) 5 C, - C,-l + -. .+ C,. 

These inequa l i t i e s  are  de f in i t e ly  sharper than the  previous ones. 

I n  f a c t ,  adding (4,)  and (4,-1), one obtains ( Z h ) ;  and comparing (4,) 

with (4,-,) f o r  A > n one obtains the  equal i ty  ( 3 ) .  
A s  an i l l u s t r a t i o n  of the use of  the Morse inequa l i t i e s ,  suppose 

that C x + l  = 0. Then RX+l  must also be zero. Comparing the inequa l i t i e s  

(4,) and ( 4 x + 1 ) ,  we see that 

R, - R,-l +-...+ R0 = C, - C,-l +-. . . t  C, . I 

Now suppose that C,-l i s  a l s o  zero. Then R,-l = 0,  arid a similar argu- 

ment shows t h a t  

Rh-2  - R,-3 +-...+_ R, = Ch-2 - C,-3 +-...+ Co . 

95.  THE MORSE INEQUALITIES 

Subtracting this from the  equal i ty  above we obtain the following: 

C O R O W Y  5 . 4 .  If C h + l  = C,-l = 0 then R, = C, and 

R b + l  = R,-l = 0 .  

( O f  course this would a l s o  follow from Theorem 3 . 5 . )  
Note tha t  

this corollary enables u s  t o  f ind  the homology .goups of complex projective 

space (see 9 4 )  without making use of Theorem 3 . 5 .  

3 1  

. 



32 
I .  NON-DEGENERATE FUNCTIONS 

, 
§ 6 .  MANIFOLDS I N  ETJCLIDM SPACE 

33 

56 .  Manifolds i n  Euclidean Space. 

Although w e  have so  f a r  considered, on a manifold, only functions 

which have no degenerate c r i t i c a l  poin ts ,  we have not  ye t  even shown that 
such functions always e x i s t .  I n  this sec t ion  we w i l l  construct many func- 

t ions  with no degenerate c r i t i c a l  points ,  on any manifold embedded i n  Rn. 

I n  f a c t ,  if for f ixed p c R n  define the function 5: M - R  by $(q) = 

((p-q1I2. 

only non-degenerate c r i t i c a l  points .  

It w i l l  t u rn  out that f o r  almost a l l  p, the function 5 has 

Let M C Rn be a manifold of dimension k < n, d i f ferent iably  em- 

bedded i n  R”. Let N C M x Rn be defined by 

N = [ ( q , v ) :  q E M, v perpendicular t o  M a t  9) .  

I t  i s  not d i f f i c u l t  t o  show that N i s  an n-dimensional manifold 

d i f ferent iably  embedded i n  R2n. 

vector bundle of M.) 

( N  i s  the  t o t a l  space of the normal 

L e t  E: N+Rn be E(q,v) = q + V .  
(E  i s  the “endpoint“ mSp.) 

DEFINITION. e E Rn i s  a foca l  point  of (M,q) with mul t ip l i c i ty  

p i f  e = q + v where (q,v) E N and the  Jacobian of E a t  (4,v) has 

n u l l i t y  p > 0 .  

a foca l  point  of ( M , q )  f o r  some q E M .  

The point  e w i l l  be called a foca l  point  of M if e i s  

In tu i t i ve ly ,  a foca l  point  of M i s  a point  i n  Rn where nearby 

normals i n t e r sec t .  

W e  w i l l  use the following theorem, which w e  w i l l  not Prove. 

THEOREM 6.1 (Sard) .  If M, and M2 a r e  d i f f e ren t i ab le  
manifolds having a countable bas is ,  of the same dimension, 
and f :  M1 - M, i s  of c l a s s  C 1 ,  then the image of the 
s e t  of c r i t i c a l  points  has measure 0 i n  M,. 

A c r i t i c a l  point  of f i s  a point  where the Jacobian of f i s  

For a proof see de Rham,  “Vari6tBs Dif ferent iables ,  ‘I Hermann, singular .  

Paris ,  1955, p .  10 .  

COROLLARY 6 .2 .  For almost a l l  x E Rn, the point  x i s  
not a foca l  point  of M. 

PROOF: We have j u s t  seen t h a t  N i s  an n-manifold. The point x 

i s  a foca l  point  iff x 

E: N -R”. 

i s  i n  the h g e  of the s e t  of c r i t i c a l  points  of 

Therefore the s e t  of foca l  points has measure 0 .  

For a b e t t e r  understanding of the concept of f o c a l  point ,  i t  i s  con- 

venient t o  introduce the “second fundamental form“ of a manifold i n  Euclidean 

space. 

use of a f ixed loca l  coordinate system. 

We w i l l  not attempt t o  give an invar iant  def in i t ion;  but  w i l l  make 

Le t  ul,. . . ,uk be coordinates fo r  a region of the  &fold M C Rn. 

Then the  inclusion map from M t o  Rn determines n smooth functions 

1 k 1 k x , ( u  ,..., u ) , . . . ,  x,(u ) . . . )  u ) . 
-L These functions w i l l  be wr i t ten  b r i e f l y  a s  z ( u ’ ,  . . . ,uk) 

( x l , .  . . ,%) . 
9. 

where x = 

To be consistent  the point  q E M C Rn w i l l  now be denoted by 
-L 

The f i rs t  fundamental form associated with the coordinate system i s  

defined t o  be the symmetric matrix of r e a l  valued functions 

The second fundamental form on the other hand, i s  a symmetric matrix Fij) 
of vector valued functions.  

a% It i s  defined as follows. The vector a t  a point  of M can 
be expressed as the sum of a vector tangent t o  M aU and au a vector normal t o  M .  

3% 
au aU . Given any un i t  vector Define yij 

v which i s  normal t o  M a t  the matrix 

t o  be the normal component of 
-c 
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can be called the "second fundamental form of M a t  z i n  the d i rec t ion  

V.  
d I 1  

It w i l l  simplify the discussion t o  assume t h a t  the Coordinates 
-+ 

mve been chosen t o  that g. ljr evaluated a t  9, i s  the iden t i ty  matrix. 
men the eigenvalues of the matrix ( 3 . dij) are ca l led  the pr inc ipal  

, m a t u r e s  K 1 , . .  . ,Kn of M at  3 i n  the normal d i r ec t ion  7. The re-  

,iprocals K ; ~ ,  . . . 
pi r a d i i  of curvature. O f  course it may happen that the matrix (7 . dij) 
is singular. 

the corresponding r a d i i  K;' w i l l  not be defined. 

of these pr inc ipal  curvatures a r e  called the p r inc i -  

I n  this case one o r  more of the w i l l  be zero; and hence 

Now consider the normal l i n e  1 consis t ing  of a l l  z + t?, where 
+ v i s  a f ixed un i t  vector orthogonal t o  M a t  , 

LEbMA 6 . 3 .  The focal  poin ts  of (M,<) along P a re  pre- 
c i se ly  the points q + K;' 3, where 1 5 i 5 k, $ # 0 .  

Thus there a r e  a t  most, k foca l  points of (M,;) along 
P, each being counted with i t s  proper mul t ip l i c i ty .  

+ 1  k + 1 k 
PROOF: Choose n-k vector f i e l d s  w l ( u  ,..., u ),. . . ,Wn-k(u , . . . , U  ) 

are  unit vectors which a r e  orthogo- 

+ 

-+ -+ 
along the manifold so  that 

nal t o  each other and t o  M .  We can introduce coordinates ( U  , . . . , U  , 
t', ..., tn-k) on the manifold N C M x Rn as follows. Let ( U  ,..., U , t  ,..., 
tn-k) correspond t o  the point  

w , ,  . . .  jWn-k 
1 k 

4 

1 k 1  

I 
I 

i nf tQ;a(ul , . . . ,u  k )) E N . 
a= 1 

(Z(u1 , .. . ,u ) , 

I 
Then the function 

E: N +Rn  

I gives r i s e  t o  the correspondence 

with p a r t i a l  der iva t ives  

+ ,wn-k we w i l l  obtain an nxn matrix whose vectors - a u l ' " ' l  auk1 w1 9 ' * '  a; + 
a? 

rank equals the rank of the Jacobian of E a t  the corresponding point .  
T h i s  nxn matrix c l ea r ly  has the following form 

\ 0 i d e n t i t y  
matrix 

Thus the rank i s  equal t o  the rank of the upper l e f t  hand block . 
the iden t i ty  

Using 

we see that this upper l e f t  hand block i s  j u s t  the matrix 

Thus : 

ASSERTION 6 . 4 .  

1.1 

+ t; i s  a focal  point of (M,a with mul t ip l i c i ty  
i f  and only i f  the matrix 

'glj - tT; . -Ti$ ( * )  

i s  singular ,  with n u l l i t y  1.1. 

Now suppose that ( g  ) i s  the iden t i ty  matrix. Then (+)  i s  sin&- 

lar If and only if i s  an i j  eigenvalue of the matrix (7 . Ti,) . Further- 
more the mul t ip l i c i ty  IJ i s  equal t o  the mul t ip l i c i ty  of $ as eigenvalue. 

T h i s  completes the proof of Lemma 6 .3 .  

Now for f ixed 'i; E Rn l e t  us study the function 

3 = f :  M + R  
where 

We have 
2; * 5 + i; . T; . 
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The second p a r t i a l  der iva t ives  a t  a c r i t i c a l  point  a r e  given by 

- -  
Set t ing  3 = x + t v ,  as i n  the proof of Lemma 6 . 3 ,  this becomes 

Theref O r e  : 

LEMMA 6.5. 

The n u l l i t y  
of f = L p  

p l i c i t y  of 

The point  E M i s  a degenerate c r i t i c a l  point  
i f  and only i f  i s  a foca l  point  of (M,T). 
of as c r i t i c a l  point  i s  equal t o  the multi-  
p as foca l  point .  
+ 

Combining t h i s  r e s u l t  with Corollary 6 .2  t o  SarG's theorem, we 

immediately obtain: 

THEOREM 6 .6 .  For almost a l l  p E Rn ( a l l  but  a s e t  of 
measure 0 )  the function 

Lp: M-R 

has no degenerate c r i t i c a l  points .  

T h i s  theorem has severa l  i n t e re s t ing  consequences. 

C O R O W Y  6 .7 .  On any manifold M there  e x i s t s  a d i f -  
ferent iable  function,  with no degenerate c r i t i c a l  points ,  
for which each Ma i s  compact. 

PROOF: T h i s  follows from Theorem 6 . 6  and 

s iona l  manifold M can be embedded d i f f e ren t i ab ly  

( see  Whitney, Geometric In tegra t ion  Theory, R2n+ 1 

APPLICATION 1 .  A d i f f e ren t i ab le  manifold 

the f a c t  that an n-dimen- 

as.& closed subset of 

p.  1 1 3 ) .  

has the homotopy type of 

a CW-complex. T h i s  f o l l a r s  from the  above corollary and Theorem 3.5. 

APPLICATION 2 .  On a compact manifold M there  i s  a vector f i e l d  

X such that the  sum of the indices  of the c r i t i c a l  poin ts  of X equals 

X ( M ) ,  the  Euler cha rac t e r i s t i c  of M. T h i s  can be seen as follows: fo r  

any d l f f e ren t i ab le  function f on M we have x(M) = C (- 1) '  C, where C, 

i s  the number of c r i t i c a l  poin ts  w i t h  index A .  But ( - 1 ) '  i s  the index of 

the vector f i e l d  grad f a t  a point  where f has index 
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It follows that the  sum of the indices of any vector f i e l d  on M 
i s  equal t o  X ( M )  because this sum i s  a topological  invar iant  ( s ee  Steen- 

rod, "The Topology of F ibre  Bundles," 139.7) .  

The preceding corol lary  can be sharpened as follows. Let k 2 o 
be an in teger  and l e t  K C M be a compact s e t .  

COROLLARY 6.8. Any bounded smooth function f: M-R can 
be uniformly approximated by a smooth function g which 
has no degenerate c r i t i c a l  points .  Furthermore g can be 
chosen so  that the  i - t h  der iva t ives  of 
s e t  K uniformly approximate the corresponding der iva t ives  
of f ,  f o r  i 5 k. 

(Compare M. Morse, 

g on the compact 

The c r i t i c a l  points  of a function of n va r i -  

ables,  Transactions of the American Mathematical Society, V o l .  3 3  (1931), 

pp. 71-91 .) 

PROOF: Choose some imbedding h: M -.Rn of M as a bounded sub- 

s e t  of some euclidean space so t h a t  the f i rs t  coordinate h, 

the given function f. L e t  c be a large  number. Choose a point  
i s  prec ise ly  

p = ( - C + E 1  ,E2,. . . , E n )  

c lose t o  (-c,O,. . . , O )  E Rn so  that the function : M - R i s  non- 
degenerate; and s e t  L.p 

- - c2 
2c g(x) - 

Clearly g i s  non-degenerate. A short  computation shows tha t  

Clearly, i f  c i s  large  and the Ei are small, 

f as required. 
then g w i l l  approximate 

The above theory can a l s o  be used t o  describe the index of the 

function 

a t  a c r i t i c a l  point  

5 LEMMA 6.9. (Index theorem f o r  Lp. 
a t  a non-degenerate c r i t i c a l  point  
the number of foca l  poin ts  of 
s e p e n t  from q t o  p; each f o c a l  point  being counted 
w i t h  i t s  mul t ip l ic i ty .  

The  index of 
q E M i s  equal t o  

which l i e  on the (M,q) 
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An analogous statement i n  P a r t  I11 ( the  Morse Index Theorem) w i l l  

be of fundamental importance. 

PROOF: The index of the matrix 

is equal t o  the number of negative eigenvalues. 

the i den t i ty  matrix, this i s  equal t o  the number of eigenvalues of (7 bij) 
Comparing this statement w i t h  6 .3 ,  the conclusion follows. 

Assuming that (gij)  i s  

1 a re  2 . 

5 7 .  THE LEFSCHETZ T€EOREM 

$7.  The Lefschetz Theorem on Hyperplane Sections.  

As an appl ica t ion  of t he . ideas  which have been developed, we w i l l  

prove some r e s u l t s  concerning the topology of algebraic v a r i e t i e s .  These 

were or ig inal ly  proved by Lefschetz, using qu i t e  d i f f e ren t  arguments. The 

present  version i s  due t o  Andreotti and Frankel . * 

THEOREM 7 . 1 .  If M c C" i s  a non-singular a f f i n e  alge-  
bra ic  var ie ty  i n  complex n-space with r e a l  dimension 
then 

2k, 

Hi(M;Z) = 0 for  i > k. 

This i s  a consequence of the stronger:  

THEOREM 7 . ? .  A complex analy t ic  manifold M of  complex 
dimension k, b ianaly t ica l ly  embedded a s  a closed subset 
of cn has the homotopy type of a k-dimensional CW-complex. 

The proof w i l l  be broken up i n t o  several  s teps .  F i r s t  consider a 

quadratic form i n  k complex var iables  

Q ( z  1 ,..., k ) = l b h j  zhzj . 

3 9  

I f  we subs t i tu te  xh + i yh  f o r  zh, and then take the r e a l  p a r t  of Q we 

obtain a r e a l  quadratic form i n  2k r e a l  var iables :  

Q ' (x ' ,  ..., xk,y ' ,  ..., y k ) = r e a l  pa r t  of T b h j ( x h + i y h ) ( x d + i y j )  . .-. 

ASSERTION 1 .  I f  e i s  an eigenvalue of Q' with mul t ip l i c i ty  v,  

then -e i s  a l s o  an eigenvalue with the same mul t ip l i c i ty  p .  

PROOF. The iden t i ty  Q( i z '  , . . . , i z  k ) = -&( z 1 , . . . ,zk) shows that 
the quadratic form &'  can be transformed i n t o  - & I  by an orthogonal 

change of var iables .  Assertion 1 c l ea r ly  follows. 

* 
See S. Lefschetz, "L'analysis  s i t u s  e t  l a  ggornetrie alg6briaue." Par is  - 

1 9 2 4 ;  
sections,  Annals of Mathematics, Vol. 69 '( 1 9 5 9 ) ,  pp. 71 3-71 7. 

and A .  Andreotti and T.  Frankel, The Lefschetz theorem on hyperplane - 7  
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Now consider a complex manifold M which i s  b i ana ly t i ca l ly  imbed- 

ded as a subset of Cn. Let q be a point  of M. 

ASSERTION 2 .  The foca l  points of (M,q) along any normal l i n e  fi 

i n  p a i r s  which are  s i tua ted  symmetrically about q .  

I n  other words i f  q + t v  i s  a foca l  poin t ,  then q - t v  i s  a 

focal  point  with the same mul t ip l i c i ty .  

1 
PROOF. Choose complex coordinates z , . . . , zk fo r  M i n  a neigh- 

M + Cn 1 
borhood of q so  that z (4)  = . . . = zk(q) = 0 .  

determines n complex ana ly t i c  functions 

The inclusion map 

1 k 
w, = w,(z ,..., z ) ,  a = 1 ,..., n. 

Let v be a fixed u n i t  vector which i s  orthogonal t o  M a t  q .  Consider 

the  Hermitian inner product 

of w and v. T h i s  can be expanded as a complex power s e r i e s  

l w , ( z l  ,..., zk)C, = constant + Q(z’, ..., zk) + higher terms, 

where Q denotes a homogeneous quadratic function. (The l i nea r  terms van- 

i s h  since v i s  orthogonal t o  M . )  

Now subs t i tu te  xh + iyh  fo r  zh so  as t o  obtain a r e a l  coordinate 

system f o r  M; and consider the r e a l  inner product 

w * v = r e a l  p a r t  of 1 Wac, . 
T h i s  function has the r e a l  power s e r i e s  expansion 

k 1  w * v = constant + ~ ‘ ( x ’ ,  , . . , x  ,y , . . . ,yk) + higher terms. 

Clearly the  quadratic terms Q’ determine the  second fundamental form of 

M at  q i n  the  normal d i r ec t ion  v.  By Assertion 1 the eigenvalues of 

Q’ occur i n  equal and opposite pa i r s .  Hence the foca l  poin ts  of (M,q) 

along the l i n e  through q and q + v a l s o  occur i n  symnetric pa i r s .  T h i s  

proves Assertion 2 .  

We a re  now ready t o  prove 7.2. * Choose a point  p € Cn SO that the 

squared-distance function 

1 
1 

$: M-R 

has no degenerate c r i t i c a l  poin ts .  Since M i s  a closed subset of Cn, it 

i s  c lear  t h a t  each s e t  

I@ = $‘ [o , a l  

i s  compact. Now consider the index of $ a t  a c r i t i c a l  point  q. Accord- 

ing  t o  6 .9 ,  this index i s  equal t o  the number of foca l  poin ts  of 

which l i e  on the l i n e  segment from p t o  q .  But there  a r e  a t  most 2k 

foca l  points along the f u l l  l i n e  through p and q; and these a re  d i s t r i -  

buted symmetrically about q .  Hence a t  most k of them can l i e  between p 

and q .  

( M , q )  

Thus the index of $ a t  q i s  5 k .  I t  follows that M has the 

homotopy type of a CW-complex of dimension 2 k; 

of 7 . 2 .  

which completes the proof 

COROLLARY 7 . 3  (Lefschetz) .  L e t  V be an algebraic var ie ty  
of complex dimension k which l i e s  i n  the complex projec t ive  
space CP,. Let P be a hyperplane i n  CPn which contains 
the singular  points (if any) of V.  

V n  P - + V  

induces isomorphisms of homology groups i n  dimensions l e s s  
than k-1. Furthermore, the  induced homomorphism 

Then the inclusion map 

H ~ - , ( v  n P;Z) - H ~ - ~ ( v ; z )  

i s  onto. 

PROOF. Using the  exact sequence of the pa i r  (V,V n P) it i s  

c l ea r ly  su f f i c i en t  t o  show that q ( V , V  n P;Z) = 0 fo r  r 5 k-1. But the 

Lefschetz dual i ty  theorem a s s e r t s  t h a t  

q ( v , v  n P;Z) = H ~ ~ - ~ ( v  -(v n P) ;z) . 
But V -(V n p) 

CPn - P. 

i s  a non-singular algebraic va r i e ty  i n  the a f f i n e  space 

Hence i t  follows from 7.2 that the last  group i s  zero f o r  r 5 k-1. 
T h i s  r e s u l t  can be sharpened as follows: 

THEOREM 7.4 (Lefschetz) .  Under the hypothesis of the 
preceding corollary,  the  r e l a t i v e  homotopy group 
a,(V,V n P) i s  zero f o r  r < k. 
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PROOF. The proof w i l l  be based on the hypothesis that Sme neigh- 

borhood U of V n P can be deformed i n t o  V n P within V.  hi^ can be 

proved, for example, using the theorem that algebraic 

a w l a t e d .  

I n  place of the function : V - V n P -c R Lp 
where r o  fo r  x 

f ( x )  = i 
I / L ~ ( X )  for x 

Since the c r i t i c a l  poin ts  of Lp have index 

the c r i t i c a l  points  of f have index 2 2k - k = k.  

v a r i e t i e s  can be tri- 

we w i l l  use f :  V --c R 

E V ~ P  , 
B p .  

< k i t  follows that 

The function f has 
- 

no degenerate c r i t i c a l  points  with E 5 f < m .  Therefore V has the 

homotopy type of VE = f -  [ O , E ~  with f i n i t e l y  many c e l l s  of dimension 2 k 
1 

at tached.  

Choose E small enough s o  

Then every map of the pa i r  r-cube. 

ed i n t o  a map 

( I F , F )  - (VE,V 

PART I1 

A RAPID COURSE I N  RIEMANNIAN GEOMETRY 

§8. Covariant Dif ferent ia t ion  

The object  of P a r t  I1 w i l l  be t o  give a rapid out l ine  of some basic 

concepts of Riemannian geometry which w i l l  be needed l a t e r .  For more infor-  
# that VE C U .  L e t  1' denote the uni t  mation the reader should consult Nomizu, "Lie groups and d i f f e r e n t i a l  

( I r , f r )  i n t o  (V,V n P) can be deform- # geometry," The Mathematical Society of Japan, 1956; Laugwitz, "Dif ferent ia l -  

geometrie," Teubner 1960;  or Helgason, "Dif ferent ia l  geometry and symmetric 

spaces," Academic Press, 196? .  n P) C ( u , V  n P) , 

since r < k,  and hence can be deformed i n t o  V n P .  T h i s  completes the 

proof. 

'I 

i 

Let M be a smooth manifold. 

D E F I N I T I O N .  An a f f i n e  connection a t  a point  p E M i s  a function 

which assigns t o  each tangent vector Xp E T% and t o  each vector f i e l d  Y 

a new tangent vector 

Xp k Y E T% 

called the convariant derivative* of Y i n  the d i r ec t ion  X This i s  re-  

quired t o  be b i l i nea r  a s  a function of X and Y.  Furthermore, i f  
P' 

P 

f :  M - R  

i s  a r e a l  valued function, and i f  fl denotes the vector f i e l d  

(fYIq = 

then k i s  required t o  s a t i s f y  the i d e n t i t y  

* Note that our X b Y coincides with Nomizu's ",Y. The nota t ion  i s  in-  
tended t o  suggest t h a t  the  different:al operator 
Y. 

X a c t s  on the vector f i e l d  
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(As usual, %f denotes the d i r ec t iona l  der iva t ive  of f i n  the d i rec t ion  

X - I  P 
A global a f f ine  connection (or b r i e f l y  a connection) on M i s  a 

function which assigns t o  each p E M an a f f i n e  connection kp a t  P, 

sa t i s fy ing the following smoothness condition. 

1 )  I f  X and Y a re  smooth vector f i e l d s  on M then the vector 

f i e l d  X I- Y,  defined by the i d e n t i t y  

( X  I- Y), = xp kp Y , 

must a l so  be smooth. 

Note that: 

( 2 )  X I- Y i s  b i l i nea r  as a function of X and Y . 
( 3 )  (fx) I - Y  = f ( X  I- Y) , 
( 4 )  ( X  I- (fY) = (Xf)Y + f ( X  kY) . 
Conditions ( 1 )  , ( 2 )  , ( 3 )  , ( 4 )  can be taken as the de f in i t i on  of 

a connection. 
1 

I n  terms of l oca l  coordinates u , . . . ,un defined on a coordinate 

neighborhood U C M, the connection I- i s  determined by n3 smooth r e a l  

valued functions r i j  on U,  as follows. Let ak denote the vector 

f i e l d  a on U.  Then any vector f i e l d  X on U can be expressed 

uniquely as 

k 

2 

k= 1 

where the  xk a re  r e a l  valued functions on U. I n  pa r t i cu la r  the vector 

f i e l d  a, k a j  can be expressed as 

These functions r k  determine the connection completely on U. i 3  
I n  f a c t  given vector f i e l d s  

expand X I- Y by the r u l e s  ( 2 ) ,  ( 3 )  , ( 4 )  ; yie ld ing the formula 

X = l x i a i  and Y = L $ a j  one can 

k i  

8 8.  COVARIANT DIFFERENTIATION 4 5  

where the symbol yk stands for the real valued function 
,i 

r i j  k on u, Conversely, given any smooth real valued functions 

one can define X k Y by the formula ( 6 ) .  The r e s u l t  c l ea r ly  s a t i s f i e s  

the conditions ( 1 1 ,  ( 2 1 ,  ( 3 ) ,  (4), ( 5 ) .  

Using the connection I- one can define the covariant der iva t ive  of 

a vector f i e l d  along a curve i n  M .  F i r s t  some de f in i t i ons .  

A parametrized curve i n  M i s  a smooth function c from the r e a l  

numbers t o  M. A vector f i e l d  V along the curve c i s  a function which 

assigns t o  each t E R a tangent vector 

Vt TMc(t) . 
T h i s  i s  required t o  be smooth i n  the following sense: 

t i on  f on M the correspondence 

For any smooth func- 

t -Vtf 

should define a smooth function on R .  

A s  an example the ve loci ty  vector f i e l d  $ of the curve i s  the 

vector f i e l d  along c which i s  defined by the r u l e  

x dc = c * x  d 

Here d 
denotes the standard vector f i e l d  on the  r e a l  numbers, and 

denotes the homomorphism of tangent spaces induced by the map 

D i a g r a m  9 . )  
c .  (Compare 

D i a g r a m  g 
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Now suppose t h a t  M i s  provided w i t h  a n  a f f i n e  connection. Then 
DV 

any vec tor  f i e l d  V a long  c determines a new vec tor  f i e l d  along c 

c a l l e d  the covar ian t  d e r i v a t i v e  of V .  The opera t ion  
DV 

v - Z €  

i s  charac te r ized  by t h e  fol lowing three axioms. 

D(V+W) DV DW 
a) = = + = .  
b )  If f i s  a smooth real  valued func t ion  on R then 

DV D(fV) = $ V + f =  . at 

c )  If V i s  induced by a vec tor  f i e l d  Y on M ,  that i s  if 
dc 

for each t ,  then i s  equa l  t o  -m k Y V t  = Y c ( t )  
( =  t h e  covar ian t  d e r i v a t i v e  of 

v e l o c i t y  v e c t o r  of c )  

Y i n  t h e  d i r e c t i o n  of t h e  

DV 
V - -m LFDlMA 0 . 1  . 

which s a t i s f i e s  these three condi t ions .  
There i s  one and only one opera t ion  

PROOF: Choose a l o c a l  coordinate  system f o r  M ,  and l e t  

u l ( t ) ,  . . , u n ( t )  denote the coord ina tes  of t h e  p o i n t  c ( t ) .  The vec tor  

f i e l d  V can be expressed uniquely i n  t h e  form 

where 

subse t  of R), and a , ,  ..., an are the  s tandard vec tor  f i e l d s  on t h e  co- 

ord ina te  neighborhood. It fol lows from ( a ) ,  ( b ) ,  and ( c )  that 

v' , . . . ,vn are real valued func t ions  on R (or a n  appropr ia te  open 

w Conversely, d e f i n i n g  

that condi t ions  ( a ) ,  (b), and ( c )  are s a t i s f i e d .  

by this  formula, i t  i s  n o t  d i f f i c u l t  t o  v e r i f y  

A vec tor  f i e l d  V a long  c i s  s a i d  t o  be a p a r a l l e l  vec tor  f i e l d  
DV 

i f  the covar ian t  d e r i v a t i v e  i s  i d e n t i c a l l y  zero.  

a 

§ 8. COVARIANT DIFFERENTIATION 4 7  

LEMMA 8 . 2 .  Given a curve c and a tangent  v e c t o r  V, 
a t  t h e  p o i n t  c ( o ) ,  
vec tor  f i e l d  V a long  c which extends Vo.  

t h e r e  i s  one and only one p a r a l l e l  

PROOF. The d i f f e r e n t i a l  equat ions 

have s o l u t i o n s  v k ( t )  

v k ( 0 ) .  

a l l  r e l e v a n t  va lues  of t .  

Real Var iab les ,"  p .  1 5 2 . )  

which are uniquely determined by the i n i t i a l  va lues  

Since these  equa t ions  are l i n e a r ,  t h e  s o l u t i o n s  can be defined for 

(Compare Graves, "The Theory of Funct ions of 

The vec tor  Vt i s  s a i d  t o  be obtained from Vo by p a r a l l e l  t r a n s-  

l a t i o n  along c .  

Now suppose that M i s  a Riemannian manifold. The inner product 

of two vec tors  Xp, Yp w i l l  be denoted by < X p ,  Y p >  . 

DEFINITION. A connection 1 on M i s  compatible w i t h  t h e  Rieman- 

n i a n  met r ic  i f  p a r a l l e l  t r a n s l a t i o n  preserves  i n n e r  p roduc ts .  I n  o ther  words, 

f o r  any parametrized curve c and any p a i r  P, P '  of' p a r a l l e l  v e c t o r  f i e l d s  

along c ,  the inner  product  < P , P ' >  should be cons tan t .  

LEMMA 8 . 3 .  Suppose that t h e  connection i s  compatible w i t h  
the met r ic .  L e t  V, W be any two vec tor  f i e l d s  a long  c .  
Then 

PROOF: Choose p a r a l l e l  vec tor  f i e l d s  P , ,  . . . ,  Pn a long  c which 

are orthonormal a t  one p o i n t  of c and hence a t  every p o i n t  of c .  Then 

t h e  given f i e l d s  V and W can be expressed as 1 viPi and 2 wjPj respec-  

t i v e l y  (where vi = <V,Pi> i s  a real valued f u n c t i o n  on R) . It f o l -  

lows that <V,W> = 1 viwi and t h a t  

Theref o re  

which completes the proof .  



11. RIEMANNIAN GEOMETRY 48 

COROLLARY 8 . 4 .  For any vector f i e l d s  Y,Y'  on M and any 
vector Xp E TMp: 

xp < Y , Y ' >  = <xp k y,y;> + <yp,xp I- Y ' >  . 

P; PROOF. Choose a curve c whose veloci ty  vector a t  t = 0 i s  X 

and apply 8.3. 

f ies the ident i ty*  

DEFINITION 8.5. A connection t i s  ca l led  symmetric i f  it satis- 

(X t Y) - ( Y  I- X )  = [X,YI I 

(AS usual, [X,YI denotes the poison bracket  [X,Ylf = X(Yf) - Y(Xf) of 

two vector f i e l d s . )  Applying this i d e n t i t y  t o  the case X = a,, Y = a 
since [ a  , a  1 = 0 one obtains the  r e l a t i o n  

j '  

1 3  
k k r i j  - r j i  = 0 .  

then using formula ( 6 )  it i s  not d i f f i c u l t  t o  k 
Conversely i f  r i j  = r j i  
ve r i fy  that the connection k i s  symmetric throughout the coordinate neigh- 

borhood. 

LEMMA 8.6. 
A Riemnnian manifold possesses one and only one sym- 
metric connection which i s  compatible with i t s  metric.  

(Fundamental lemma of Riemannian geometry.) 

(Compare Nomizu p .  76, Laugwitz p .  95.) 

PROOF of uniqueness. Applying 8 . 4  t o  the vector f i e l d s  ai,aj,a,, 
and s e t t i n g  < a a > = g jk  one obtains the iden t i ty  j '  k 

a, gJk = < a, t a j , a k >  + < a j , a i  t a k >  . 
Permuting i , j ,  and k this gives three  l i nea r  equations r e l a t i n g  the  

* 

The "covariant second derivative" of a r e a l  valued function f along two 
vectors $,Yp t o  be the expression 

The following reformulation may (or may not)  seem more i n t u i t i v e .  Define 

x p ( Y f )  - '5 k Y ) f  

where Y denotes any vector f i e l d  extending Y It can be ver i f ied  that 
this expression does not  depend on the choice of Y. 
LRmma 9.1 below.) Then the  connection i s  symmetric i f  this second deriva- 
t i v e  i s  symmetric as a function of Xp and Y 

P' 
(Compare  the proof of 

P' 
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three quan t i t i e s  

I- a j , a k > ,  < a j  ' ai,a,>, and <a, a j , a i >  * 

(There are  only three such quan t i t i e s  since a, t a j  = a j  1 a, .) These 

equations can be solved uniquely; yielding the f i r s t  Chr is tof fe l  i den t i ty  

' a j , a k >  = 7 1 ( a i g j k  + aj@;ik - a@i j )  ' 

The l e f t  hand s ide  of this i d e n t i t y  i s  equal t o  1 r i j  P gQk . Multiplying 

P 
by the inverse (gkP) of the matrix 

f e l  i den t i ty  
(gPk) this y i e lds  the second Christof-  

Thus the connection i s  uniquely determined by the  metric.  

Conversely, defining r i j  P by t h i s  formula, one can ve r i fy  that the 

r e su l t i ng  connection i s  symmetric and compatible with the metric.  

completes the proof. 

T h i s  

An a l t e rna t ive  charac ter iza t ion  of symmetry w i l l  be very useful  

l a t e r .  Consider a "parametrized surface' '  i n  M: that i s  a smooth function 

s: R2 -c M . 

By a vector f i e l d  V along s is meant a function which assigns t o  each 

(x,y) 6 R* a tangent vector 

Y X , Y )  TMS(x,Y) . 
A s  examples, the two standard vector f i e l d s  a and & give r i s e  t o  vec- 
t o r  f i e l d s  s, a and s* a along s .  These w i l l  be denoted b r i e f l y  by 

as and $ ; and ca l led  the  "velocity vector f i e lds"  of s .  

For any smooth vector f i e l d  V along s the covariant der iva t ives  
% and 5 DV a re  new vector f iedds ,  constructed as follows. For each fixed 

yo, r e s t r i c t i n g  V t o  the curve 

x - S ( X , Y 0 )  

one obtains a vector f i e l d  along this curve. 

respect  t o  x i s  defined t o  be 

the e n t i r e  parametrized surface s. 

Its covariant der iva t ive  with 

( )(x,y,) . T h i s  defines % along 

A s  examples, we can form the two covariant der iva t ives  of the two 
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as as D as D as 
vec tor  f i e l d s  and . The d e r i v a t i v e s  and are 

simply t h e  a c c e l e r a t i o n  v e c t o r s  of s u i t a b l e  coordinate  curves.  However, 

t h e  mixed d e r i v a t i v e s  as and -& cannot be descr ibed  so  simply. 
X 5  

D as D as 
ax ay ay ax LEMMA 8 .7 .  If t h e  connection i s  symmetric then -- = -- . 

PROOF. Express b o t h  s i d e s  i n  terms of a l o c a l  coordinate  system, 

and compute. 
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§9.  The Curvature Tensor 

The curvature t ensor  R of a n  a f f i n e  connection t measures t h e  

e x t e n t  t o  which t h e  second covar ian t  d e r i v a t i v e  a, t- ( a .  t Z) i s  sym- 

metr ic  i n  i and j .  Given v e c t o r  f i e l d s  X,Y,Z d e f i n e  a new vec tor  f i e l d  

R ( X , Y ) Z  by the i d e n t i t y  

J 

* 

R ( X , Y ) Z  = -X t- ( Y  1 Z) + Y k ( X  t- Z) + [X,YI t Z . 

LEMMA 9 .1 .  The value of R ( X , Y ) Z  a t  a p o i n t  p E M 
depends only on t h e  v e c t o r s  X , Y  , Z  a t  this p o i n t  
p and no t  on their va lues  a t  nearby p o i n t s .  Fur ther -  
more t h e  correspondence 

P P P  

X P J P J P  - R ( X p J p ) Z p  

from T$ x T% x T$ t o  T$ i s  t r i - l i n e a r .  

B r i e f l y ,  this  lema can be expressed by saying that R i s  a " tensor ."  

PROOF: Clear ly  R ( X , Y ) Z  i s  a t r i - l i n e a r  f u n c t i o n  of X,Y,  and Z .  

I f  X i s  replaced by a m u l t i p l e  fX then t h e  t h r e e  terms -X t- ( Y  I- Z ) ,  

Y 1 ( X  t- Z ) ,  [X,YI t- 2 are rep laced  r e s p e c t i v e l y  by 

i) -fX t - ( Y  t - Z )  , 
ii) (Yf)(X t- Z) + fY 1 ( X  t- Z) , 

iii) - (Yf)(X t- Z) + f[X,YI t- z . 
Adding these three terms one o b t a i n s  t h e  i d e n t i t y  

R(fX,Y)Z = fR(X,Y)Z . 
Corresponding i d e n t i t i e s  f o r  Y and Z are e a s i l y  obtained by similar 

computations. 

Now suppose that X = 1 Y = 1 Y i a j  , and z = 1 zkak. 

Then 

R ( X , Y ) Z  = z R(xiai,yjaj) (zkak) 

* Nomizu g i v e s  R the opposi te  sign. Our s i g n  convention has the advan- 
t a g e  that ( i n  t h e  Riemannian case)  the inner product  
co inc ides  w i t h  t h e  c l a s s i c a l  symbol R 

<R(a , ,a i )a j ,ak> 
h i j k  ' 
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Evaluating this expression a t  p one obtains the formula 

( R ( X , Y ) Z ) p  = 1 X'(P)Yj(P)zk(P) (R(ai ,aj)ak\ ,  

WMch depends only on the values of the functions xi ,yj ,zk a t  p, and 

not  on t h e i r  values a t  nearby points .  T h i s  completes the proof. 

Now consider a parametrized surface 

s :  R 2 - M .  

Given any vector f i e l d  V along s .  one can apply the two covariant d i f -  

f e r en t i a t ion  operators and 3 
not  commute with each other.  

t o  V. I n  general  these operators w i l l  D 

D D  D D  as as 
u m i m 9 . 2 .  * x v - x * v  = R ( Z ' * b  . 

PROOF: Express both s ides  i n  terms of a loca l  coordinate system, 

and compute, making use of the i d e n t i t y  

a j  I- ( a i  F a,) - a, t- (aj F a,) = R ( a i , a j ) a k  . 

[ I t i s i n t e r e s t i n g  t o  ask whether one can construct  a vector f i e l d  

P along s which i s  p a r a l l e l ,  i n  the sense that 

D 
z p  = 0, E P  = 

p ( o , o )  

D 

a t  the or ig in .  I n  general  no such and which has a given value 

vector f i e l d  e x i s t s .  However, i f  the curvature tensor happens t o  be zero 

then P can be constructed as follows. Let P ( x , o )  be a p a r a l l e l  vector 

f i e l d  along the x-axis, s a t i s fy ing  the given i n i t i a l  condition. For each 

f ixed xo l e t  P be a p a r a l l e l  vector f i e l d  along the curve 
(Xo,Y)  

Y - S ( X 0 , Y )  , 

b v i n g  the right value for y = 0 .  T h i s  defines P everywhere along s .  

Clearly P i s  iden t i ca l ly  zero; and & P i s  zero along the x-axis. 

Now the iden t i ty  
Y 

D D  D D  
3 x P - a x y P  = R ( , % & %  = 0 

D D  D implies that *x P = 0. I n  other words, the vector f i e l d  P i s  

p a r a l l e l  along the curves 

Y - S(X0,Y) . 

§ 9 .  T B  CURVATURE TENSOR 5 3  

= 0, this implies t ha t  & P i s  iden t i ca l ly  zero; D 
Since ( 3% P ) ( X o , O )  

and completes the proof that P i s  p a r a l l e l  along 3.1 

Henceforth we w i l l  assume that M i s  a Riemannian manifold, pro- 

vided with the unique symmetric connection which i s  compatible with i t s  

metric.  I n  conclusion we w i l l  prove t h a t  the tensor R s a t i s f i e s  four 

symmetry r e l a t ions .  

LEMMA 9 . 3 .  The curvature tensor of a Riemannian manifold 
s a t i s f i e s :  
( 1 )  

( 2 )  

R ( X , Y ) Z  + R ( Y , X ) Z  = 0 

R ( X , Y ) Z  + R ( Y , Z ) X  + R(2,X)Y = 0 

( 3 )  
(4) < R ( X , Y ) Z , W >  = < R ( Z , W ) X , Y >  . 

< R ( X , Y ) Z , W >  + < R ( X , Y ) W , Z >  = 0 

PROOF: The skew-symmetry r e l a t ion  ( 1 )  follows immediately from the 

de f in i t i on  of R .  

Since a l l  three terms of ( 2 )  are tensors,  it i s  su f f i c i en t  t o  

prove ( 2 )  when the bracket products [ X , Y I ,  [ X , Z l  and [Y,Zl a r e  a l l  

zero. Under this hypothesis w e  must ve r i fy  the iden t i ty  

- x  k ( Y  I -2)  + Y I - ( X  t -2 )  

- Y  I - ( 2  I - X )  + z F ( Y  I - X )  

- 2 I - ( X  I -Y )  + x I - ( 2  I - Y )  = 0 .  

But the  symmetry of the connection implies that 

Y 1 z - z k Y  = [Y,ZI  = 0 . 
Thus the upper l e f t  term cancels the lower r i g h t  term. 

maining terms cancel i n  pa i r s .  T h i s  proves ( 2 ) .  

Similarly the r e-  

To prove ( 3 )  w e  must show that the  expression <R(X,Y)Z ,W> is 
skew-symmetric i n  2 and W. This i s  c l ea r ly  equivalent t o  the a s se r t ion  

that 

< R ( X , Y ) Z , Z >  = O 

for a l l  X,Y,Z. Again we may assume that [X,Yl = 0, SO t h a t  

< R ( X , Y ) Z , Z >  i s  equal t o  

< -  x I- ( Y  I- 2 )  + Y t- ( X  t- Z ) , Z >  . 
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In other words we must prove that the expression 

<Y 1 (X 1 Z),Z> 

is symmetric in X and Y. 

Since [X,YI = 0 the expression YX <Z,Z> is symmetric in X 

and Y. Since the connection is compatible with the metric, we have 

x <Z,Z> = 2 (x 1 z,z > 

Yx <z,z> = 2 (Y I-(X k Z),Z> + 2 (x k Z,Y I- z> 
hence 

. 
But the right hand term is clearly symmetric in X and Y. Therefore 

(Y k (X I- Z) ,Z> is symmetric in X and Y; which proves property (3). 

Property (4) may be proved from ( I ) ,  ( 2 1 ,  and (3) as follows. 

<R (X. Y 2. W > 

<R (Z.W) X . Y >  

Formula (2) asserts that the sum of the quantities at the vertices 

of shaded triangle W is zero. Similarly (making use of ( 1 )  and (3)) the 

sum of the vertices of each of the other shaded triangles is zero. Adding 

these identities for the top two shaded triangles, and subtracting the 

identities for the bottom ones, this means that twice the top vertex minus 

twice the bottom vertex is zero. This proves ( 4 ) ,  and completes the proof. 

§ 10. GEODESICS AND COMPLETENESS 5 5  

$ 1 0 .  Geodesics and Completeness 

Let M be a connected Riemannian manifold. 

DEFINITION. A parametrized path 
y :  I -+M, 

where I denotes any interval of real numbers, is called a geodesic if the 

acceleration vector field & $ is identically zero. 
vector field 8 must be parallel along y .  If 7 is a geodesic, then the 

Thus the velocity 

identity 

shows that the length Il$ll = <%, $>”’ of the velocity vector is 

constant along 7. Introducing the arc-length function 

s(t) = 1 @lldt + constant 

This statement can be rephrased as follows: The parameter t along a 

geodesic is a linear function of the arc-length. The parameter t is actu- 

ally equal to the arc-length if and only if l l d y I I  = 1 .  aT 
1 In terms of a local coordinate system with coordinates u , . . . ,u“ 

1 a curve t - 7(t) E M determines n smooth functions u (t) , . . . ,un(t). 
The equation & 8 for a geodesic then takes the form 

The existence of geodesics depends, therefore, on the solutions of a certain 

system of second order differential equations. 

More generally consider any system of equations of the form 

d2;’ = T(<, -df; d< ) 
dt2 

. 
+ Here u stands for ( u ’ ,  ..., un) and 7 stands f o r  an n-tuple of Cm 

functions, all defined throughout some neighborhood U of a point 

(zl ,Tl) E R2” . 
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MISTENCE AND UNIQUENESS THEOREM 1 0 . 1 .  There e x i s t s  a 
neighborhood W of the point  (T, ,Yl) and a number 
E > 0 so  that, for each (To,To) E W the  d i f feren-  

has a unique solu t ion  t -<(t) which i s  defined for 
It\ < E, and s a t i s f i e s  the  i n i t i a l  conditions 

Furthermore, the so lu t ion  depends smoothly on the i n -  
i t i a l  conditions. I n  other words, the correspondence 

Go ,Yo, t) + 3 t) 

from w x ( -E ,E)  t o  R~ i s  a ern function of a l l  
2n+1 var iables .  

i dui PROOF: Introducing the new var iables  v = t h i s  system 

second order equations becomes a system of ?n f i r s t  order equations: 

of n 

The a s se r t ion  then follows from Graves, "Theory of Functions of Real V a r i -  

ables ,"  p. 166 .  (Compare our 5 2 . 4 . )  

Applying this theorem t o  the  d i f f e r e n t i a l  equation f o r  geodesics, 

one obtains the following. 

LEMMA 1 0 . 2 .  For every point  po on a Riemannian 
manifold M there  e x i s t s  a neighborhood U of p, 
and a number E > 0 s o  that: for each p E U and 
each tangent vector v E T% with length < E 

there  i s  a unique geodesic 

y V :  ( - 2 , 2 )  + M  
sa t i s fy ing  the  conditions 

dYV 
Y V ( O )  = P, ( 0 )  = v . 

PROOF. I f  we were wi l l i ng  t o  replace the i n t e r v a l  (-2,p) by an 

a r b i t r a r i l y  small in t e rva l ,  then this statement would follow immediately 

from 1 0 . 1 .  To be more prec ise ;  there  e x i s t s  a neighborhood U of Po and 
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numbers E ~ , E ~  > 0 so that: f o r  each p E U and each v E T Mp w i t h  

I1vII < E~ there i s  a unique geodesic 

y v :  ( - 2 ~ ~ , 2 ~ ~ )  - + M  

s a t i s fy ing  the required i n i t i a l  conditions. 

To obtain the sharper statement it i s  only necessary t o  observe that 

the d i f f e r e n t i a l  equation for geodesics has the following homogeneity pro- 

per ty .  L e t  c be any constant .  I f  the  parametrized curve 

i s  a geodesic, then the parametrized curve 

t -+ Y ( C t )  

w i l l  a l s o  be a geodesic. 

Now suppose that E i s  smaller than Then if I/v(( < E and 

( t l  < 2 note tha t  

I ( v / E ~ I I  < and ( E 2 t (  < 2 ~ ~  . 
Hence we can define y v ( t )  t o  be y V l E 2 ( ~ , t )  . This proves l o . ? .  

T h i s  following notat ion w i l l  be convenient. Let v E TM be a 
9 

tangent vector,  and suppose that there  e x i s t s  a geodesic 

y :  [ O , l l  - + M  

s a t i s fy ing  the conditions 

dy Y ( 0 )  = 9, ,(o) = v. 

Then the point  y ( 1 )  E M w i l l  be denoted by exp (v )  and called the 

exponential of the tangent vector v .  The geodesic y can thus be des- 

cribed by the formula 

4 * 

r ( t )  = expq(tv) . 

* The h i s t o r i c a l  motivation for this terminology i s  the following. I f  M 
i s  the ~ o u p  of a l l  n x n uni tary  matrices then the tangent space TMI 
a t  the i d e n t i t y  can be iden t i f i ed  with the space of n x n skew-Hermitian 
matrices. The function 

expI: TMI -+ M 

as defined above i s  then given by the  exponential power s e r i e s  

expI(A) = I + A + -&A2 + & A 3  + . . .  . 
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-ma 1 0 . 2  says tbt  expq(v) i s  defined proving that IIvi/ i s  small enough. 

1n general, exp (v )  i s  not defined for la rge  vectors v. However, i f  

defined a t  a l l ,  expq(v) i s  always uniquely defined. 
q 

DEFINITION. The manifold M i s  geodesically complete i f  exp q (v )  

i s  defined f o r  a l l  9 E M and a l l  vectors v E T%. T h i s  i s  c l ea r ly  equiva- 

l e n t  t o  the following requirement: 

For every geodesic segment y o :  [a ,b l  - M  it should be possible 

t o  extend T o  t o  an i n f i n i t e  geodesic 

y :  R + M  . 

We w i l l  r e tu rn  t o  a study of completeness a f t e r  proving some local  r e s u l t s .  

Let TM be the tangent manifold of M ,  consist ing of a l l  p a i r s  

(p,v) with p E M, v E T%. We give TM the following C" s t ruc ture :  

if (u' , . . . ,un) i s  a coordinate system i n  an open s e t  U C M then every 

tangent vector a t  

where a, = 

a coordinate system on the open set 

Lemma 1 0 . 2  says t h a t  for each p E M the map 

q E U can be expressed uniquely a s  t ' a ,  +.  . .+ tnan,  
. Then the functions u1 , . . . ,  un, t '  ,..., tn const i tu te  a s '9 

TU C TM. 

(q,v) - expq(v) 

i s  defined throughout a neighborhood V of the point  (p,O) E TM. Further- 

more this map i s  d i f f e ren t i ab le  throughout V .  

Now consider the smooth function F:  V - M x M defined by 

F(q,v) = (q, exp,(v)). We claim t h a t  the Jacobian of F a t  the point  

(P,O) i s  non-singular. I n  f a c t ,  denoting the induced coordinates on 

U x U C M x M by 1 (d ,.. . , u ~ , u 2 ,  ..., u:), we have 

F*( - - )  a = - a a t J  a$ 

Thus the Jacobian matrix of F a t  (p,O) has the form 

hence i s  non-singular. 

It follows f r o m t h e  impl i c i t  function theorem that F m P S  Some 

neighborhood V '  of (p,o) E TM diffeomorphically onto some neighborhood 

of (p,p) E M x M .  We may assume that the f i r s t  neighborhood V '  cons is ts  

of a l l  p a i r s  (q,v) such t h a t  q belongs t o  a given neighborhood U '  of 

p and such that / /v/ /  < E. Choose a smaller neighborhood W of p so  tha t  

F(V1) 1 W x W .  Then we have proven the following. 

LEMMA 10 .3 .  For each p E M there e x i s t s  a neighborhood 
W and a number E > 0 so that: 

geodesic i n  M of length < E .  

T h i s  geodesic depends smoothly upon the  two 
points .  ( I . e . ,  if t-* e x p q l ( t v ) ,  0 5 t 5 1 ,  i s  the 
geodesic jo in ing q1 and q,, then the pa i r  (ql,v) E 

TM depends d i f f e ren t i ab ly  on (q l  ,q2) . )  

( 1 )  Any two points  of W a re  joined by a unique 

(2) 

each q E W the map expq maps the open 
diffeomorphically onto an open s e t  

us 1 w. 

REMARK. With more care it would be possible t o  choose W s o  that 

Com- the geodesic joining any two of  i t s  points l i e s  completely within 

pare J .  H .  C .  Whitehead, Convex regions i n  the  geometry of paths, 

l y  Journal  of Mathematics (Oxford) Vol. 3 ,  ( 1 9 3 2 ) ,  pp. 3 3- 4 2 .  

W .  

Quarter- 

Now l e t  u s  study the re la t ionship  between geodesics and arc-length.  

THEOREM 1 0 . 4 .  Let W and E be a s  i n  Lemma 1 0 . 3 .  Let 

y :  [ 0 , 1 1  -* M 

be the geodesic of length < E jo in ing two points of W ,  
and l e t  

o: [ 0 , 11  -* M 

be any other piecewise smooth path jo in ing the same two 
points.  Then 

1 

Il$lldt 5 s Il$lldt , 
0 0 

where equal i ty  can hold only i f  the point  s e t  
coincides with y (  [0 ,1  1 ) .  

c ~ ( [ o , i l )  

Thus y i s  the  shor tes t  pa th  jo in ing i t s  end points .  

The proof w i l l  be based on two lermnas. Let q = y ( o )  and l e t  Us 
be a s  i n  1 0 . 3 .  
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LEMMA 10.5.  I n  Uq, the geodesics twough q a re  
the orthogonal t r a j e c t o r i e s  of hypersurfaces 

11v11 = constant 1 . { expq(v) : v E TMq, 

PROOF: Let  t -  v ( t )  denote any curve i n  TMq with Ilv(t) I( = 1 ,  

We must show t h a t  the corresponding curves 

t - exPq(rov( t) ) 

i n  us, where 0 < ro < E ,  are  orthogonal t o  the  r a d i a l  geodesics 

r - exp 9 ( r v ( t O ) )  . 

I n  terms of the parametrized surface f given by 

f ( r , t )  = exp, ( rv( t ) ) ,  o 5 r < E , 
we must prove that 

af af < Zlat; > = 0 

f o r  all ( r , t ) .  

Now 
a ar af D ar ar af D a f  
3-F <aFG€> = <aFaFG€> + < w a F z E >  

The f i r s t  expression on the  r i g h t  i s  zero since the curves 

r -, f ( r , t )  

a r e  geodesics. The second expression i s  equal t o  

af ar ar 
since l l a F l l  = Ilv(t)  11 = 1 .  Therefore the quanti ty <=,=.) i s  indepen- 

dent of r .  But for r = 0 we have 

f ( o , t )  = exp (0) = q 9 
af ar ar hence = ( o , t )  = 0. Therefore <=,=> i s  iden t i ca l ly  zero, which com- 

p le t e s  the  proof. 

Now consider any piecewise smooth curve 

m: [ a ,b l  * Uq - (q) . 
Each point  w ( t )  can be expressed uniquely i n  the form e x p , ( r ( t ) v ( t ) )  with 

0 < r ( t )  < E ,  and Ilv(t)II = 1 ,  v ( t )  6 TMq. 

LEMMA 10 .6 .  The length s", 11$11 d t  i s  @eater  than Or 

equal t o  
function r ( t )  i s  monotone, and the function v ( t )  is constant. 

Ir(b) - r (a)  1 ,  where equal i ty  holds Only if the 
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Thus the shor tes t  pa th  jo in ing two concentric spherical  s h e l l s  

around q i s  a r a d i a l  geodesic. 

PROOF: L e t  f ( r , t )  = exp ( r v ( t ) ) ,  so that w ( t )  = f ( r ( t ) , t )  
q 

Then 

Since the two vectors on the r i g h t  a r e  mutually orthogonal, and since 
llaFll ar = I ,  this gives 

where equal i ty  holds only i f  a f  = 0 ;  hence only i f  $ = 0 .  Thus 

a a 

where equal i ty  holds only i f  r ( t )  i s  monotone and v ( t )  i s  constant. 

T h i s  completes the proof. 

The proof of Theorem 1 0 . 4  i s  now straightforward. Consider any 

piecewise smooth path w from q t o  a point  

q '  = exp ( r v )  E Us ; 
9 

where 0 < r < E ,  llvll = 1 .  Then for any 6 > 0 the pa th  w m i s t  con- 

t a i n  a segment jo in ing the spher ica l  s h e l l  of radius  6 

s h e l l  of radius r ,  and ly ing  between these two she l l s .  The length of this 

segment w i l l  be 2 r - 6; hence l e t t i n g  6 tend t o  0 the length of m 

w i l l  be 2 r. If w([O,ll) does not coincide with 7([O,ll), then w e  

e a s i l y  obtain a s t r i c t  inequal i ty .  

t o  the  spher ica l  

T h i s  completes the proof of 1 0 . 4 .  

An important consequence of Theorem 10.4  

COROLL'WY 10 .7 .  Suppose t h a t  a pa th  0: [O,ll -. M, para- 
metrized by arc- length, has length l e s s  than or equal t o  
the length of any other pa th  from ~ ( 0 )  t o  m( l)  . Then m 
i s  a geodesic. 

PROOF: Consider any segment of w lying within an open s e t  W, as 

i s  the following. 

above, and having length < E.. 

1 0 . 4 .  Hence the e n t i r e  pa th  m i s  a geodesic. 
T h i s  segment must be a geodesic by Theorem 

DEFINITION. A geodesic y :  [a ,b l  -. M w i l l  be ca l led  minimal if 
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its length i s  l e s s  than or equal t o  the length of any other piecewise smooth 

path  joining i t s  endpoints. 

Theorem 1 0 . 4  asserts that any su f f i c i en t ly  small segnent of a 

geodesic i s  minimal. 

For example we w i l l  see shor t ly  thh t  a p e a t  c i r c l e  a r c  on the  un i t  sphere 

i s  a geodesic. If such an a rc  has length p e a t e r  than I[, it i s  cer ta in ly  

not  minimal. 

On the  other hand a long geodesic may not  be minimal. 

I n  general, m i n i m a l  geodesics a re  not unique. For example two an t i -  

podal points on a u n i t  sphere a re  joined by i n f i n i t e l y  many minimal geodesics. 

However, the following a s se r t ion  i s  t rue .  

Define the distance p(p,q) between two points p,q E M t o  be the 

grea tes t  lower bound fo r  the arc- lengths of piecewise smooth paths joining 

these points .  T h i s  c l ea r ly  makes M i n t o  a metric space. It follows 

eas i ly  from 1 0 . 4  t h a t  this metric i s  compatible with the usual topologg of M .  

C O R O W Y  10.8. Given a compact s e t  K C M there  e x i s t s  
a number 6 > 0 so  t h a t  any two points of K with d i s-  
tance l e s s  than 6 

length l e s s  than 6 .  Furthermore this geodesic i s  min ima l ;  
and depends d i f f e ren t i ab ly  on i t s  endpoints. 

a r e  joined by a unique geodesic of 

PROOF. Cover K by open s e t s  W,, as i n  1 0 . 3 ,  and l e t  6 be 

small enough so that any two points i n  K with distance l e s s  than 6 l i e  

in a common W,. This completes the proof. 

Recall  t h a t  the manifold M i s  geodesically complete i f  every geo- 

desic segment can be extended i n d i f i n i t e l y .  

THEOREM 10.9  (Hopf and Rinow*). I f  M is geodesically 
complete, then any two points  can be joined by a minimal 
geodesic. 

PROOF. Given p,q E M with distance r > 0 ,  choose a neighborhood 

Up as i n  Lem 1 0 . 3 .  L e t  S C U denote a spher ica l  s h e l l  of radius  6 < E P 

* 

Riemann,Comentarii Math. 
W. Rinow, Ueber den B e g r i f f  d e r - v o l l s t h d l g e n  differentialgeometrischen Fliche,  
Cmen ta r i i ,Vo l .  3 (1931), pp. 209-225. 

Compare p.  341 of G .  de Rham,  Sur la  r educ t ib i l i t 6  d 'un espace de 
Helvetici ,  Vol. 26 (1952); a s  wel l  as H. Hopf and 
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about p. Since S i s  compact, there e x i s t s  a point  

p0 = expp(6v), IIvII = 1 ,  

on S f o r  which the distance t o  q i s  minimized. We w i l l  prove that 

expp(rv) = q .  

T h i s  implies that the geodesic segnent t -, 7 ( t )  = expp( tv) ,  

is ac tua l ly  a minimal geodesic f r o m  p t o  q .  
0 5 t 5 r, 

The proof w i l l  amount t o  showing that a point  which moves along the 

geodesic 7 must get  closer and closer t o  q. I n  f a c t  for each t E [ 6 , r l  

we w i l l  prove that 

~ ( 7 ( t ) , 9 )  = r-t . ( I t )  

T h i s  i den t i ty ,  f o r  t = r, w i l l  complete the proof. 

F i r s t  we w i l l  show t h a t  the equal i ty  ( 1 8 )  i s  t rue .  Since every 

path from p t o  q must pass through S, w e  have 

p(p,q) = f i n  ( P ( P , s )  + p ( s , q ) )  = 6 + p(po,q) 

p(p0,q) = r - 6. Since po = 7 ( 6 ) ,  this prqves ( I 6 ) .  

. 
S E S  

Therefore 

Let to E [ 6 , r l  denote the supremum of those numbers t f o r  which 

( I t )  i s  t rue .  Then by continuity the equal i ty  ( 1  ) i s  t rue  a lso .  

If to < r w e  w i l l  obtain a contradict ion.  Let S '  denote a s m a l l  spheri- 

c a l  s h e l l  of radius  6 

point  of S'  with minimum distance from q .  (Compare D i a g r a m  l o . )  Then 

about the point  7 ( t 0 )  ; and le t  p; E S'  be a 

P ( 7 ( t 0 ) , c i )  = f i n  I ( ~ ( 7 ( t 0 ) , s )  + p(s,q)) = 6 1  + p(p;,q) , S € S  

hence 

(2) p(p;,q) = (r - to) - 6 '  . 
W e  claim that PA i s  equal  t o  7 ( t 0  + s l ) .  I n  f a c t  the t r i ang le  

inequal i ty  states t h a t  

P(P,Pd) 2 P(P,q) - P(P;),q) = to + 6' 

(making use of (2)). But a path  of length prec ise ly  to + 6' 

PA obtained bY following 7 f m m  P t o  7 ( t 0 ) ,  and then following 

a minimal geodesic from Y ( t , )  t o  Pd. Since t M s  broken geodesic has 
minimal length, it fol lows f r o m  Coro l la ry  10 .7  that it I s  an (unbroken) 

from p t o  
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and hence coincides with 7 .  

Thus 7 ( t 0  + 8 ' )  = p;. Now the equali ty ( 2 )  becomes 

p ( 7 ( t 0  + s ' ) , q )  = r - (to + 8 ' )  

to; 

. 

T M ~  contradicts the de f in i t ion  of and completes the proof. 

D i a p a m  10  

A s  a consequence one has the  following. 

COROLLARY 1 0 . 1 0 .  If M i s  geodesically complete then 
every bounded subset of M has compact closure. Con- 
sequently M i s  complete as a metric space ( i . e . ,  every 
Cauchy sequence converges) . 

PROOF. I f  X C M has diameter d then for any p E X the map 

5 - M  maps the d i sk  of radius d i n  TMp onto a compact subset emp: 
of M which (making use of Theorem 1 0 . 9 )  contains X. Hence the closure 

of X i s  compact. 

Conversely, i f  M i s  complete as a metric space, then it i s  not 

d i f f i c u l t ,  using Lemma 10 .3 ,  t o  prove that 

For d e t a i l s  the reader i s  referred t o  Hopf and Rinow. 

not d is t inguish  between geodesic completeness and metric completeness, but  

w i l l  r e f e r  simply t o  a complete Riemannian manifold. 

M i s  geodesically complete. 

Henceforth we w i l l  

'I 
1 

FAMILIAR EXAMPLES OF GEODESICS. In  Euclidean n-space, Rn, with 

the usual coordinate system 

dxl @ dx, +. . .+  dxn @ dxn we have r& = 0 and the equations for a geo- 

desic 7 ,  given by t - (x, ( t ) ,  . . . , xn ( t )  become 

x,, ... ,xn and the usual  Riemannian metric 

2 
T = O  xi J 

d t  
whose solutions a re  the s t r a igh t  l i nes .  TMs could a l so  have been seen as 

follows: it i s  easy t o  show that the formula for a r c  length 

coincides with the  usual  def in i t ion  of a r c  length as the l e a s t  upper bound 

of the lengths of inscribed polygons; 

s t r a igh t  l i n e s  have minimal length, and a re  therefore geodesics. 

from this def in i t ion  i t  i s  c lear  that 

The geodesics on Sn are precisely the great  c i r c l e s ,  t ha t  i s ,  the 

in tersect ions  of Sn with the planes through the center of Sn. 

PROOF. Reflection through a plane E2 i s  an isometry I :  Sn - Sn 

whose fixed point se t  i s  C = Sn n E2 .  Let x and y be two points of C 

with a unique geodesic C '  of minimal length between them. Then, since I 

i s  an isometry, the curve I ( C 1 )  i s  a geodesic of the same length a s  C '  

between I ( x )  = x and I ( y )  = y.  Therefore C '  = I ( C ' ) .  T h i s  implies that 

C '  c c.  
Finally,  since there i s  a great  c i r c l e  through any point of Sn i n  

any given direction,  these a r e  a l l  the geodesics. 

Antipodal points on the  sphere have a continium of geodesics of 

minimal length between them. 

desic of minimal length between them, but an i n f i n i t e  family of non-minimal 

geodesics, depending on how many times the geodesic goes around the sphere 

and i n  which di rec t ion it  starts. 

All other pa i r s  of points have a unique geo- 

By the same reasoning every meridian l i n e  on a surface of revolution 

i s  a geodesic. 

The geodesics on a r i g h t  c i rcular  cylinder Z a re  the generating 
l ines ,  the c i r c l e s  cut by planes perpendicular t o  the generating l ines ,  and 
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the hel ices  on Z. 

11. RIEMANNIAN GEOMETRY 

/---- 

PROOF: I f  L is a generating l i n e  of Z thenwe can set up an 
2 

isometry I: Z - L *R by r o l l i n g  Z onto R2: 

L I 

I I 
,- -. L 

The geodesics on Z a re  j u s t  the images under I-' 

i n  R . Two points  on Z have i n f i n i t e l y  many geodesics between them. 

of the straight l i n e s  

2 
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PART I11 

THE CALCULUS OF VARIATIONS APPLIED TO GEODESICS 

5 1 1 .  The Path Space of a Smooth Manifold. 

Let M be a smooth manifold and le t  p and q be two (not  neces- 

s a r i l y  d i s t i n c t )  points  of M. By a piecewise smooth path  from p t o  q 

w i l l  be m e a n t  a map u): [ o , l l  - M such that 

< tk = 1 of 1') there e x i s t s  a subdivision 0 = to < t, < ... 
[ 0 , 11  so  that each 0 1  [ti-, ,ti] i s  d i f f e ren t i ab le  of c la s s  Cm; 

2 )  m ( 0 )  = p and ~ ( l )  = q.  

The s e t  of a l l  piecewise smooth paths from p t o  q i n  M w i l l  be denoted 

by R(M;p,q), o r  b r i e f l y  by R ( M )  o r  R .  

Later  ( i n  §16) n w i l l  be given the s t ruc ture  of a topological  

space, but  for the moment this w i l l  not be necessary. We w i l l  think of R 

as being something l ike an To start the 

analogy we make the following de f in i t i on .  

" i n f i n i t e  dimensional manifold." 

By the tangent space of 0 a t  a path  u) w i l l  be m e a n t  the  vector 

space consist ing of a l l  piecewise smooth vector f i e l d s  W along u) for 

which W(0) = 0 and W ( 1 )  = 0.  The nota t ion  TRu) w i l l  be used for this 

vector space. 

If F is a real valued function on R i t  is na tu ra l  t o  ask  w h a t  

F*: Tau) +TRRu)) , 
the induced map on the tangent space, should mean .  When F is a function 

which is smooth i n  the usual  sense, on a smooth manifold 

F,: TMp - T R R p )  as follows. Given X c TMp choose a smooth path  

u -+ a ( u )  i n  M, which is defined for -E < u < E , so  that 

M, we can define 

f f (0 )  = P, m(0) dff = x . 
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Then F,(X) i s  equal t o  d(Fi:(U)) l u = o ,  mult ipl ied by the bas i s  vector 

(-& )F(p) mF(P) * 

I n  order t o  carry out an analog9us construction for F: n R, 

the following concept i s  needed. 

DEFINITION. A va r i a t ion  of o (keeping endpoints f ixed) i s  a 

function 

fo r  some E > 0, such that 

6: ( - E , E )  4 R ,  

1 )  6(0) = o 

2 )  there i s  a subdivision 0 = to < t l  < ... < tk = 1 

of [ o , i l  SO that the map 

a :  ( - E , E )  x [0,11 -+ M 

defined by cr(u,t) = 6 ( u ) ( t )  i s  c" on each s t r i p  ( - E , E )  X [ti-,,ti], 

i = 1 ,  ..., k. 

Since each 6(u)  belongs t o  R = R(M;p,q), note that: 

3) O ( U , O )  = p, a ( u , l )  = q for a l l  u E ( -E ,E )  . 

W e  w i l l  use e i t h e r  a o r  5 t o  r e f e r  t o  the var ia t ion .  More 

generally i f ,  i n  the  above de f in i t i on ,  i s  replaced by a neighbor- 

hood p of 0 i n  Rn, then a ( o r  6) i s  called an n-parameter varia-  

t i o n  of a. 

( -E,E.)  

- 
Now 6 may be considered as a "smooth path" i n  n. I ts  "velocity 

given d6 vector'' =(o) E Trio i s  defined t o  be the vector f i e l d  W along o 

by 
an 

Wt = & I t  = , (o,t)  * 

Clearly W E TRo. T h i s  vector f i e l d  W i s  a l s o  ca l led  the  va r i a t ion=-  

t o r  f i e l d  associated w i t h  the va r i a t ion  a.  

Given any W E TRo note that there  e x i s t s  a va r i a t ion  
d5 

6: ( -E ,E )  -+ R which s a t i s f i e s  the  conditions 5(0) = w, ~ ( 0 )  = W. 

In f a c t  one can set 

. (u ) ( t )  = expo(t)(u Wt) . 
By analogy w i t h  the de f in i t i on  given above, i f  F i s  a r e a l  valued 

function on il, we attempt t o  define 

F,: TOw - mq,) 

E ( 0 )  = a, & O )  = w 

as follows. Given W f Taw choose a var ia t ion  E :  ( - E , E )  + n with 

d5 

and set F,(W) 

( )F(m) 
this der iva t ive  w i l l  e x i s t ,  or w i l l  be independent of the choice of 

W e  w i l l  not inves t iga te  w h a t  conditions F must s a t i s f y  i n  order for F, 

t o  have these proper t ies .  

t o  motivate the following. 

equal t o  d(F(:(u)) u lu=o mult ipl ied by the tangent vector 

. Of course without hypothesis on F there i s  no guarantee tha t  

5. 

Ere have indicated how F, might be defined only 

DEFINITION. A pa th  o i s  a c r i t i c a l  path for a function 

F: R - R if and only i f  l u F 0  i s  zero for every va r i a t ion  6 of 
o. 

EXAMPLE. If F takes on i t s  minimum a t  a path mo, and i f  the 

der iva t ives  a r e  a l l  defined, then c l ea r ly  oo i s  a c r i t i c a l  path. 
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$ 1 2 .  The Energy of a Path. 

Suppose now that M i s  a Riemannian manifold. The length of a vec- 

t o r  v E TMP w i l l  be denoted by \ \v(\  = < v,v >*. For w E 0 define the 

energy of w from a t o  b (where 0 5 a < b 5 1 )  as 

1 
W e  w i l l  wr i te  E f o r  Eo. 

T h i s  can be compared with the arc-length from a t o  b given by 

a 

as follows. Applying Schwarz's inequali ty 

a a a 

= 1 and g ( t )  = 1 1 ~ 1 1  we see that with f ( t )  

where equal i ty  holds i f  and only i f  

the parameter t is proportional  t o  arc-length.  

g i s  constant; t h a t  i s  i f  and only if 

Now suppose that there  e x i s t s  a minimal geodesic 7 from p = ~ ( 0 )  

t o  q = ~ ( 1 ) .  Then 

E(Y)  = L(7)2  5 L ( o ) ~  5 E(w) . 
Here the equal i ty  L( 7)  = L(w) can hold only i f  w i s  a l s o  a minimal 

geodesic, possibly reparametrized. (Compare $10.7 . )  On the other hand 

the equal i ty  L ( w )  = E( w) can hold only i f  the parameter i s  proport ional  

toarc- lengthalong w .  T h i s  proves that E(7 )  < E(w) unless w i s  a l s o  

a minimal geodesic. I n  other words: 

LFNM!l 12 .1 .  Let M be a complete Riemannian manifold 
and l e t  p,q E M have distance d. Then the energg 
function 

E: n(M;p,q) - R 
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prec ise ly  on the s e t  of  m i n i m a l  takes on i t s  m i n i m u m  d2 
geodesics from p t o  q. 

We w i l l  now see which paths o E 0 a re  c r i t i c a l  paths f o r  the 

energy function E. 
Let E :  ( - E , E )  - be a var ia t ion  of o, and l e t  Wt = = ( o , t )  au 

be the associated va r i a t ion  vector f i e l d .  Furthermore, l e t :  

Vt = dw = veloci ty  vector of w , 

At = D dm = accelera t ion  vector of w , 

AtV = Vt+ - Vt- = discont inui ty  i n  the ve loci ty  vector a t  t ,  

where o < t < 1 . 
Of course AtV = 0 fo r  a l l  but  a f i n i t e  number of values of t .  

THEOREM 1 2 . 2  ( F i r s t  var ia t ion  formula). The der iva t ive  

I PROOF: According t o  Lemma 8 . 3 ,  we have 

D aa aa <=,x > = 2 <Jiix,x > . a aa aCY 

Theref ore 
1 1 

d D ~ C Y  ~ C Y  
du 

0 0 

By Lemma 8.5 we can subs t i t u t e  & D ~ C Y  for Jii i n  this last  formula. 

Choose 0 = to < tl <...< tk = 1 so t h a t  CY i s  d i f f e ren t i ab le  on 

each s t r i p  ( - E , E )  x [ti-1 , t i] .  Then we can " in tegra te  by par ts"  on 

[ t i - l , t i l ,  as follows. The i d e n t i t y  
i 

a aa aCY D aCY aa aa D aa 
73€ c3im > = <xmx > + (2ii.x x > 

implies that 

! 
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Adding up the corresponding formulas f o r  

t h a t  = 0 for t = 0 or 1 ,  t h i s  gives 

i = 1 ,  . . . ,  k; and using the f a c t  

aa 

1 
1 dE(6(u))  = aa D aa 

du - 
2 

i = l  0 

Se t t ing  u = 0 ,  we now obtain the required formula 

1 

t 0 

This completes the proof. 
d E . 6  

In tu i t i ve ly ,  the f i r s t  term i n  the expression POP T ( o )  shows 

that varying the path (o i n  the d i rec t ion  of decreasing "kink," tends t o  

decrease E ;  see D i a g r a m  1 1  . 

PROOF: Clearly a geodesic i s  a c r i t i c a l  poin t .  Let 0) be a 

c r i t i c a l  poin t .  There i s  a va r i a t ion  of (o with W( t )  = f (  t ) A (  t )  where 

f ( t )  i s  pos i t ive  except t h a t  i t  vanishes a t  the ti. Then 
1 

1 m  
~ ( 0 )  = -! f ( t )  < A ( t ) , A ( t )  > d t .  

0 

This i s  zero i f  and only i f  A ( t )  = c f o r  a l l  t .  Hence each ( o l [ t i , t i + l l  

i s  a geodesic. 

Now pick a va r i a t ion  such that W ( t i )  = at2V. Then 

a, i s  d i f f e ren t i ab le  of c l a s s  C ' ,  even a t  the points ti. Now i t  follows 

from the uniqueness theorem fo r  d i f f e r e n t i a l  equations that (o i s  Cm 

everywhere: thus (o i s  an unbroken geodesic. 

path 

/ /  \ \  

k' path  E ( E )  I 
smaller em 

D i a g r a m  1 1 .  1 

The second term shows that varying the curve i n  the d i r ec t ion  cf i t s  
D accelerat ion vector (2) tends t o  reduce E .  

Recall  that the pa th  (o E n i s  called a geodesic i f  and only if 
D dm 

a, i s  Cm on the whole i n t e r v a l  [ O ,  1 1 ,  and the  accelera t ion  vector m(x) 
of a, i s  iden t i ca l ly  zero along (o. 

COROLLARY 1 2 . 3 .  The path  (o i s  a c r i t i c a l  point  fo r  the 
function E i f  and only i f  0) i s  a geodesic. 
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$ 1  3 .  The Hessian of the Energy Function a t  a C r i t i c a l  Path. 

Continuing with the analogy developed i n  the preceding section,  we 

now wish t o  define a b i l i nea r  functional  

E**: Tn x TO - R Y Y 

when y i s  a c r i t i c a l  point  of the function E, i . e . ,  a geodesic. T h i s  

b i l i nea r  functional  w i l l  be called the Hessian of E a t  y .  

If f i s  a r e a l  valued function on a manifold M with c r i t i c a l  

point  p, then the Hessian 

f,,: T% x TiV$ -r R 

can be defined as follows. Given X,,X, c T% choose a smooth map 

(u1,u2) + a ( u l , u 2 )  defined on a neighborhood of ( 0 , O )  i n  R , with 

values i n  M, s o  that 

2 

Then 

T h i s  suggests defining E,, as follows. Given vector f i e l d s  W 1 , W 2  E TnY 

choose a 2-parameter var ia t ion  

a :  U x [ O , l l  -r M , 

where U i s  a neighborhood of ( 0 , o )  i n  R2,  so that 

aa ( O , O , t )  = W 2 ( t )  . 
=2 

( O , O , t )  = W l ( t ) ,  aa 
x1 4 O , O , t )  = Y ( t ) ,  

(Compare 5 1 1 . )  Then the Hessian E*+(W1,W2) w i l l  be defined t o  be the 

second p a r t i a l  der iva t ive  

a2E(E(ul ,u2) ) 

au, au2 1 ;  ( 0 , O )  

where E(u1,u2) E n denotes the pa th  6 ( u l , u 2 ) ( t )  = a(u1,U2, t )  . T h i s  

second der iva t ive  w i l l  be wr i t t en  b r i e f l y  as - ( O , O )  . a2E 
U1 u2 

The following theorem i s  needed t o  prove that E,, 1s W e l l  defined. 

THEOREM 13.1 (Second va r i a t ion  formula). L e t  6 :  U - r  n 
be a 2-parameter va r i a t ion  of the geodesic y with 
var ia t ion  vector f i e l d s  

Wi = x i ( O , O )  a6 E T R Y ,  i = 1 , 2  . 
1 a2E Then the  second der iva t ive  ( 0 , O )  of the energy 

function i s  equal t o  

where V = $& denotes the  ve loci ty  vector f i e l d  and where 

Dwl DW, DWl 
A t  = E ( t + )  - x(t-) 

denotes the jump i n  DW1 a t  one of i t s  f i n i t e l y  many 
points of d iscont inui ty  i n  the open u n i t  i n t e rva l .  

PROOF: According t o  1 2 . 2  we have 

Theref ore 

- f <  
0 

Let  us evaluate this expression 

an unbroken geodesic, ne have 

so that the f i r s t  and t h i r d  terms a r e  zero. 

Rearranging the second term, we obtain 

I n  order t o  interchange the  two operators and $ , we need t o  

b r ing  i n  the curvature formula, 
dU1 
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D aa D 
J - - F ~ ,  = z w l ,  this y i e lds  D 

Together with the iden t i ty  =,V = 

( 1 3 . 3 )  

Subs t i tu t ing  this expression i n t o  ( 1  3 . 2 )  this completes the proof of 1 3 . 1  . 
a ‘E COROILARY 1 3 . 4 .  

i s  a well defined symmetric and b i l i nea r  function of W1 
and W,. 

a2E PROOF: The second va r i a t ion  formula shows that - ( O , O )  

depends only on the var ia t ion  vector f i e l d s  W 1  and W,, so that 

E,,(W1,W2) i s  well  defined. T h i s  formula a l s o  shows that E,, i s  b i l i n e a r .  

The symmetry property 

The expression E,,(W1,W2) = .-(o,o) 

E*,(W1 ,W2)  = E**(W2, Wl ) 

i s  not a t  a l l  obvious from the second var ia t ion  fornula;  but  does follow 
a2E - a2E 

immediately from the symmetry property dU1dU2 - 7 q - q  . 

REMARK 13.5.  The diagonal terms E,,(W,W) of the b i l i nea r  pa i r ing  

E,, can be described i n  terms of a 1-parameter var ia t ion  of 7. I n  f a c t  

where 6 :  ( - E , E )  + n denotes any var ia t ion  of 7 with var ia t ion  vector 

f i e l d  =(o) 

introduce the two parameter var ia t ion  

d5 equal t o  W .  To prove t h i s  i den t i ty  it i s  only necessary t o  

B(u1,u2) = 6(Ul + u,) 

and t o  note tha t  

A s  an appl ica t ion  of t h i s  remark, we have the following. 

LEMMA 1 3 . 6 .  I f  7 i s  a m i n i m a l  geodesic from p t o  q 
then the b i l i nea r  pa i r ing  E,, i s  pos i t ive  semi-definite. 
Hence the index h of E,, i s  zero. 

PROOF: The inequal i ty  E(G(u)) 2 E ( 7 )  = E ( E ( o ) )  implies that 

5 1 4 .  Jacobi Fie lds :  The Null Space of E,, 

A vector f i e l d  J along a geodesic y i s  cal led a Jacobi f i e l d  

i f  it s a t i s f i e s  the Jacobi d i f f e r e n t i a l  equation 

D2J + R ( V , J ) V  = 0 dtP 
where V = 2 . 
[It can be put  i n  a more fami l iar  form by choosing orthonormal p a r a l l e l  vec- 

t o r  f i e l d s  P l ,  . . . ,  Pn along y .  Then s e t t i n g  J ( t )  = c f i ( t ) P i ( t ) ,  the 

equation becomes 

T h i s  i s  a l i nea r ,  second order d i f f e r e n t i a l  equation. 

where a? = < R ( V , P . ) V , P i >  . I  
independent solutions,  each of which can be defined throughout 7. The 

solutions are  a l l  (?-differentiable. A given Jacobi f i e l d  J i s  com- 

p le t e ly  determined by i t s  i n i t i a l  conditions: 

Thus the Jacobi equation has 2n l inear ly  J J 

D J  
J ( O ) ,  ~ ( 0 )  E TMr(o)  * 

Let p = y ( a )  and q = y(b) be two points on the geodesic 7 ,  

with a f b.  

DEFINITION. p and q a r e  conjugate, along y i f  there e x i s t s  a 

non-zero Jacobi f i e l d  J along y which vanishes f o r  t = a and t = b.  

The mul t ip l i c i ty  of p and q a s  conjugate points i s  equal t o  the dimen- 

sion of the vector space cons is t ing  of a l l  such Jacobi f i e l d s .  

Now l e t  y be a geodesic i n  R = R(M;p,q). Recall  that the s- 
space of the Hessian 

E,,: Tny x TO -R 
7 

W1 E Tn i s  the vector space cons is t ing  of those such that E,,(W1,W2) = 0 
Y 

* I f  7 has se l f - in tersec t ions  then this de f in i t i on  becomes ambiguous. 

One should ra ther  say that the  parameter values a and b are conjugate 
with respect  t o  y .  
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fo r  a l l  W,. The n u l l i t y  v of E,, i s  equal t o  the dimension of this 

n u l l  space. E,, i s  degenerate i f  v > 0 .  

THEORFM 1 4 . 1 .  A vector f i e l d  W1 E Tn belongs t o  the 
n u l l  space of E,, i f  and only i f  W1 i s  a Jacobi f i e l d .  
Hence E,, i s  degenerate i f  and only i f  the end points 
p and q are  conjugate along 7 .  The n u l l i t y  of E,, i s  
equal t o  the mul t ip l i c i ty  of p and q a s  conjugate points .  

7 

PROOF: (Compare the proof of 1 2 . 3 . )  I f  J i s  a Jacobi f i e l d  which 

vanishes at  p and q, then J ce r t a in ly  belongs t o  . The second 

var ia t ion  formula ( $ 1 3 . 1 )  states that 
Tn7 

1 - 7E,,(J,W2) = 1 < W 2 ( t ) , 0 >  + f < W 2 , 0 >  d t  = 0 . 
t 0 

Hence J belongs t o  the n u l l  space. 

Conversely, suppose t h a t  W1 belongs t o  the n u l l  space of E,,. 

Choose a subdivision 0 = to < tl <...< tk = 1 of [ o , l l  s o  that 

WII [ti-,,til i s  smooth fo r  each i. L e t  

function which vanishes f o r  the parameter 

Dositive otherwise; and let  

Then 
1 - 

f :  [0 ,11  - [ O , l l  be a smooth 

values tO,t ,,..., tk and i s  

Since this i s  zero, it follows that W I I [ t i - , , t i l  

each i. 

i s  a Jacobi f i e l d  f o r  

I DW1 

= Ati for 
Now le t  W2 E Tn be a f i e l d  such t h a t  W ; ( t i )  

7 

= 1 , 2  ,..., k-1. Then 

DW1 Hence has no jumps. But a solu t ion  W1 of the Jacobi equation i s  

completely determined by the vectors W1 (ti) and z(ti). Thus it fol- 

lows that the k Jacobi f i e l d s  W I I  [ t i - l , t i l ,  i = 1 ,  ..., k, fit together 

t o  give a Jacobi f i e l d  W1 which i s  C"-differentiable throughout the 

e n t i r e  un i t  i n t e rva l .  T h i s  completes the proof of 1 4 . 1 .  

It follows that the n u l l i t y  v of E,, i s  always f i n i t e .  For 

there  a re  only f i n i t e l y  many l inea r ly  independent Jacobi f i e l d s  along 7 .  

REMARK 1 4 . 2 .  Actually the  n u l l i t y  v s a t i s f i e s  0 5 v < n. Since 

the space of Jacobi f i e l d s  which vanish f o r  t = 0 has dimension 

prec ise ly  n, it i s  c lear  that v 5 n. We w i l l  construct  one 

example of a Jacobi f i e l d  which vanishes f o r  t = 0 ,  

t = 1 .  T h i s  w i l l  imply that v < n. I n  f a c t  l e t  Jt = tVt  where 

V = denotes the ve loci ty  vector f i e l d .  Then 

but not f o r  

a T -  =J - 14J+tg 2 v 

D2J = 0 .  Furthermore R ( V , J ) V  = tR(V,V)V DV z (Since iTt; = o) ,  hence 

= 0 since R i s  skew symmetric i n  the f i r s t  two var iables .  Thus 

J s a t i s f i e s  the Jacobi equation. Since Jo = 0 ,  J, # 0 ,  this 

completes the proof. 

EXAMPLE 1 .  Suppose that M i s  " f l a t "  i n  the sense that the  curva- 

ture tensor i s  iden t i ca l ly  zero. Then the Jacobi equation becomes 

D ~ J  = 0 .  Set t ing  J ( t )  = C f i ( t ) P  ( t )  where Pi a r e  p a r a l l e l ,  i d t  
this becomes - = 0 .  Evidently a Jacobi f i e l d  along 7 can have 

a t  most one zero. Thus there  a re  no conjugate points,  and E,, i s  

non-degenerate. 

d2fi 
d t  

EXAMF'LF 2 .  Suppose that p and q a re  antipodal  points on the 

u n i t  sphere Sn, and l e t  y be a p e a t  c i r c l e  a r c  from p t o  q. 

Then w e  w i l l  see that p and q a re  conjugate with mul t ip l i c i ty  

n-1. Thus i n  this example the n u l l i t y  v of E,, takes i t s  

l a rges t  possible value. 

discussion. 

The proof w i l l  depend on the following 

L e t  a be a 1-parameter va r i a t ion  of 7 ,  not necessari ly keeping 

the endpoints f ixed,  such t h a t  each z(u) i s  a geodesic. That is ,  l e t  

a: ( - E , E )  x [ O , l I  + M  

be a Cm map such that a(0, t)  = y ( t ) ,  and such that each 6(u) [given 

by O(u) (t)  = a ( u , t ) l  i s  a geodesic. 
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LEMMA 1 4 . 3 .  If a i s  such a var ia t ion  of y through 
geodesics, then the va r i a t ion  vector f i e l d  W( t) = %( 0 ,  t) 
i s  a Jacobi f i e l d  along y .  

D aa PROOF: If a i s  a va r i a t ion  of 7 through geodesics, then xx 
i s  iden t i ca l ly  zero. Hence 

D D aa D D aa 

(Compare 9 1 3 . 3 . )  Therefore the var ia t ion  vector f i e l d  i s  a Jacobi 

f i e l d .  

Thus one way of obtaining Jacobi f i e l d s  i s  t o  move geodesics around. 

Now l e t  us  re turn  t o  the example of two antipodal  points on a un i t  

n-sphere. Rotating the sphere, keeping p and g f ixed,  the var ia t ion  

vector f i e l d  along the geodesic y w i l l  be a Jacobi f i e l d  vanishing a t  p 

and q. Rotating i n  n-1 d i f f e ren t  d i rec t ions  one obtains n-1 l i nea r ly  

independent Jacobi f i e l d s .  Thus p and q a r e  conjugate along 7 with 

mul t ip l i c i ty  n-1 . 

LFXVA 1 4 . 4 .  Every Jacobi f i e l d  along a geodesic y :  [O,ll - M  
may be obtained by a va r i a t ion  of y through geodesics. 

PROOF: Choose a neighborhood U of y ( 0 )  so  that any two points 

a r e  joined by a unique minimal geodesic which depends d i f f e ren t i ab ly  of 

on the endpoints. Suppose that y ( t )  E U for 0 5 t 5 6 .  We w i l l  f i r s t  

construct  a Jacobi f i e l d  W along y l  [o ,s l  with a r b i t r a r i l y  prescribed 

values a t  t = 0 and t = 6. Choose a curve a: ( - E , E )  - U  so that 

a(o)  = ~ ( 0 )  

Similarly choose b: ( - E , E )  - U with b(0)  = y ( 6 )  and ,(O) a rb i t r a ry .  

Now define the var ia t ion  

U 

TMr(o).  and so that g(0) i s  any prescribed vector i n  
db 

a :  ( - € , E l  [0,61 - M 

by l e t t i n g  a ( u ) :  [ O , 6 1  - M be the unique minimal geodesic from a ( u )  

t o  b ( u ) .  

given end conditions. 

Then the formula t + % ( o , t )  defines a Jacobi f i e l d  with the 

Any Jacobi f i e l d  along y (  [O,sl can be obtained i n  this way: If 

, y ( y )  denotes the vector space of a l l  Jacobi f i e l d s  W along 7 ,  then the 

formula W - (W(O), w ( 6 ) )  defines a l i nea r  map 

P ( Y )  + T M y ( o )  x TMy(6) 

We have j u s t  shown that P i s  onto. Since both vector spaces have the same 

dimension 2n it follows that P i s  an isomorphism. I . e . ,  a Jacobi f i e l d  

i s  determined by i t s  values a t  y ( 0 )  and ~ ( 6 ) .  (More generally a Jacobi 

f i e l d  i s  determined by i t s  values a t  any two non-conjugate points . )  

fore the  above construction y i e lds  a l l  possible Jacobi f i e l d s  along 

There- 

71 [O,6l. 

The r e s t r i c t i o n  of X u )  t o  the in t e rva l  [0,6l i s  not e s sen t i a l .  

If u i s  su f f i c i en t ly  small then, using the compactness of [ o , l l ,  $u) 

can be extended t o  a geodesic defined over the e n t i r e  u n i t  i n t e r v a l  

This yie lds  a va r i a t ion  through geodesics: 

[ 0 , 1 1 .  

a': ( - € ' , E l )  X [ O , l l  -* M 

with any given Jacobi f i e l d  as va r i a t ion  vector.  

RFJURK 14.5. This argument shows that i n  any such neighborhood U 
the Jacobi f i e l d s  along a geodesic Segment i n  U a re  uniquely determined 

1 
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by t h e i r  values a t  the endpoints of the geodesic. 

REMARK 1 4 . 6 .  The proof shows a l so ,  that there  i s  a neighborhood 

( - 6 , b )  of o s o  that if t c ( - 6 , 6 )  then 7 ( t )  i s  not conjugate t o  

7 ( o )  along 7 .  We w i l l  see i n  515.2 that the s e t  of conjugate points  t o  

7 ( o )  along the e n t i r e  geodesic 7 has no c lus t e r  points.  

5 1  5 .  THE INDEX THEOREM 

5 1 5 .  The Index Theorem. 

The index X of the Hessian 

E,,: T O 7  x TO 7 + R  

a 3  

i s  defined t o  be the maximum dimension of a subspace of 

i s  negative de f in i t e .  
TO Y 

on which E,, 

We w i l l  prove the following. 

THEOREM 1 5 . 1  (Morse). The index A of E,, i s  equal 
t o  the number of poin ts  7 ( t ) ,  with 0 < t < 1 ,  such 
t h a t  7 ( t )  i s  conjugate t o  y ( 0 )  along 7 ;  each such 
conjugate point  being counted with i t s  mul t ip l ic i ty .  
T h i s  index A i s  always f in i t e* .  

A s  an immediate consequence one has: 

C O R O W Y  1 5 . 2 .  A geodesic segment 7 :  [ 0 , 1  I - M can 
contain only f i n i t e l y  many points  which a re  conjugate 
t o  7 ( 0 )  along 7 .  

I n  order t o  prove 15.1 we w i l l  f i r s t  make an estimate f o r  A by 

i n t o  two mutually orthogonal subspaces, on s p l i t t i n g  the vector space TQ7 

one of which E,, i s  pos i t ive  de f in i t e .  

Each point  7 ( t )  i s  contained i n  an open s e t  U such that any two 

a re  joined by a unique minimal geodesic which depends d i f f e r -  points  of 

ent iably  on the  endpoints. (See 510. )  Choose a subdivision 

0 = to < tl <...< tk = 1 

so that each s e p e n t  y[ t i - , , t i l  l i e s  within such an open s e t  U; and so 

that each 71 [ti-l,ti3 i s  minimal. 

U 

of the un i t  i n t e r v a l  which i s  su f f i c i en t ly  f ine  

Let T n 7 ( t 0 , t l , t 2 ,  ..., tk) C TQ7 be the vector space consist ing of 

a l l  vector f i e l d s  W along 7 such that 

1 )  W\ [ t i - , , t i l  i s  a Jacobi f i e l d  along 71 [ti-l,til f o r  each i; 

2) W vanishes at  the endpoints t = 0 ,  t = I .  

Thus T n 7 ( t o , t l ,  ..., tk) 

broken Jacobi f i e l d s  along 7 .  

1s a f i n i t e  dimensional vector space consist ing of 

* 
Riemannian geometrp, Annals Of Mathematics, V o l .  73  (1961), pp. 49-86. 

For generalization of this r e s u l t  see: W. Ambrose, The index theorem i n  
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Le t  TI  C TR be the vector space consist ing of a l l  vector f i e l d s  
Y 

W E TRY for which W ( t o )  = 0 ,  W ( t , )  = 0 ,  W ( t 2 )  = 0,. . ., W ( t k )  = 0 .  

LF,MMA 1 5 . 3 .  The vector space Tny s p l i t s  as the d i r e c t  
sum T n y ( t o , t l , .  . . ,tk) @ T I .  THese two subspaces a re  
mutually perpendicular with respect  t o  the inner product 
E,,. Furthermore, E,, r e s t r i c t e d  t o  T I  is posi t ive  
de f in i t e .  

PROOF: Given any vector f i e l d  W E TR l e t  W1 denote the unique 

"broken Jacobi f i e ld"  i n  TR ( to , t l , .  . . ,tk) such t h a t  W1 (ti) = W( ti) for 

i = O , l ,  . . . ,  k. It follows from 914.5 that W1 e x i s t s  and i s  unique. 

Clearly W - W, belongs t o  T I .  Thus the two subspaces, T Q y ( t O , t l ,  ..., tk) 

and TI  generate T R Y ,  and have only the zero vector f i e l d  i n  common. 

Y 

Y 

I f  W1 belongs t o  T R y ( t o  

then the second var ia t ion  formula 

$E,,(W1,W2) = - 1 < W 2 ( t )  
t 

t l , .  . . , tk) and W, belongs t o  T I ,  

13.1) takes the form 

0 

Thus the two subspaces a r e  mutually perpendicular with respect  t o  

second der iva t ive  ~ d2E O ' ( 0 ) ;  

y with var ia t ion  vector f i e l d  g(0) equal t o  W. (Compare 13.5.) I f  

W belongs t o  T I  then we may assume that 15 i s  chosen so  a s  t o  leave the 

Points y ( t O ) , y ( t l ) ,  ..., y ( t k )  f ixed .  In  other words we may assume that 

c ( u ) ( t i )  = y ( t i )  for i = 0 , l  ,..., k. 

E,,. 

For any W E Tn the Hessian E,,(W,W) can be in terpre ted  a s  the 
Y 

du2 
where 6 :  ( - E , E )  - R i s  any var ia t ion  of 

Proof that E,,(W,W) 2 0 for W E T I .  Each 6(u)  E R i s  a piece- 

wise smooth path from ~ ( 0 )  t o  y ( t l )  t o  y ( t 2 )  t o  . . .  t o  ~ ( 1 ) .  But 

each y l [ t i - l , t i l  

than any other pa th  between i t s  endpoints. 

i s  a minimal geodesic, and therefore has smaller energy 

This proves that 

E ( & ( u ) )  2 E ( Y )  = E ( C ( 0 ) )  . 
Therefore the second derivative,  evaluated a t  u = 0, must be 2 0 .  

Proof that E,,(W,W) > 0 for W E T I ,  W # 0. Suppose that 

E,,(W,W) were equal t o  0 .  Then W would l i e  i n  the n u l l  space of E,,. 

I n  f a c t  for any 

Ex,(Wl,W) = 0 .  For any W2 E TI  the inequal i ty  

W1 E TR ( to , t l ,  ..., tk) w e  have already seen that 

2 
0 5 E,,(W + c W 2 ,  W + c W p )  = 2c E,,(W2,W) + c E x x ( W 2 , W 2 )  

for a l l  values of c implies that E,,(W,,W) = 0. Thus W l i e s  i n  the 

n u l l  space. But the n u l l  space of E,, cons is ts  of Jacobi f i e l d s .  Since 

T I  contains no Jacobi f i e l d s  other than zero, this implies that W = 0 .  

Thus the quadratic form E,, i s  pos i t ive  de f in i t e  on T I .  This 

completes the proof of 15 .3 .  

An immediate consequence i s  the following: 

LEMMA 1 5 . 4 .  The index (or the n u l l i t y )  of E,, i s  equal 
t o  the index (or n u l l i t y )  of E,, r e s t r i c t e d  t o  the space 
T R y ( t O , t , ,  ..., tk) of broken Jacobi f i e l d s .  In  pa r t i cu la r  
( s ince  T n Y ( t 0 , t l ,  ..., tk) i s  a f i n i t e  dimensional vector 
space) the index A i s  always f i n i t e .  

The proof is straightforward.  
Let y T  denote the r e s t r i c t i o n  of y t o  the i n t e r v a l  [ O , T ~ .  

Thus y T :  ~ O , T ]  - M  i s  a geodesic from y ( 0 )  t o  Y ( T ) .  Let X ( T )  denote 

the index of the Hessian ( E: ),, which i s  associated with this geodesic. 

Thus A ( 1 )  i s  the index which we are  ac tual ly  t ry ing  t o  compute. F i r s t  

note t h a t :  

ASSERTION ( 1 ) .  X ( T )  i s  a monotone function of T ,  

For if T < T I  then there  e x i s t s  a X ( T )  dimensional space ?' of 

vector f i e l d s  along y T  which vanish a t  y ( 0 )  and y ( ~ )  such that the 

Hessian ( E: ),, i s  negative de f in i t e  on this vector space. Each vector 

f i e l d  i n  9Y extends t o  a vector f i e l d  along y T l  which vanishes iden t i ca l ly  

between y (  T )  and 7 ( ~ ' ) .  Thus we obtain a A (  T )  dimensional vector space 

Of f i e l d s  along y T ,  

X ( T )  5 A ( T ~ ) .  

on which ( E:' ),, i s  negative de f in i t e .  Hence 

ASSERTION (2). A ( T )  = o for small values of T. 

For i f  T i s  su f f i c i en t ly  small then y T  is a minimal geodesic, 

hence A ( T )  = 0 by Lemma 13 .6 .  

Now l e t  us examine the d iscont inui t ies  of the function X ( T ) .  F i r s t  
note that X ( T )  1s Continuous from the  l e f t :  

ASSERTION ( 3 ) .  For a l l  su f f i c i en t ly  smal l  E > o we have 

, A ( T - E )  = A ( T ) .  
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PROOF. According t o  15.3 the number X ( 1 )  can be in terpre ted  as 

the index of a quadratic form on a f i n i t e  dimensional vector space 

~ n , ( t , , t , ,  ..., t k ) .  

say ti < T < ti+,. Then the index X(T) can be in terpre ted  as the index 

of a corresponding quadratic form 

broken Jacobi f i e l d s  along Y , .  

using the subdivision 0 < tl < t2 <. . . < ti < T of [O,T]. Since a 

broken Jacobi f i e l d  i s  uniquely determined by i t s  values a t  the break points 

7 ( t i ) ,  

We may assume t h a t  the subdivision i s  chosen SO that 

H, on a corresponding vector space of 

T h i s  vector space i s  t o  be constructed 

this vector space i s  isomorphic t o  the d i r e c t  sum 

Note that this vector space c i s  independent of T. Evidently the quad- 

r a t i c  form H, on c va r i e s  continuously with T. 

Now H, i s  negative de f in i t e  on a subspace '?'C c of dimension 

A(,). For a l l  T I  su f f i c i en t ly  close t o  T it follows that HTI i s  

negative de f in i t e  on 97. Therefore A(,!) 2 A(,). But i f  T I  = T - E < T 

then we also have A(,-E) 5 A(,) by Assertion 1 .  Hence A(,-E) = A ( , ) .  

ASSWTION ( 4 ) .  

Then fo r  a l l  su f f i c i en t ly  s m a l l  E > 0 we have 

Let v be the n u l l i t y  of the Hessian ( E: )**. 

X ( T + E )  = A(?-) + v . 

Thus the function h ( t )  jumps by v when the variable t passes 

a conjugate point  of mu l t ip l i c i ty  V ;  and i s  continuous otherwise. Clearly 

this a s se r t ion  w i l l  complete the proof of the index theorem. 

PROOF that A(,+€) 5 A(,) + v . Let H, and c be as i n  the proof 

of Assertion 3 .  Since dim ,Z = ni w e  see that H, i s  pos i t ive  de f in i t e  on 

some subspace 9J1 C c of dimension n i  - A(,) - V .  For all T I  su f f i c i en t -  

l y  close t o  T, it follows that HT1  i s  pos i t ive  de f in i t e  on P. Hence 

PROOF that a(,+€) 2 A(,) + V .  Let W , , . . . , W A ( , )  be X(T) vector 

f i e l d s  along y , ,  vanishing at the endpoints, such that the matrix 

S 1 5 .  THE INDEX THEOREM a7 

i s  negative de f in i t e .  Let J1 ,  ..., Jv be v l i nea r ly  independent Jacobi 

f i e l d s  along y,, a l so  vanishing a t  the endpoints. Note that the v 

vectors 

a r e  l i nea r ly  independent. Hence it i s  possible t o  choose v vector f i e l d s  

X 1 ,  ..., Xy along 7T+E so  that the matrix 

i s  equal t o  the v x v i den t i ty  matrix. Extend the vector f i e l d s  Wi and 

Jh over 7T+E by s e t t i n g  these f i e l d s  equal t o  0 fo r  T 5 t 5 T + E .  

Using the second va r i a t ion  formula we see eas i ly  that 

( E:+€)*,( Jh, Xk) = 2~~ (Kronecker de l t a )  

Now l e t  c be a small number, and consider the A(T) + v vector f i e l d s  

w, ,  ... , W A ( , ) ,  c- lJ1 - c X, ,..., c- lJV - c Xv 

along y , + € .  

dimension X(T) + v 

de f in i t e .  

We claim that these vector f i e l d s  span a vector space of 

on which the quadratic form ( E:+E),, i s  negative 

I n  f a c t  the matrix of ( Ei+E),, with respect  t o  this bas i s  i s  

I 
c At i - 4 I + c2 B 

where A and B a re  f ixed matrices. I f  c i s  su f f i c i en t ly  small, this 

compound matrix i s  ce r t a in ly  negative d e f i n i t e .  T h i s  proves Assertion (4). 

The index thearem 15.1 c l ea r ly  follows from the Assertions ( 2 ) ,  ( 3 ) ,  

and (4). 
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816.  A F in i t e  Dimensional Approximation t o  R c  . 

Let M be a connected Riemannian manifold and l e t  p and q be 

two (not  necessari ly d i s t i n c t )  points  of M .  The s e t  R = n(M;p,q) of 

piecewise Cm p t h s  from p t o  q can be topologized as follows. Let p 

denote the topological metric on M coming from i t s  Riemann metric.  Given 

a, m f  E 0 with arc-lengths s ( t ) ,  s ' ( t )  respectively,define the distance 

(The l a s t  term i s  added on so that the energy funct ion ,  

a 

w i l l  be a continuous function from R t o  the r e a l  numbers.) T h i s  metric 

induces the required topology on R .  

Given c > 0 l e t  R c  denote the closed subset E- ' ( [O,c l )  C R 

1 and l e t  I n t  n c  denote the open subset E-' ( [O,c) ) (where E = EO: R - R 
is the energy funct ion) .  We w i l l  study the topology of R c  by construct- 

ing  a f i n i t e  dimensional approximation t o  i t .  

Choose some subdivision 0 = to< tl <...< tk = 1 of the un i t  i n t e r-  

va l .  Le t  n ( t o , t l ,  ..., tk) be the subspace of n consist ing of paths 

0: [0,11 - M  such that 

1 )  ~ ( 0 )  = p and ( ~ ( 1 )  = q , 
2) m ( [ t i - l , t i l  i s  a geodesic fo r  each i = 1 ,  .. . , k .  

F inal ly  we define the subspaces 

ci(tO,tl ,..., tk)c = n c  n R ( t O , t l  ,..., tk) 

I n t  n ( t o , t l , .  . . , tk)c = ( I n t  0') n n ( t o ,  ..., tk) . 

S l 6 .  AN APPROXIMATION TO R c  89 

PROOF: L e t  S denote the b a l l  

(X E M : p(x,p) 5 6 1  

Note t h a t  every path LU E R c  l i e s  within this subset S C M. T h i s  follows 

from the inequal i ty  

. 

L2 < E 5 c . 
Since M i s  complete, S i s  a compact s e t .  Hence by 10.8 there 

e x i s t s  E > 0 s o  that whenever x, y E S and p(x,y) < E there i s  a 

unique geodesic from x t o  y of length < E ;  and so that this geodesic 

depends d i f ferent iably  on x and y. 

Choose the subdivision ( tO, t l ,  ..., tk) of [ o , l l  s o  that each 

difference ti - ti-l i s  l e s s  than E2/c. Then for each broken geodesic 

C n ( t O , t l j " . , t k )  

we have 

- < (ti  - t i - l ) c  < E 2  . 

Thus the geodesic c n ( [ t i - l , t i l  is uniquely and d i f f e ren t i ab ly  determined by 

the two end points.  

The broken geodesic LU i s  uniquely determined by the (k-l)- tUple 

u ( t , ) ,  m ( t 2 ) , . . . , c u ( t k - l )  E M x M x...x M. 

Evidently this correspondence 

-L (LU( t l ) , . . .>LU( tk - l ) )  

defines a homeomorphism between 

subset of the (k- l ) - fo ld  product M x...x M. Taking over the d i f f e ren t i ab le  

s t ruc ture  from this product, this completes the proof of 1 6 . 1 .  

I n t  R ( to, tl , . . . , tk) and a ce r t a in  open 

To shorten the notat ion,  l e t  us denote this manifold 

I n t  n ( t o , t l , .  . . , tk)c of broken geodesics by B. Let 

E': B - R  

denote the r e s t r i c t i o n  t o  B of the energy function E : R +R. 
LEMMA 1.6.1. Let M be a complete Riemannian manifold; 
and l e t  c be a f ixed pos i t ive  number such t h a t  n c  # 0 .  

Then f o r  a l l  su f f i c i en t ly  f ine  subdivisions 
of [0,1 1 the s e t  I n t  n (  to , t l , .  . . , tk) can be given the 
s t ruc ture  of a smooth f i n i t e  dimensional manifold i n  a 
natural way. 

( tO,tl ,  ..., tk) 
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THEOREM 1 6 . 2 .  T h i s  function E l :  B - R  i s  smooth. 
Furthermore, fo r  each a < c 
i s  compact, and i s  a deformation r e t r ac t"  of the cor- 
responding s e t  R a .  The c r i t i c a l  poin ts  of E '  a r e  
prec ise ly  the same as the c r i t i c a l  poin ts  of E i n  
I n t  n c :  namely the unbroken geodesics from p t o  q 
of length l e s s  than 6. The index [or the n u l l i t y ]  
of the Hessian El,, a t  each such c r i t i c a l  point  y 

i s  equal t o  the index [ or the  n u l l i t y  1 of 

the set Ba = ( E l ) - ' [ o , a ]  

E,, a t  y .  

Thus the f i n i t e  dimensional manifold B provides a f a i t h f u l  model 

f o r  the i n f i n i t e  dimensional pa th  space 

quence we have the following bas ic  r e s u l t .  

I n t  R c .  A s  an immediate conse- 

THEOREM 1 6 . 3 .  Le t  M be a complete Riemannian manifold 
and l e t  p,q E M 
along any geodesic of length 5 &. Then Ra has the 
homotopy type of a f i n i t e  
dimension X f o r  each geodesic i n  R a  a t  which E,, 
has index X .  

be two points  which a re  not conjugate 

CW-complex, with one c e l l  of 

( I n  pa r t i cu la r  i t  i s  asser ted  t h a t  na  contains only f i n i t e l y  many 

geodesics.) 

PROOF. T h i s  follows from 1 6 . 2  together with 5 3 . 5 .  

PROOF of 1 6 . 2 .  Since the broken geodesic u) E B depends smoothly 

( k-1 ) - tuple on the 

m ( t l ) , o ( t 2 )  ,..., m ( t k - l )  E M x . . . ~  M 

it i s  c l ea r  that the energy E1(m) a l s o  depends smoothly on this (k-1) -  

tuple.  I n  f a c t  we have the e x p l i c i t  formula 

* Similarly B i t s e l f  i s  a deformation r e t r a c t  of I n t  n c .  
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For a < c the s e t  Ba i s  homeomorphic t o  the s e t  of a l l  (k-1)-  

tuples  (p,  ,..., pkb l )  E S x S x.. .x S such that 

(Here i t  i s  t o  be understood that 

of a compact s e t ,  this i s  ce r t a in ly  compact. 
po = p, pk = 9.) A s  a closed subset 

A r e t r ac t ion  r :  I n t  n c  .-L B i s  defined as follows. L e t  r ( m )  

denote the unique broken geodesic i n  B such t h a t  each r ( m ) I [ t i - l , t i l  i s  

a geodesic of length < E from m ( t i - l )  t o  .(ti). The inequal i ty  
p(p,m(t)) 2 5 (L E < c 

implies that m[O,ll C S. Hence the inequal i ty  

implies t ha t  r ( m )  can be so defined. 

Clearly E ( r ( m ) )  5 E ( m )  < c .  This r e t r ac t ion  r f i t s  i n t o  a 1 -  

parameter family of maps 

ru: I n t  n c  - I n t  n C  

as follows. For ti-l 5 u 5 ti l e t  

r u ( w )  I [ O , t i - l  I = r ( m )  I [ O , t i - l  I , 

ru(o) I [ ti-l ul = m i n i m a l  geodesic from "(ti-, ) t o  m ( u )  , 

r u ( m )  I [ u , i l  = ml[u, i l  . 
, 

Since E(rU(m)) 5 E(m) it i s  c l ea r  t ha t  each Ba i s  a l so  a defor- 

1 
Then ro i s  the iden t i ty  map of I n t  n C ,  and rl = r. It i s  e a s i l y  ver i-  

f i ed  t h a t  r u ( m )  i s  continuous as a function of both var iables .  T h i s  proves 

tha t  B i s  a deformation r e t r a c t  of  I n t  a'. 

mation r e t r a c t  of n". 

Every geodesic i s  a l s o  a broken geodesic, so  i t  i s  c l ea r  t h a t  every 

' l c r i t i c a i  point" of E i n  I n t  n c  automatically l i e s  i n  the submanifold B. 

Using the i'irst var ia t ion  formula ( $ 1 2 . 2 )  

Points of E l  a r e  prec ise ly  the unbroken geodesics. 
it i s  c l ea r  t h a t  the c r i t i c a l  

Consider the tangent space TBy t o  the manifold B a t  a geodesic 
Y .  T h i s  w i l l  be iden t i f i ed  with the space T R y ( t o , t l , . . . , t k )  of broken 
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geodesics T ~ , Y ~ , Y ~ , . . .  from p t o  q ,  as follows. Let y o  denote the 

short  grea t  c i r c l e  a rc  from p t o  q;  l e t  y 1  denote the long great 

c i r c l e  arc  pq'p 'q;  l e t  r 2  denote the arc  pqp'q'pq; and so  on. The 

subscript  k denotes the number of times that p or p '  occurs i n  the 

i n t e r i o r  of rk.  
The index h ( y k )  = v 1  +...+ p k  i s  equal t o  k(n-1) ,  since each 

of the points p or p '  i n  the i n t e r i o r  i s  conjugate t o  p with multi- 

p l i c i t y  n-1. Therefore we have: 

COROLTARY 17.4. The loop space n(Sn) has the homotopy 
type of a 
0 ,  n-1, z(n-1),  3(n-1) ,... . 

CW-complex with one c e l l  each i n  the dimensions 

For n > 2 the homology of a(?) can be computed immediately 

from this information. Since n(Sn) has non- t r iv ia l  homology i n  i n f i n i t e -  

l y  many dimensions, we can conclude: 

COROLLARY 1 7 . 5 .  Let M have the homotopy type of Sn, 
for n > 2 .  Then any two non-conjugate points of M a r e  
joined by i n f i n i t e l y  many geodesics. 

97 
$ 1 7 .  THE FULL PATH SPACE 

REMARK. More generally i f  M i s  any complete manifold which 1s 

not cont rac t ib le  then any two non-conjugate points of 

i n f i n i t e l y  many geodesics. 

singulitSre des espaces f ibr6s ,  Annals of Math. 54 ( 1 9 5 1 ) ,  pp. 425-507. 

M a r e  joined by 

Compare p. 484 of J .  P .  Serre,  Homologie 

A s  another appl ica t ion  of 1 7 . 4 ,  one can give a proof of the Freuden- 

thal suspension theorem. (Compare 5 2 2 . 3 . )  

T h i s  follows since the  homotopy type of n*(M) (and hence of 

n(M)) depends only on the homotopy type of M. There must be a t  l e a s t  one 

geodesic i n  n(M) with index 0,  a t  l e a s t  one with index n-1, 2(n-1), 

3(n-1), and so  on. 
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Now suppose t h a t  exp, i s  non-singular a t  v.  Choose n independ- 

918. NON-CONJUGATE POINTS 

en t  vectors X1,  ...,% i n  T ( T  ) v .  

with ~ ~ ( 0 )  = v and - a + O )  dvi (u) 

Then exp,(X1), ..., exp,(%) are  l i nea r ly  independent. I n  T% Mp choose paths u - v l ( u ) ,  ..., u - v (u) 

= x i  . 
n 

Then al , . . .,an, constructed as above, provide n Jacobi f i e l d s  

Since the W i ( l )  = exp,(Xi) a r e  W1,  ..., Wn along yV, vanishing a t  p .  

independent, no non- t r iv ia l  l i nea r  combination of the Wi 

exp v. 

which vanish a t  p, 

a t  both p and exp v. T h i s  completes the proof. 

can vanish a t  
Since n i s  the dimension of the space of Jacobi f i e l d s  along yV,  

c l ea r ly  no non- t r iv ia l  Jacobi f i e l d  along yv vanishes 

5.1 8. Existence of Non-Conjugate Points.  

Theorem 1 7 . 3  gives a good descr ip t ion  of the space n(M;p,q) pro- 

viding that the points p and q are not conjugate t o  each other along any 

geodesic. 

conjugate points always e x i s t .  

T h i s  section w i l l  j u s t i f y  this r e s u l t  by sharing that such non- 

Recall  that a smooth map f: N - r  M between manifolds of the same 

dimension i s  c r i t i c a l  a t  a point  x E N i f  the induced map 

f,: TNx + TMf(x) 

of tangent spaces i s  not 

ponential  map 

1- 1 .  We w i l l  apply this de f in i t i on  t o  the ex- 

exp = exp p: T M p + M  . 

( W e  w i l l  assume that M i s  complete, so  that exp is everywhere defined; 

although this assumption could e a s i l y  be eliminated.) 

THEOREM 18.1. The point  exp v i s  conjugate t o  p along 
the geodesic 7,, from p t o  exp v i f  and only i f  the 
mapping exp i s  c r i t i c a l  a t  v .  

PROOF: Suppose that exp i s  c r i t i c a l  a t  v E TMp. Then exp,(X) 

= 0 f o r  some non-zero X E T(TMp),, 

considered as a manifold. Let u -  v(u)  be a path  i n  T% such that 

v(0)  = v and ,(O) = X .  

i s  a var ia t ion  through geodesics of the geodesic 7v given by t -  exp tv .  
a i s  a Jacobi Therefore the vector f i e l d  W given by t -+ =(exp t v ( u ) )  I u E 0  

f i e l d  along y V .  Obviously W ( 0 )  = 0 .  W e  a l s o  have 

the tangent space a t  V t o  T, 

dv Then the map a defined by a ( u , t )  = exp tv (u )  

But this f i e l d  i s  not i den t i ca l ly  zero since 

COROLLARY 18.2. L e t  p E M. Then fo r  almost a l l  q c M ,  
p i s  not conjugate t o  q along any geodesic. 

PROOF. T h i s  follows immediately from 18.1 together with Sard ' s  

theorem ( 9 6 . 1 ) .  

So there i s  a non- t r iv ia l  Jacobi f i e l d  along y V  from p t o  exp v, 

vanishing a t  these points;  hence p and exp v a re  conjugate along 7v a 
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[ In tu i t i ve ly  the curvature of a manifold can be described i n  terms 

of "optics" within the manifold a s  follows. 

geodesics a s  being the paths of l i g h t  rays.  

looking i n  the d i r ec t ion  of the unit vector U towards a point  q = exp(rU). 

A s m a l l  l i n e  segment a t  q with length L, pointed i n  a d i r ec t ion  corre- 

Suppose that we think of the 

Consider an observer a t  p 619. some Relatiops Between TopoloEY and Curvature* 

~u~ section w i l l  describe the behavior of geodesics i n  a manifold 

with "negative cumaturelf or with "pos i t ive  curvature. 'I  

sponding t o  the unit  vector W E T S ,  would appear t o  the observer a s  a 
1 9 . 1 .  suppose that < R ( A , B ) A , B >  0 f o r  l i n e  segment of length 

every pa i r  of vectors A,B i n  the tangent 3 P c e  2 

T% and fo r  every p E M .  
M 

Then no two Points of ~ ( 1  + 5 < R ( U , W ) U , W  > + (terms involving higher powers of r))  . 
Thus i f  sec t ional  curvatures a r e  negative then any object  appears shor ter  a r e  conjugate along any geodesic. 

l e t  J 

PROOF. Let 7 be a geodesic with ve loci ty  vector f i e l d  V; and 

be a Jacobi f i z l d  along 7. Then 

9 + R ( V , J ) V  = 0 

Therefore 

J )  + 11$112 2 0 - 
D J  Thus the function 

D J  
<= , J > i s  monotonically increasing,  and s t r i c t l y  

so if # 0 .  

I f  J vanishes both a t  0 and a t  to > 0 ,  then the function 

< $, J) a l so  vanishes a t  0 and to, 

throughout the in t e rva l  [ O , t O l .  T h i s  implies that 

and hence must vanish iden t i ca l ly  

J(0) = g(0) = 0, 

so that J i s  iden t i ca l ly  zero. T h i s  completes the proof. 

REMARK. If A and B a re  orthogonal unit  vectors a t  p then the 

quant i ty  <R(A,B)A,B>  i s  ca l led  the  sec t ional  curvature determined by 

A and B. It i s  equal t o  the Gaussian curvature of the surface 

(u l ,u2)  * exp P (ulA + u2B) 

spanned by the geodesics through p with ve loci ty  vectors i n  the subspace 

spanned by A and B. (see fo r  example, Laugwitz "Differential-Geometrie," 

than i t  r e a l l y  i s .  A s m a l l  sphere of radius  E a t  q would appear t o  be 

an e l l i p so id  with pr inc ipal  r a d i i  

where 

W - R(U,W)U.  Any small object  of volume v would appear t o  have volume 

v(1 + T ( ~ l  r2 + K, +...+ Q) + (higher terms)) where K~ +...+ K, i s  equal 

t o  the "Ricci curvature" K ( U , U ) ,  

r 2  2 
E (  1 + TK1 + . . .) , . . . , E ( 1  + $K, + . . . ) 

K1 , K 2 , .  . . ,K, denote the eigenvalues of the l i nea r  transformation 

as defined l a t e r  i n  this sec t ion . ]  

Here are some famil iar  examples of complete manifolds with curva- 

tu re  1. 0 :  

( 1 )  The Euclidean space with curvature 0 .  

( 2 )  

( 3 )  The hyperboloid of ro t a t ion  x2 + y2 - z2 = 1 ,  with curva- 

The paraboloid z = x2 - y2, with curvature < 0. 

ture < 0 .  

The hel icoid  (4) x cos z + y s i n  z = 0 ,  with curvature < 0 .  

(REMARK. I n  a l l  of these examples the curvature takes values arb i-  

t r a r i l y  close t o  0 .  

surface i n  3-space with curvature negative and bounded away from 

It i s  not  known whether or  not  there  e x i s t s  a complete 

0.) 

A famous example of a manifold with everywhere negative sec t ional  

curvature i s  the pseudo-sphere 

z = - Jl - x2 - y2' + sech-' m, z > o 
with the Riemann metric induced from R 3 .  
the constant value - 1 .  

Here the Gaussian curvature has 

N o  geodesic on this surface has conjugate points  although two geo- 

des ics  may in t e r sec t  i n  more than one point .  The pseudo-sphere gives a 

p.  1 0 1 . )  
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geometry, i n  which the sum of the angles of any t r i ang le  i s  

< radians.  T h i s  manifold i s  not complete. I n  f a c t  a theorem of Hilbert  

s t a t e s  t h a t  no complete surface of constant negative curvature can be 

imbedded i n  R3. (See e .g .  Willmore, "Dif ferent ia l  Geometry,'' p. 1 3 7 . )  

However, there do e x i s t  R i e m a n n i a n  manifolds of constant negative 

curvature which are  complete. 

Geometrie," pp. 1 1 4 - 1 1 7 . )  

a surface of genus 

Geometrie," p. 2 2 8 . )  

(See f o r  example Laugwitz, "Dif ferent ia l -  

Such a manifold can even be compact; f o r  example, 

2. 2 .  (Compare Hilbert  and Cohn-Vossen, "Anschauliche 

THEOREM 1 9 . 2  (Cartan*). Suppose t h a t  M i s  a simply 
COMeCted, complete Riemannian manifold, and that 
sec t ional  curvature (R(A,B)A,B) i s  everywhere 
Then any two points of M a r e  joined by a unique 
des ic .  Furthermore, M i s  diffeomorphic t o  the 
Euclidean space Rn. 

the 
< 0 .  - 

geo- 

PROOF: Since there  a r e  no conjugate points,  it follows from the 

index theorem t h a t  every geodesic from p t o  q has index A = 0 .  Thus 

Theorem 17 .3  a s s e r t s  that the pa th  space has the homotopy type 

of a 0-dimensional 

n(M;p,q) 

CW-complex, with one vertex f o r  each geodesic. 

The hypothesis t h a t  M i s  simply connected implies that O(M;p,q) 

Since a CoMeCted 0-dimensional CW-complex must consist  of i s  connected. 

a single point ,  it follows that there  i s  prec ise ly  one geodesic from p t o  

9. 
* 
1926 and 1951. 

See E. Cartan, "Lecons sur l a  GBometrie des Espaces de Riemann," P a r i s ,  

Theref ore, the exponential map expp: T% --L M i s  one-one and 

onto. But it follows from 18.1 t h a t  exp i s  non-cr i t ica l  everywhere; 

so  that exp i s  local ly  a diffeomorphism. Combining these two f a c t s ,  we 

see t h a t  exp i s  a global diffeomorphism. This completes the proof of 

1 9 . 2 .  

P 

P 

P 

More generally, suppose t h a t  M i s  not simply connected; but  i s  

complete and has sec t ional  curvature 5 0 .  (For example M might be a 

f l a t  torus  S1 x S1, or a compact surface of genus 2 2 with constant 

negative curvature.) 

space of M. For it i s  c l ea r  that i? i n h e r i t s  a Riemannian metric 

from M which i s  geodesically complete, and has sec t ional  curvature 5 0. 
Given two points p,q E M ,  it follows t h a t  each homotopy c l a s s  of 

Then Theorem 1 9 . 2  appl ies  t o  the  universal  covering 

paths from p t o  q contains prec ise ly  one geodesic. 

The f a c t  that 

topology of M. For example: 

2 i s  cont rac t ib le  puts strong r e s t r i c t i o n s  on the 

COROLLARY 1 9 . 3 .  I f  M i s  complete with ( R ( A , R ) A , B >  
< 0 then the hornotopy groups ni(M) a r e  zero for 
i > 1 ;  and n l ( M )  contains no element of f i n i t e  order; 
other than the iden t i ty .  

- 

1 - 
PROOF: Clearly ni(M) = ni(M) = 0 f o r  i > 1 .  Since M i s  

cont rac t ib le  the cohomology group H k (M) can be iden t i f i ed  with the co- 

homology group H k ( n , ( M ) )  of the group n l ( M ) .  (See for example PP. 200-  

202  of S. T.  Hu "Homotopy Theory," Academic Press, 1959.)  Now suppose 

tha t  n , (M)  contains a non- t r iv i a l  f i n i t e  cycl ic  subgroup G .  Then fo r  a 

su i table  covering space k of M we have x 1  (c)  = G; hence 

Hk(G) = Hk(k) = 0 fo r  k > n . 
But the cohomology groups of a f i n i t e  cycl ic  group a re  non- t r iv ia l  i n  a rb i -  

t r a r i l y  high dimensions. 

proof. 
T h i s  gives a contradict ion;  and completes the 

Now w e  w i l l  consider manifolds with "pos i t ive  curvature." Instead 
Of considering the sec t ional  curvature, one can obtain sharper r e s u l t s  i n  

this case by considering the Ricc i  tensor (sometines ca l led  the "mean curva- 

tu re  tensor") . 
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D E F I N I T I O N .  The Ricci  tensor a t  a point  p of a Riemannian mani- 

fo ld  M i s  a b i l i nea r  pa i r ing  

K: TMp x Ti‘f$ - R  

defined as follows. L e t  K ( U , , U , )  be the t race  of the l i nea r  transforma- 

t ion  
W - R ( U , , W ) U 2  

from T% t o  TMp. ( I n  c l a s s i c a l  terminology the tensor K i s  obtained 

from R by contraction.)  It follows eas i ly  from 9 9 . 3  that K i s  symmetric: 

K(U ,  ,Up)  = K(U, ,U, )  

The Ricci  tensor i s  re la ted  t o  sec t ional  curvature a s  follows. Let 

U1,U2,  ..., Un be an orthonormal bas i s  f o r  the tangent space T%* 

ASSERTION. K(Un,Un) 

tures  < R(Un,Ui)Un,Ui > fo r  i = 1 , 2 , .  . . ,n-1 . 
PROOF: By de f in i t i on  K(Un,Un) i s  equal t o  the t race  of the matrix 

i s  equal t o  the sum of the sec t ional  curva- 

( (R(Un,Ui)Un,Uj  > ) . Since the n- th diagonal term of this matrix i s  

zero, we obtain a sum of n-1 sec t ional  curvatures, a s  asser ted .  

THEOREM 19.4  (Myers*). 
K s a t i s f i e s  

Suppose that the Ricci  curvature 

K ( U , U )  2. (n - l ) / r ’  

for every u n i t  vector U a t  every point  of M ;  where r 
i s  a pos i t ive  constant .  Then every geodesic on M of 
length > n r  contains conjugate points;  and hence i s  not 
minimal. 

PROOF: L e t  y :  [ O , l l  -c M be a geodesic of length L. Choose 

p a r a l l e l  vector f i e l d s  P1 ,  ..., Pn along y which a re  orthonormal at  one 

point ,  and hence are  orthonormal everywhere along y .  W e  may assume t h a t  

Pn points  along y ,  so  that 
DPi 

V = 3 = L F , ,  and = 0 . 
L e t  W i ( t )  = ( s i n  n t )  P i ( t ) .  Then 

* 

Math. Journal ,  Vol. 8 ( 1 9 4 1 ) ,  pp. 401- 404 .  
See S. B. Myers, Riemann manifolds with pos i t ive  mean Curvatwe, Duke 
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U L  0 

1 

1 0 5  

S&ng for i = 1 ,  ..., n-1 we obtain 

Now i f  K(Pn,Pn) 2 ( n - i ) / r 2  and L > n r  then this expression i s  

< 0 .  Hence E,,(Wi,Wi) < o for some i. This implies t h a t  the index of 

7 i s  pos i t ive ,  and hence, by the Index Theorem, that y contains conju- 

gate points.  

I t  follows a l so  that y i s  not a minimal geodesic. In  f a c t  i f  

5 :  (-E,E) - n i s  a va r i a t ion  with var ia t ion  vector f i e l d  Wi then 

dE(C(u))  = o ,  d2E(E(u)) < , 
du2 du 

f o r  u = 0 .  Hence E ( n ( u ) )  < E ( y )  for small values of u # 0. This com- 

p le t e s  the proof. 

EXAMPIX. If M i s  a sphere of radius  r then every sec t ional  

curvature i s  equal t o  l/r2. Hence K(U,U)  takes the constant value 

( n - l ) / r 2 .  

t a in s  conjugate points:  

I t  follows from 19.4 t h a t  every geodesic of length > 
a bes t  possible r e s u l t .  

n r  con- 

COROLLARY 19.5. I f  M i s  complete, and K(U,U)  2 
( n - l ) / r 2  > 0 fo r  a l l  un i t  vectors U, then M i s  
compact, with diameter 5 nr .  

PROOF. I f  p,q E M l e t  y be a m i n i m a l  geodesic from p t o  9. 

Then the length of y must be 5 n r .  Therefore, a l l  poin ts  have distance 

< IT. 

follows that M i tself  i s  compact. 

Since closed bounded s e t s  i n  a complete manifold a r e  compact, i t  - 

This corol lary  appl ies  a l s o  t o  the universal  covering space 2 of  
M. Since 2 i s  COmpaCt, it follows t h a t  the fundamental group n,(M) i s  

f i n i t e .  T h i s  asser t ion  Can be sharpened as follows. 
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THEOREM 19 .6 .  I f  M i s  a compact manifold, and i f  the 
Ricci  tensor K of M i s  everywhere pos i t ive  de f in i t e ,  
then the path space Q(M;p,q) has the homotopy type of 
a CW-complex having only f i n i t e l y  many c e l l s  i n  each 
dimension. 

107 $ 1 9 .  TOPOMGY AND CURVATURE 

PROOF. Since the space cons is t ing  of a l l  u n i t  vectors U on M 

i s  compact, it follows t h a t  the continuous function K(U,U)  > 0 takes on 

a m i n i m u m ,  which we can denote by (n-l)/r2 > 0 .  

E n(M;p,q) of length > n r  has index X 2 1 .  

Then every geodesic 

More generally consider a geodesic 7 of length > knr. Then a 

similar argument shows that 7 has index X 2 k. In  f a c t  f o r  each 

i = i , 2 ,  ..., k one can construct  a vector f i e l d  Xi along 7 which vanishes 

outside of the in t e rva l  ( , ), and such that E,,(Xi,Xi) < 0 .  

Clearly E,,(Xi,Xj) = 0 for i # j ;  s o  t ha t  X I ,  ..., Xk span a k -  

dimensional subspace of TO7 on which E,, i s  negative de f in i t e .  

Now suppose that the points p and q a re  not conjugate along any 

geodesic. Then according t o  J 1 6 . 3  there a re  only f i n i t e l y  many geodesics 

from p t o  q of length 5 knr. Hence there  a re  o n l y . f i n i t e l y  many geo- 

des ics  with index < k. Together with $17.3, this completes the proof. 

REM!UK. I do not  know whether or not t h i s  theorem remains t rue  i f  

M i s  allowed t o  be complete, but  non-compact. The present  proof ce r t a in ly  

breaks down since,  on a manifold such as the paraboloid z = x + y , the 

curvature K(U,U) w i l l  not be bounded away from zero. 

2 2  

It would be in t e re s t ing  t o  know which manifolds can car ry  a metric 

so that a l l  sec t ional  curvatures a r e  pos i t ive .  

provided by the product 

manifold the Ricci  tensor i s  everywhere pos i t ive  d e f i n i t e .  However, the 

sec t ional  curvatures i n  ce r t a in  d i rec t ions  (corresponding t o  f l a t  t o r i  

S' x S' C Sm x Sk) a re  zero. It i s  not known whether or not Sm x Sk can 

be remetrized s o  that a l l  sec t ional  curvatures a re  pos i t ive .  The following 

p a r t i a l  r e s u l t  i s  known: 

invar iant  under the  involution (x,y) --L (-x,-y) of Sm x Sk. T h i s  follows 

from a theorem of Synge. (See J.  L. Synge, On the connectivity O f  spaces 

An ins t ruc t ive  example i s  

of two spheres; wi th  m,k 2 2 .  Sm x Sk For this 

If such a new metric e x i s t s ,  then it can not be 

of pos i t ive  curvature, auar ter ly  Journal  of Mathematics (Oxford), Vol. 7 

( 1 9 3 6 ) ,  PP. 316- 320.  

For other theorems r e l a t i n g  topology and curvature, the following 

sources are  useful .  

K. Yano and S. Bochner, "Curvature and B e t t i  Numbers," A n n a l s  

Studies, No 3 2 ,  Princeton, 1953. 

S. S. Chern, On curvature and cha rac t e r i s t i c  c lasses  of a Riemann 

manifold, Abh. Math. Sem., Hamburg, Vol. 20 ( 1 9 5 5 ) ,  pp. 117-126 .  

M. Berger, Sur cer ta ines  vari6ti.s Riemanniennes B courbure pos i t ive ,  

Comptes Rendus Acad. Sc i . ,  Par is ,  Vol. 747 (1958), pp. 1165-1168. 

S. I .  Goldberg, "Curvature and Homology," Academic Press, 1962.  



PART IV 

APPLICATIONS TO LIE GROUPS AND SYMMETRIC SPACES 

5 2 0 .  Symmetric Spaces. 

A symmetric space i s  a connected Riemannian manifold M such that, 

fo r  each p E M there i s  an isometry : M - M which leaves p f ixed 

and reverses geodesics through p, i . e . ,  i f  7 i s  a geodesic and 7 ( O )  = p 

then I p ( 7 ( t ) )  = 7 ( - t ) .  

IP 

LEMMA k 0 . 1  L e t  y be a geodesic i n  M, and l e t  
p = y ( 0 )  and q = y ( c ) .  Then I q I p ( y ( t ) )  = 7 ( t  + 2c) 
(assuming 7 (  t) and 7 (  t + 2c) a re  def ined) .  More- 
over, IqIp preserves p a r a l l e l  vector f i e l d s  along 7 .  

PROOF: Let y ' ( t )  = 7 ( t  + c ) .  Then 7 '  i s  a geodesic and 

q P  9 q 
~ ' ( 0 )  = q. Therefore I I ( 7 ( t ) )  = I ( y ( - t ) )  = I ( 7 ' ( - t  - c ) )  = 

Y ' ( t  + c)  = 7(t + 2c) .  

I f  the vector f i e l d  V i s  p a r a l l e l  along 7 then IP*(V) i s  

p a r a l l e l  ( s ince  Ip i s  an isometry) and I V ( 0 )  = -V(O) ;  therefore P* 
IppuV( t) = -V( -t) . Therefore Iq* I,*(V(t)) = V ( t  + 2c).  

COROLZSlRY 20.2.  M i s  complete. 

Since 20.1 shows that geodesics can be inde f in i t e ly  extended. 

COROLLARY 20.3.  Ip i s  unique. 

Since any point  i s  joined t o  p by a geodesic. 

COROLLARY 2 0 . 4 .  If U,V and W a re  p a r a l l e l  vector 
f i e l d s  along 7 then R(U,V)W i s  a l so  a p a r a l l e l  
f i e l d  along y .  

PROOF. If X denotes a fourth p a r a l l e l  vector f i e l d  along 7 ,  

note that the quanti ty < R(U,V)W,X > i s  constant along 7 .  I n  f a c t ,  
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@ven P = 7 ( 0 ) ,  q = 7 (  c) , consider the isometry T = 17(c/2)Ip which 

ca r r i e s  p t o  q .  Then 

<R(U q q q q  ,V ) W  ,X > = < R(T,Up,T,Vp)T,Wp,T,Xp> 

by 20.1. Since T i s  an isometry, this quanti ty i s  equal t o  < R(Up,Vp)Wp,%> . Thus <R(U,V)W,X> i s  constant fo r  every p a r a l l e l  

vector f i e l d  X .  It c l ea r ly  follows that R(U,V)W i s  p a r a l l e l .  

Manifolds with the property of 20 .4  a r e  ca l led  loca l ly  symmetric. 

(A c l a s s i c a l  theorem, due t o  Cartan s t a t e s  that a complete, simply connected, 

loca l ly  symmetric manifold i s  ac tua l ly  symmetric.) 

I n  any local ly  symmetric manifold the Jacobi d i f f e r e n t i a l  equations 

have simple e x p l i c i t  solutions.  L e t  7 :  R -* M be a geodesic i n  a local -  

l y  symmetric manifold. 

Define a l i nea r  transformation 

Let V = % ( O )  be the ve loci ty  vector a t  p = y ( 0 ) .  
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q: T% - + T %  

by* %(W) = R(V,W)V. Let e l ,  ..., en denote the eigenvalues of %. 

THEOREM 20.5 .  The conjugate points t o  p along 7 

are the points y(ck/Gi)  where k i s  any non-zero 
in teger ,  and ei i s  any pos i t ive  eigenvalue of %. 
The mul t ip l ic i ty  of 7 ( t )  a s  a conjugate point  Is  
equal t o  the number of ei such t h a t  t i s  a mul- 
t i p l e  of c / G i .  

PROOF: F i r s t  observe t h a t  % i s  se l f -adjo in t :  

< q ( w ) , w ' >  = < W , K J ( W >  

T h i s  follows immediately from the symmetry r e l a t i o n  

< R(V,W)Vl,Wl)  = <R(V1,W')V,W> . 
Therefore we may choose an orthonormal bas i s  U,, ... ,Un for Mp so  that 

%(Ui) = eiUi , 
where e l ,  ..., en are  the eigenvalues. Extend the Ui t o  vector f i e l d s  

along 7 by p a r a l l e l  t rans la t ion .  Then since M is l oca l ly  symmetric, 

* should not  be confused with the Ricc i  tensor Of $19. 

the condition 

R(V,Ui)V = eiUi 

remains t rue  everywhere along 7. Any vector f i e l d  W along y may be 

expressed uniquely as 

W ( t )  = w , ( t ) U , ( t )  +...+ w , ( t ) U n ( t )  . 
Then the Jacobi equation D2w + %(W) = 0 takes the form 

d2wi 

dt2 
1 dt2 ui + 1 eiwiUi = 0 .  

Since the Ui 

the system of n equations 

are everywhere l i nea r ly  independent t h i s  i s  equivalent t o  

d2wi 

2 + = O * 

We are in teres ted  i n  solutions t h t  vanish a t  t = 0 .  If ei > 0 then 

w i ( t )  = ci s i n  (5 t ) ,  f o r  some constant ci. 

Then the zeros of w i ( t )  a r e  a t  the mult iples of t = n / G i  . 

w i ( t )  = ci s inh  ( J  le i l t )  for some constant ci. Thus i f  ei 1. 0 ,  w i ( t )  

vanishes only a t  t = 0 .  

I f  ei = 0 then w i ( t )  = cit and i f  ei < 0 then - 
T h i s  completes the proof of 20.5. 
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LEMMA 2 1 . 2 .  The geodesics y i n  G with ~ ( 0 )  = e 
a re  prec ise ly  the one-parameter subgroups of G .  

5 2 1 .  Lie Groups as Symmetric Spaces. 

I n  this section we consider a Lie group 

which i s  invar iant  both under l e f t  t rans la t ions  

G with a Riemannian metric 

L,: G + G, L,(u) = T d 

and right t rans la t ion ,  R , (u )  = UT. I f  G i s  commutative such a metric 

cer ta in ly  e x i s t s .  If G i s  compact then such a metric can be constructed 

as follows: Let <,> be any Riemannian metric on GI and L e t  I.I denote 

the Haar measure on G .  Then I.I i s  r i g h t  and l e f t  invar iant .  Define a 

new inner product <(,>> on G by 

<<V,W>> = 1 <Lu*R,*(V), LU,RTy(W) > dp(d) dp(T) . 
GxG 

Then <<,>> i s  l e f t  and r i g h t  invar iant .  

LEMMA 2 1 . 1  I f  G i s  a Lie group with a l e f t  and right 
invar iant  metric, then G i s  a symmetric space. The 
r e f l ec t ion  I, i n  any point  T E G i s  given by the 
formula ~ , ( u )  = To-' , .  

PROOF: By hypothesis L, and R, a r e  isometries.  Define a map 

Ie: G - G by 

-1 I e ( a )  = u . 
Then Iex: TGe -+ TGe reverses the tangent space of e ;  so  i s  cer ta in ly  

an isometry on this tangent space. Now the iden t i ty  

1, = RU- 1 I,',, - 1 

shows that Ie*: Gu - G -1 i s  an isometry fo r  any u E G. Since 1, 

reverses the tangent space a t  e ,  it reverses geodesics through e.  

F inal ly ,  defining I T ( u )  = T U - ~ T ,  the iden t i ty  I, = R,IeRil 

shows that each I, i s  an isometry which reverses geodesics through T. 

A 1-parameter subgroup of G i s  a C" homomorphism of R i n t o  

G. It i s  well  known that a 1-parameter subgroup of G i s  determined by 

i t s  tangent vector a t  e .  

Princeton, 1946.)  

(Compare Chevalley, "Theory of Lie Groups," 

PROOF: Let y :  R - + G  be a geodesic with 7 ( O )  = e .  By Lemma 20.1 

the map Iy( t)Ie  takes y(u) i n t o  7 (u  + 2 t ) .  Now I y ( t ) I e ( ~ )  = y ( t ) u  7 ( t )  

s o  y ( t ) ~ ( u ) y ( t )  = y(u + 2 t ) .  By induction it follows that y (n t )  = y ( t ) n  

f o r  any in teger  n .  I f  t l / t "  i s  r a t i o n a l  so  t h a t  t '  = n ' t  and t" = n" t  

~ f o r  some t and some in tegers  n '  and n" then y ( t '  + t") = y ( t ) n ' + n "  = 

7 ( t 1 ) y ( t " ) .  By continuity 7 i s  a homomorphism. 

Now l e t  y :  R - G be a 1-parameter subgroup. Let 7 '  be the 

geodesic through e such that the  tangent vector of 7 '  a t  e i s  the tan- 

gent vector of y a t  e .  We have j u s t  seen that 7 '  i s  a 1-parameter sub- 

group. Hence 7 '  = 7 .  T h i s  completes the proof. 

A vector f i e l d  X on a Lie group G i s  called l e f t  invar iant  i f  

and only if (La)*(Xb) = Xa.b for every a and b i n  G. If X and Y 

are  l e f t  invar iant  then [X,YI  i s  a l so .  The Lie algebra Q of G i s  the 

vector space of a l l  l e f t  invar iant  vector f i e lds ,  made i n t o  an algebra by 

the bracket [ I .  

Q i s  ac tual ly  a Lie algebra because the Jacobi Iden t i ty  

" X , Y l , Z l  + " Y , Z l , X l  + " Z , X l , Y I  = 0 

holds fo r  a l l  (not  necessari ly l e f t  invar iant )  vector f i e l d s  X,Y and Z. 

THEOREM 2 1 . 3 .  Let G be a Lie group with a l e f t  and 

r i g h t  invar iant  Riemannian metric. I f  X,Y,Z and W 
a r e  l e f t  invar iant  vector f i e l d s  on G then: 
a) < [ x , Y l , Z >  = < x , [ Y , z l >  
b) R ( X , Y ) Z  = ~[X,Yl,Zl 
C )  <R(X,Y)Z ,W> = < [ X , Y I , [ Z , W 1 >  . 

PROOF: A s  i n  5 0  we w i l l  use the notat ion X k Y f o r  the covariant 

der iva t ive  of Y i n  the d i r ec t ion  X .  For any l e f t  invar iant  X the iden- 

t i t y  

x F X  = 0 

is sa t i s f i ed ,  s ince the i n t e g r a l  e w e s  of X a re  l e f t  t r ans l a t e s  of 1 -  

Parameter subgroups, and therefore  a re  geodesics. 
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( X  + Y) I- ( X  + Y) = ( X  I- X) + ( X  l- Y) 

+ ( Y  I- X) + ( Y  I- Y) 

i s  zero; hence 

X I - Y + Y l - X  = 0 .  

On the other hand 

x k Y  - Y I- x = [X ,YI  

by 58.5. Adding these two equations we obtain: 

d) 2X I- Y = [X,YI  . 
NOW r e c a l l  the iden t i ty  

Y <x ,z>  = < Y  I- x , z >  + <X,Y I- z > . 
(See 58.4.)  The l e f t  s ide  of this equation i s  zero, since < X , Z >  i s  

constant .  Subst i tu t ing  formula ( d )  i n  this equation we obtain 

0 = < [ Y , X I , Z >  + < X , [ Y , Z I  > . 
Final ly ,  using the skew commutativity of 

formula 

[ Y , X I ,  we obtain the required 
* 

< [ X , Y I , Z >  = < X , [ Y , Z l >  . 

By def in i t ion ,  R ( X , Y ) Z  i s  equal t o  

- x I- ( Y  I- 2 )  + Y I- ( X  k Z) + [X,YI I- z. 

SiJbstituting formula ( a ) ,  this becomes 

1 1 1 - F [ x , [ Y , z l l  + F I Y , [ x , z l l  + T " x , Y l , z l  

Using the Jacobi i den t i ty ,  this y i e lds  the required formula 

(b )  
R(X,Y)Z  = T;"X,YI,ZI 1 . 

The formula ( c )  follows from (a)  and (b)  . 

* It follows that the t r i - l i n e a r  function X,Y,Z .-, Q X , Y I , Z >  i s  skew- 
symmetric i n  a l l  three var iables .  Thus one obtains a l e f t  invar iant  d i f f e r-  
e n t i a l  3-form on G, representing an element of the de Rham cohomology group 
H 3 ( G ) .  I n  this way Cartan w a s  ab le  t o  prove that H3(G) # 0 i f  G i s  a 
non-abelian compact connected Lie group. (See E. Cartan, "La Topologie des 
Espaces Representatives des Groupes de Lie," P a r i s ,  Hermann, 1936.) 

.. 
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COROLLWY 2 1 . 4 .  The sec t ional  curvature < R ( X , Y ) X , Y >  = 

< [ X , Y I ,  [X,YI  > i s  always 2 0 .  Equality holds i f  and 
only i f  [x ,YI  = 0 .  

Recall  that the center  c of a Lie algebra 0 i s  defined t o  be 

the s e t  of X E 0 such t h a t  [X ,YI  = 0 for a l l  Y E 0. 

COROLLARY 21.5. I f  G b s  a l e f t  and r i g h t  invar iant  
metric,  and i f  the Lie algebra g has t r i v i a l  center ,  
then G i s  compact, with f i n i t e  fundamental group. 

PROOF: T h i s  follows from Meyer's theorem ( 8 1 9 ) .  Let X1 be any 

u n i t  vector i n  0 and extend t o  a orthonormal bas i s  X 1 ,  ...,%. The Ricci  

curvature 

K(X1 , X 1 )  = < R ( X 1  ,Xi )Xl  ,Xi>  

must be s t r i c t l y  pos i t ive ,  since [ X l , X i l  # 0 for some 1. Furthermore 

K(X1 ,X1)  i s  bounded away from zero, since the unit sphere i n  0 i s  compact. 

Therefore, by Corollary 19.5, the manifold G i s  compact. 

i = 1  

- 
T h i s  r e s u l t  can be sharpened s l i g h t l y  as follows. 

COROLLARY 2 1 . 6 .  A simply connected Lie group G with l e f t  
and right invar iant  metric s p l i t s  as a Cartesian product 
G '  x Rk where G I  i s  compact and Rk denotes the addi t ive  
Lie group of some Euclidean space. Furthermore, the Lie 
algebra of G I  has t r i v i a l  cen te r .  

Conversely it i s  c l ea r  that any such product GI x Rk possesses a 
l e f t  and right invar iant  metric. 

PROOF. Let c be the center  of the Lie algebra B and l e t  

g' = I X  E 0 :<X,C> = o for a l l  C E c 1 

be the orthogonal complement of c . Then g r  i s  a Lie sub-algebra. For 

i f  x ,y  E 01 and C E c then 

< [X,YI ,C > = < X , [ Y , C I >  = 0 ;  

hence [x,yI E 0'. It follows that g s p l i t s  as a d i r e c t  sum f l l  (3 C of 

Lie algebras.  Hence G S p l i t s  as a Cartesian product G I  x G " ;  where G I  

i s  cmpact  by 21.5 and. GI' 1s Simply connected and abelian,  hence isomorphic 
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t o  some Rk. (See Chevalley, "Theory of Lie Groups.") 

proof. 

T h i s  completes the 

THEOREM 21.7  ( B o t t ) .  Let G be a compact, simply con- 
nected Lie group. Then the loop space n(G) has the 
homotopy type of  a CW-complex with no odd dimensional 
c e l l s ,  and with only f i n i t e l y  many X-cells for each 
even value of h .  

Thus the X-th homology groups of n(G) i s  zero f o r  A odd, and i s  

f r ee  abelian of f i n i t e  rank for X even. 

REMARK 1 .  T h i s  CW-complex w i l l  always be i n f i n i t e  dimensional. A s  

an example, i f  G i s  the group S3 of u n i t  quaternions, then we have seen 

that the homology group HiO(S3) i s  i n f i n i t e  cycl ic  fg r  a l l  even values of i. 

REMARK 2. T h i s  theorem remains t r u e  even f o r  a non-compact group. 

I n  f a c t  any connected Lie group contains a compact subgroup as deformation 

r e t r a c t .  (See K.  Iwasawa, On some types of topological proups, A n n a l s  of 

Mathematics 50 ( 1949), Theorem 6. )  

by 

we have 

Ad V(W) = [V,WI 

% = - (Ad V) 0 (Ad V) . 

The l inea r  transformation Ad V i s  skew-symmetric; that i s  

< Ad V(W),W' > = - < W,Ad V(W') > . 

+ This follows immediately from the i d e n t i t y  21.3a. Therefore we can choose 

an orthonormal bas i s  f o r  G so that the matrix of Ad V takes the form 

PROOF of 2 1 . 7 .  Choose two points p and q i n  G which a re  not 

conjugate along any geodesic. By Theorem 17.3, O(G;p,q) has the homotopy 

type of a CW-complex with one c e l l  of dimension A f o r  each geodesic from 

p t o  q of index X .  By 6 1 9 . 4  there  a re  only f i n i t e l y  many A-cells for 

each X. Thus i t  only remains t o  prove that the index X of a geodesic is 

always even. 

Consider a geodesic 7 s t a r t i n g  a t  p with ve loci ty  vector 

v = $ ( O ) E T G  ' a .  
P 

According t o  6 2 0 . 5  the conjugate points  of  p on y a re  determined by the .* 

eigenvalues of the l i nea r  transformation 

P '  q: TGp - T G  

defined by 

%(W) = R(V,W)V = $[V,Wl,Vl . 
Defining the adjo in t  homomorphism 

Ad V: kl -., 

It follows that the 

matrix 

(-a1 O g1 - :23* . . ) 
composite l i nea r  transformation (Ad V) 0 (Ad V) has 

Therefore the non-zero eigenvalues of 

occur i n  pa i r s .  

% = - &Ad V)* a re  pos i t ive ,  and 

It follows from 20.5 that the  conjugate points of p along 7 a l s o  

I n  other words every conjugate point  has even mul t ip l i c i ty .  occur i n  pa i r s .  

Together with the Index Theorem, this implies that the index X of any 

geodesic from p t o  q i s  even. T h i s  completes the proof. 
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$ 2 2 .  Whole Manifolds of Minimal Geodesics 

So f a r  we have used a pa th  space n(M;p,q) based on two points 

p,q E K 
tha t  very useful  r e s u l t s  can be obtained by considering p a i r s  

specia l  pos i t ion .  A s  an example l e t  M be the unit  sphere Sn+l , and 

l e t  p,q be antipodal  poin ts .  Then there a re  i n f i n i t e l y  many minimal geo- 

desics from p t o  q .  

a smooth manifold of dimension 

Sn C Sn+l.  

which a re  i n  "general posit ion." However, Bott has pointed out 

p,q i n  some 

In  f a c t  the space R n 2  of m i n i m a l  geodesics forms 

n which can be iden t i f i ed  with the equator 

We w i l l  see tha t  this space of minimal geodesics provides a 

P 

4 

f a i r l y  good approximation t o  the e n t i r e  loop space n (Sn+ ' ) .  

Let M be a complete Riemannian manifold, and l e t  p,c, E M be two 

points w i t h  distance p(p,q) = a. 

THEOREM 2 2 . 1 .  I f  the space ad of minimal geodesics from 
p t o  g i s  a topological  manifold, and i f  every non-minimal 
geodesic from p t o  q has index 2 L o ,  then the  r e l a t i v e  
homotopy group n i ( n , n  ) i s  zero fo r  o 5 i < h0. d 

I t  follows that the inclusion homomorphism 
d 

i 5 X o  - 2 .  

n i ( O  ) - n i ( n )  

is an isomorphism for 

group n i ( n )  i s  isomorphic t o  n i + l ( M )  f o r  a l l  values of i. (Compare 

S. T. Hu, "Homotopy Theory," Academic Press,  1959,  p. 1 1 1 ;  together with 

8 1 7 . 1 . )  

But it i s  well  known that the homotopy 
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Thus we obtain: 
d COROLLARY 2 2 . 2 .  With the same hypotheses, n i ( 0  ) i s  

isomorphic t o  I X ~ + ~ ( M )  f o r  0 5 i 5 X o  - 2 .  

Let  us apply t h i s  corollary t o  the case of two antipodal  points on 

the (n+l) -sphere .  Evidently the hypotheses are  s a t i s f i e d  with 

For any non-minimal geodesic must wind one and a half  times around 

and contain two conjugate points ,  each of mul t ip l i c i ty  n, i n  i t s  i n t e r i o r .  

T h i s  proves the following. 

X o  = 2n. 

S""; 

COROLLARY 2 2 . 3 .  (The Freudenthal suspension theorem.) 
The homotopy group ni(Sn) i s  isomorphic t o  n i+l (Sn+l)  
fo r  i 5 2n-2. 

Theorem 2 2 . 1  a l s o  implies that the homology groups of the loop 

space n a re  isomorphic t o  those of ad  i n  dimensions 5 L o  - 2 .  T h i s  

f a c t  follows from 2 2 . 1  together with the r e l a t ive  Hurewicz theorem. (See 

for example Hu, p .  2 0 6 .  Compare a l s o  J .  H. C .  Whitehead, Combinatorial 

homotopy I,  Theorem 2 . )  - 
The r e s t  of $ 2 2  w i l l  be devoted t o  the proof of Theorem 2 2 . 1 .  The 

proof w i l l  be based on the  following l e m a ,  which a s s e r t s  t h a t  the condition 

" a l l  c r i t i c a l  points  have index 

j iggled s l igh t ly .  
2 X o t '  remains t rue  when a function i s  

Let K be a compact subset of the Euclidean space Rn; l e t  U be 

a neighborhood of K ;  and l e t  

f :  U - R  

be a smooth function such that a l l  c r i t i c a l  points  of f i n  K have index 

- > l o .  

LEMMA 2 2 . 4 .  I f  g: U - R i s  any smooth function which 
i s  "close" t o  f ,  i n  the  sense t h a t  

uniformly throughout K, for  some su f f i c i en t ly  small constant E ,  

then a l l  C r i t i c a l  Points of g i n  K have index 2 X o .  

(Note that f 1s allowed t o  have degenerate c r i t i c a l  poin ts .  I n  

the application,  

points.)  

g w i l l  be a nearby function without degenerate c r i t i c a l  
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PROOF of 2 2 . 4 .  The f i r s t  der iva t ives  of g are  roughly described 

by the single r e a l  valued function 

on U; which vanishes prec ise ly  a t  the c r i t i c a l  points  of g. The second 

der iva t ives  of g can be roughly described by n continuous functions 

as follows. Let 

1 2 
eg(x) 5 eg(x) F... e i ( x )  

a2 
denote the 

x of g has index 2 A i f  and only i f  the number ek(x) 

n eigenvalues of the matrix ( 6-$- ) . xi x j  
Thus a c r i t i c a l  point  

i s  negative. 

The continuity of the functions ex  
63 

follows from the f a c t  that the 
* 

A-th eigenvalue of a symmetric matrix depends continuously on the matrix . 
T h i s  i n  turn follows from the f a c t  that the roots  of a polynomial depend 

continuously on the polynomial. 

P a r t  11," published i n  the United S ta t e s  by Dover, 1 9 4 7 . )  

(See § 1 4  of K .  Knopp, "Theory of Functions, 

LO 
Let m (x )  denote the la rger  of the two numbers k g ( x )  and -eg ( x ) .  

g 
Similarly l e t  mf(x) denote the l a rge r  of the corresponding numbers kf (x)  

and -e)(x).  The hypothesis that a l l  c r i t i c a l  points  of f i n  K have 

index 2 A. implies that -ef (x)  > 0 whenever kf (x)  = 0 .  I n  other words 

mf(x) > 0 for a l l  x E K. 

A O  

Let 6 > 0 denote the minimum of mf on K. Now suppose that g 

i s  so close t o  f that 

( * )  

for a l l  x E K. Then m (x)  w i l l  be pos i t ive  for x E K; hence every 

c r i t i c a l  point  of g i n  K w i l l  have index 2 L o .  
g 

* T h i s  statement can be sharpened as follows. Consider two nxn symmetric 
matrices. 
E,  then corresponding eigenvalues d i f f e r  by a t  most ne. T h i s  can be 
proved using Courant's minimax de f in i t i on  of the A - t h  eigenvalue. (See 
Jl  of Courant, 
Nachrichten, Koniglichen Gesellschaft  der  Wissenschaften zu Gottingen, 
Phys. Klasse 1919,  pp. 255-264.) 

If corresponding e n t r i e s  of the two matrices d i f f e r  by a t  most 

Uber d i e  Ab%n@;igkeit der Schwingungszahlen e ine r  Membr an..., 
Math. 

To complete the proof of 2 2 . 4 ,  i t  i s  only necessary t o  show tha t  

the inequa l i t i e s  (*)  w i l l  be s a t i s f i e d  providing t h a t  

for su f f i c i en t ly  small E .  T h i s  follows by a uniform continuity argument 

which w i l l  be l e f t  t o  the reader (or by the footnote above ) .  

We w i l l  next prove an analogue of Theorem 2 2 . 1  for r e a l  valued 

functions on a manifold. 

Let f :  M + R be a smooth r e a l  valued function with minimum 0 ,  

such that each MC = f- '[O,cl i s  compact. 

LIDlMA 2 2 . 5 .  

and if every c r i t i c a l  point  i n  
If the s e t  Mo of minimal points  i s  a manifold, 

M - Mo has index 2 A o ,  
then nr (M,M 0 ) = 0 f o r  0 5 r < X o .  

PROOF: F i r s t  observe t h a t  Mo i s  a r e t r a c t  of some neighborhood 

U C M .  I n  f a c t  Harmer has proved that any manifold Mo i s  an absolute 

neighborhood r e t r a c t .  (See Theorem 3.3 of 0 .  Harmer, Some theorems on 

absolute neighborhood r e t r a c t s ,  Arkiv  f o r  Matematik, V o l .  1 (1950), pp. 

389-408.) Replacing U by a smaller neighborhood i f  necessary, we may 

assume that each point of U i s  joined t o  the corresponding point  of Mo 

by a unique m i n i m a l  geodesic. Thus U can be deformed i n t o  Mo within M .  

Let 1' denote the u n i t  cube of dimension r < Xo, and l e t  

h: (Ir,Tr) - ( M , M o )  

be any map. We must show that h i s  homotopic t o  a map h '  with 

h'(Ir) C M o .  

L e t  c be the m a x i m u m  of f on h(1'). Let 3 6  > 0 be the mini- 

mum of f on the s e t  M - U .  (The function f has a minimum on M - U 

since each subset MC - U i s  compact.) 

Now choose a smooth function 

+ R  Mc+26 g:  
Which approximates f closely,  but  has no degenerate c r i t i c a l  poin ts .  T h i s  

I s  possible by J6 .8 .  

close tha t :  
To be more prec ise  the  approximation should be s o  

( I )  I f (x )  - g(X) 1 < 6 f o r  a l l  x E M c + 2 6 ;  and 
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( 2 )  The index of g a t  each c r i t i c a l  point  which l i e s  i n  the com- 

pact  s e t  f-l[6,C+26] i s  2 x0. 
It follows from Lema 2 2 . 4  that any g which approximates f 

su f f i c i en t ly  closely,  the f i r s t  and second der iva t ives  a l s o  being approxi- 

mated, w i l l  s a t i s f y  ( 2 ) .  I n  f a c t  the compact s e t  f-’[6,C+261 can be 

covered by f i n i t e l y  many compact s e t  

nate neighborhood. 
Ki, each of which l i e s  i n  a coordi- 

Lemma 22 .4  can then be applied t o  each %. 
The function g i s  The proof of 22.5 now proceeds as follows. 

smooth on the compact region 

points a r e  non-degenerate, with index 2 Xo. Hence the manifold 

g-’ (-m,c+61 has the homotopy type of g-’ ( - m , 2 6 1  with c e l l s  of dimension 

2 Xo attached. 

g-l[26,c+61 c f-’ [ ~ , C + ~ F I ,  and a l l  c r i t i c a l  

Now consider the map 

0 h: Ir ,fr  -C MC,Mo C g-’(-m,C+6l,M . 

Since r < Xo 
a 

it follows that h i s  homotopic within g-’ ( - m , C + 6 1  ,Mo t o  

0 h ’ :  I r , f r  + g-’(-m,26I,M . 
But this l a s t  pa i r  i s  contained i n  ( U , M o ) ;  and U can be deformed i n t o  

Mo within M.  It follows t h a t  h ’  i s  homotopic within ( M , M o )  t o  a map 

h”:  Ir,fr - M o , M o .  T h i s  completes the proof of 2 2 . 5 .  

The or ig inal  theorem, 2 2 . 1 ,  now can be proved as follows. Clearly 

it i s  su f f i c i en t  t o  prove t h a t  

n i ( ln t  n c , n d )  = o 

f o r  a r b i t r a r i l y  la rge  values of c .  A s  i n  $16 the space I n t  n c  contains 

a smooth manifold I n t  R C (  tO, t l , .  . . ,tk) as deformation r e t r a c t .  The space 

ad of  minimal geodesics i s  contained i n  this smooth manifold. 

The energy function E: R +R, when r e s t r i c t e d  t o  

I n t  n C ( t O , t l ,  ..., tk), almost s a t i s f i e s  the hypothesis of 22.5. The only 

d i f f i c u l t y  i s  t h a t  E ( u )  ranges over the in t e rva l  d E < c ,  instead of 

the required i n t e r v a l  [O ,m) .  To correc t  this, l e t  

F: [d ,c)  + L O , = )  

be any diffeomorphism. 

§ 2 2 .  MANIFOLDS OF MINIMAL GEODESICS 

Then 

F 0 E: I n t  n c ( t o , t  ,,..., tk) + R 

s a t i s f i e s  the hypothesis of 22.5. Hence 

ni(Int n c ( t o  ,..., t k ) , n  d E ni( ln t  nc,nd) 

i s  zero fop i < Lo. T h i s  completes the proof. 
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5 2 3 .  The Bott Per iodic i ty  Theorem fo r  the Unitary Group. 

F i r s t  a review of wel l  known f a c t s  concerning the uni tary  group. 

L e t  Cn be the space of n-tuples of complex numbers, with the usual  Her -  

mit ian inner product. The uni tary  group U(n) i s  defined t o  be the group 

of a l l  l i nea r  transformations S: Cn + C n  which preserve this inner 

product. Equivalently, using the matrix representat ion,  U(n) i s  the 

group of a l l  n x n complex matrices S such t h a t  S S* = I; where S* 

denotes the conjugate transpose of S. 

For any n x n complex matrix A the exponential of A i s  defined 

by the convergent power s e r i e s  expansion 
1 

exp A = I + A + & A 2  + - A 3  3. + ... 

The following proper t ies  are  e a s i l y  ve r i f i ed :  
-1 

( 1 )  exp (A*) = (exp A)*; exp (TAT- ’ )  = T(exp A ) T  . 
( 2 )  I f  A and B commute then 

exp ( A  + B) = (exp A) (exp B) . I n  pa r t i cu la r :  

( 3 )  (exp A)(exp -A) = I 

( 4 )  The function exp maps a neighborhood of 0 i n  the space of 

If A i s  skew-Hermitian ( t h a t  i s  i f  A + A* = O ) ,  then it fol- 
n x n matrices diffeomorphically onto a neighborhood of I .  

lows from ( 1 )  and ( 3 )  that exp A i s  uni tary .  Conversely i f  exp A i s  

unitary,  and A belongs t o  a su f f i c i en t ly  small neighborhood of 0 ,  then 

i t  follows from ( 1 )  , ( 3 ) ,  and ( 4 )  that A + A* 

eas i ly  proves tha t :  

= 0 .  From these f a c t s  one 

( 5 )  U(n) i s  a smooth submanifold of the space of n x n matrices; 

( 6 )  the tangent space TU(n)I can be iden t i f i ed  w i t h  the space of 

n x n skew-Hermitian matrices.  

Therefore the  Lie algebra g of U(n) can a l s o  be iden t i f i ed  with 

the space of skew-Hermitian matrices. For any tangent vector a t  I extends 

uniquely t o  a l e f t  invar iant  vector f i e l d  on U ( n ) .  

the bracket product of l e f t  invar iant  vector f i e l d s  corresponds t o  the 

product [A,B1 = AB - BA of matrices. 

Computation shows that 

Since U(n) i s  compact, i t  possesses a l e f t  and r i g h t  invar iant  

Riemannian metric. Note tha t  the function 

exp: TU(nII -U(n)  

defined by exponentiation of matrices coincides with the function exp de- 

fined (as i n  9 1 0 )  by following geodesics on the r e su l t i ng  Riemannian mani- 

fold.  I n  f a c t  fo r  each skew-Hermitian matrix A the correspondence 

t -L exp( t  A) 

defines a 1 -parameter subgroup of U(n) (by Assertion ( 2 )  above) ; 

hence defines a geodesic. 
and 

A speci f ic  Riemannian metric on U(n) can be defined as follows. 
Given matrices A,B E g l e t  <A,B> denote the r e a l  p a r t  of the complex 

number 

Clearly this inner product i s  pos i t ive  de f in i t e  on g , 

T h i s  inner product on g determines a unique l e f t  invar iant  

Riemannian metric on U(n) .  

right invar iant ,  we must check that it is invar iant  under the adjo in t  

ac t ion  of U(n) on 0. 

To ve r i fy  t h a t  the r e su l t i ng  metric i s  a l so  

DEFINITION of the adjo in t  ac t ion .  Each S E U(n) determines an 
inner automorphism 

x - s x s-l = ( L ~ R ~ - ’ ) X  

of the group U ( n ) .  The induced l i nea r  mapping 

i s  called Ad(S). Thus Ad(S) i s  an automorphism of the Lie algebra of 

U(n ) .  Using Assertion ( 1 )  above we obtain the exp l i c i t  formula 

Ad(S)A = 3M-l , 
f o r  A E Q, s E U(n) .  

The inner Product <A,- 

I n  f a c t  if A1 = Ad(S)A, 
i s  invar iant  under each such automorphLsm 

B1 = Ad(S)B Ad(S). then the i d e n t i t y  
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implies that 

t race  ( A ~ B ~ * )  = t race  (sAB*s-') = t race  (AB") ; 

and hence t h a t  

(A1,Bl > = < A , B >  . 

It follows that the corresponding l e f t  invar iant  metric on U(n)  

right invar iant .  

i s  a l so  

Given A E g we know by ordinary matrix theory that there  ex i s t s  

T E U(n) so  tha t  TAT-' i s  i n  diagonal form 

where the a i l s  are  real. Also, given any S E U ( n ) ,  there  i s  a T E u ( n )  

where again the 

i s  onto. 

ails a re  r e a l .  Thus we see d i r ec t ly  that exp: B - + U ( n )  

One may t r e a t  the specia l  unitary group SU(n) i n  the same way. 

SU(n) i s  defined as the subgroup of U(n) consist ing of matrices of de- 

terminant 1 .  

matrices, i t  i s  easy t o  show, using the diagonal form, that 

I f  exp i s  regarded as the ordinary exponential map of 

de t  (exp A) = etrace A . 
3sing this equation, one may show that 81 , the Lie algebra of SU(n) i s  

the s e t  of a l l  matrices A such that A + A* = 0 and t r ace  A = 0 .  

I n  order t o  apply Morse theory t o  the topology of U(n) and SU(n),  

we begin by considering the s e t  of  a l l  geodesics i n  U(n) from I t o  -I. 

I n  other words, we look for a l l  A E TU(n)I = g such that exp A = -I. 

Suppose A i s  such a matrix; 
l e t  

T E U(n) be such that TAT-l i s  i n  diagonal form. Then 

i f  it i s  not  already i n  diagonal form, 

exp TAT-l = T(exp A)T-l = T ( - I ) T - '  = -1 

SO t ha t  we may a s  well  assume that A i s  already i n  diagonal form 

A =  

I n  t h i s  case, 

so that exp A = -I if and only if A has the form 

7 % .  
for some odd in tegers  k , ,  ... 

Since the length of the geodesic t -  exp t A  from t = 0 t o  t = 1 

is 

n Jk? +. . .+ c. Thus A determines a minimal geodesic i f  and only i f  each 

$ equals 5 I ,  and i n  t h a t  case, the length i s  x &I. Now, regarding 

such an A as a l i nea r  map of Cn t o  Cn observe tha t  A i s  completely 

determined by specifying Eigen( in) ,  the vector space consist ing of a l l  

v c Cn such that Av = inv;  and Eigen( - i n ) ,  the space of a l l  v E Cn 

such that Av = -inv. Since Cn s p l i t s  a s  the orthogonal sum Eigen(in) 6? 

Eigen(-in),  

which i s  an a r b i t r a r y  subspace of Cn. 

desics i n  U(n) from I t o  -I may be iden t i f i ed  with the space of a l l  

sub-vector -spaces of Cn. 

[ A [  = m, the length of the geodesic determined by A i s  

the matrix A i s  then completely determined by Eigen(in) , 
Thus the space of a l l  minimal geo- 

Unfortunately, this space i s  r a the r  inconvenient t o  use since i t  

T h i s  d i f f i c u l t y  may be removed by has Components of varying dimensions. 

replacing U(n) by SU(n) and s e t t i n g  n = 2m. I n  this case, a l l  the 

above considerations remain val id .  

a, +...+ a - o w i t h  ai = 2 n r e s t r i c t s  Eigen(in) t o  being an arb i -  

trarg m dimensional sub-vector-space of C2m. 

But the addi t ional  condition t h a t  

2m - 

This proves the following: 
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LEMMA 2 3 . 1 .  The space of m i n i m a l  geodesics from I t o  -I 
i n  the spec ia l  uni tary  group 
complex Grassmann manifold Gm(Cm), cons is t ing  of a l l  m 
dimensional vector subspaces of c2m. 

SU( 2m) is homeomorphic t o  the 

We w i l l  prove the following r e s u l t  a t  the end of this sec t ion .  

23 .2 .  Every non-minimal geodesic from I t o  -I 
i n  sU(2m) has index >_ an+2. 

Combining these two lenunas wi th  822 w e  obtain: 

THEOREM 23 .3  (Bott)  . The inc lus ion  map Gm(Can) - 
fi(SU(2m); 1,-I) 
i n  dimensions 5 2m. Hence 

induces isomorphisms of homotopy groups 

an ni Gm(C ) r ni+,SU(2m) 

fo r  i 5 2111. 

On the other hand using standard methods of homotopy theory one 

obtains somewhat d i f f e ren t  isomorphisms. 

fo r  j # 1 .  

PROOF. F i r s t  note that f o r  each m there  e x i s t s  a f ib ra t ion  
-c S2m+l 

U(m) - U(m+ 1 ) 

From the homotopy exact  sequence 
... - ni s ~ ~ + ’  - ni-’ u(m) - niV1 U\rn+l) - ni-l S m + ’  - ... 

of this f ib ra t ion  we see that 

ni-l  U(m) s ni-’ U ( m + l )  for i 5 an. 

(Compare Steenrod, “The Topology of Fibre Bundles,” Princeton, 1951, p. 35 

and p.  90.) It follows that the inc lus ion  homomorphisms 

ni-’ U(m) - u ( m + l )  - ni-, U(m+2) - ... 
a r e  a l l  ismorphisms f o r  i 5 an. These mutually iSOmOrPhiC Goups are 

1 2 9  

They w i l l  

8 2 3 .  THE BOTT PERIODICITY THEOREM 

called the 

be denoted b r i e f l y  by 

( i - i l - s t  s t ab le  homotopy group of the uni tary  group. 

fli-l U .  
The same exact sequence shows that, f o r  i = 2m+i, the  homomorphism 

nrn U(m) - x2m u ( m + i )  s n2m U is onto. 

The complex St iefe lmanifo ld  is defined t o  be the  coset  space 

U(m) / V ( m ) .  From the exact  sequence of the f ib ra t ion  

u(m) -c U(2m) -c U ( a )  / u ( m )  
we see that n i (U(2m) /  u ( m ) )  = o f o r  i < 2m. - 

The complex Grassmann manifold Gm(Cem) can be 

the coset  space U(2m)/  U(m) x U(m).  (Compare Steenrod 

sequence of the f ib ra t ion  

u ( m )  - ~ ( 2 m )  / U(m) - cm(c2”) 
we see now t h a t  

N Z ~ G ~ ( C ’ ~ )  - - ni-l  u ( m )  

f o r  i 5 2m. 

i den t i f i ed  with 

8 7 . )  From the exact  

Finally,  f r m  the  exact  sequence of the f ib ra t ion  

SU(m) -u(m) - S’ w e  see t h a t  n SU(m) I n U(m) fo r  j + I .   his 

completes the proof of Lemma 23 .4 .  j 
j 

Combining Lem 23.4 with Theorem 23.3 w e  see t h a t  

fl i- l  U = ni-l U(m)  r niGm(C ) Y ni+l SU(2m) s 2m “ i + l  

for  1 5 i 5 2m. Thus we obtain: 

PERIODICITY THEOREM. U r ni+l  U f o r  1 2  I .  

To evaluate these groups it is now su f f i c i en t  t o  observe that U ( i )  

I is a c i r c l e ;  SO t ha t  

no u = no U(1)  = 0 

x 1  U = n1 U(1) Z ( i n f i n i t e  cyc l i c ) .  
As a check, since SU(2) is a 3-sphere, w e  have: 

n 2 u  = n*SU(2)  = 0 

n3 u = n3 SU(2) Y z . 
we have proved the following r e s u l t .  
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THEOREM 2 3 . 5  (Bott)  . The s table  homotopy groups ni u 
of the  unitary groups a re  periodic with period 2 .  I n  
f a c t  the groups 

are  zero, and the groups 

no u r n , U  s n4u 2 . . .  

n 1 u g n  3 U r n 5 U r  ... 
are  i n f i n i t e  cycl ic .  

The r e s t  of §23 w i l l  be concerned with the proof of Lemma 2 3 . 2 .  

must compute the index of any non-minimal geodesic from I t o  -I on 

sU(n) ,  where n i s  even. Recall  that the Lie algebra 

We 

a ’  = T(SU(n))I 

cons is ts  of a l l  n x n skew-Hermitian matrices with t r ace  zero. A given 

matrix A E corresponds t o  a geodesic from I t o  -I i f  and only i f  

the eigenvalues of A have the form inkl  ,..., i n %  where kl ,... 7 %  a re  

odd in tegers  with sum zero. 

We must f ind  the conjugate points t o  I along the geodesic 

t - exp( t A )  . 

According t o  Theorem 20.5 these w i l l  be determined by the pos i t ive  eigen- 

values of the l i nea r  transformation 

KA: g ’  - g ’  

where 

KA(W) = R(A,W)A = 4 “A,WI,AI  . 
(Compare $21 . T . )  

We may assume that A i s  the diagonal matrix 

with k, 2 k2 2 ... 2 %. I f  W = ( w .  ) then a short  computation shows 

that 
J P  

[A,WI = ( in (k j  - kQ)wjn) , 

hence 

[A , [A ,WII  = ( - n 2 ( k j  - kp)2  W j p )  , 

and 
2 

KA(W = ( %(kj  - kp)2 wjg) . 
Now we f ind  a bas i s  fo r  g‘ consist ing of eigenvectors of KA, a s  follows: 

For each j < P the matrix E ja  with + I  i n  the ( j P ) - t h  

place, -1 i n  the ( P j ) - t h  place and zeros elsewhere, i s  i n  g ’  

and i s  an eigenvector corresponding t o  the eigenvalue 

2 2 
G ( k .  - kp) . J 
Similarly fo r  each j < e the matrix E j n  with +i i n  the 

( j Q ) - t h  place and +i i n  the ( Q j ) - t h  place i s  an eigenvector, 

a l s o  with eigenvalue %(kj  - ke)2  

Each diagonal matrix i n  8’ 

2 . 
i s  an eigenvector with eigenvalue 0. 

Thus the non-zero eigenvalues of KA a re  the numbers %( 2 k j  - kQ) 

with k > kp. Each such eigenvalue i s  t o  be counted twice. 
j 
Now consider the geodesic r ( t )  = exp t A .  Each eigenvalue 

2 2 
e = %(kj  - ka) 

corresponding t o  the values 

> 0 gives r i s e  t o  a s e r i e s  of conjugate points along y 

t = n/&, 2 n / v 5 ,  3.1-6, ... . 
(See $20.5.) Subst i tu t ing  i n  the formula f o r  e ,  t h i s  gives 

... . 4 6 t =  
’j - ’1 ’ k j  - ‘P ’ k j  - ’P ’ 

The number of such values of t i n  the open in t e rva l  ( 0 , l )  is evidently 

equal t o  -J-.-& - I .  
k - k  

Now l e t  us  apply the Index Theorem. For each j , Q  with k > kp 

we obtain two copies of the  eigenvalue %(kj 2 - kQ)2 ,  and hence a j cont r i-  
bution of 

k .  - k 
2( +A - 1 )  

t o  the  index. Adding over a l l  j , Q  this gives the formula 

for the index of the geodesic 7 .  

k j  
A s  an example, i f  y is a IIIinimal geodesic, then a l l  of the 
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are equal t o  +. 1 . Hence A = 0,  as was t o  be expected. 

Now consider a non-minimal geodesic. Let n = 2m. 

CASE 1 .  A t  l e a s t  m + l  of the k i t s  a r e  (say) negative. I n  this 

case a t  l e a s t  one of the pos i t ive  ki must be 2 3, and we have 

A2 ( 3  - ( - 1 )  - 2) = 2 ( m + 1 )  . 
1 

CASE 2 .  m of the ki are pos i t ive  and m are negative but  not  

a l l  a r e  +- 1 .  Then one i s  2 3 and one is -3 so  that 

A 2  mf ( 3  - (- 1 )  - 2)  + m$ ( 1  - ( - 3 )  - 2) + ( 3  - (- 3 )  - 2) 
1 1 

Thus i n  e i t h e r  case w e  have A 2 2m+2. T h i s  proves Lemma 23 .2 ,  

and therefore completes the proof of the Theorem 23 .3 .  

$ 2 4 .  The Per iodic i ty  Theorem for the Orthogonal Group. 

T h i s  section w i l l  carry out an analogous study of the i t e r a t e d  loop 

However the  treatment i s  r a the r  sketchy, and space of the orthogonal group. 

many d e t a i l s  a r e  l e f t  out. 

by the paper On Clifford modules ( t o  appear) ,  by R .  Bott and A .  Shapiro, 

which r e l a t e s  the per iodic i ty  theorem with the s t ruc ture  of ce r t a in  Clifford 

algebras. 

The point  of view i n  this sec t ion  was suggested 

Consider the vector space Rn with the usual  inner product. The 

orthogonal group O(n) cons is ts  of a l l  l i nea r  maps 

T : Rn *Rn 

which preserve this inner product. Alternatively O(n) cons is ts  of a l l  

r e a l  n x n matrices T such that T T* = I. T h i s  group O(n) can be 

considered as a smooth subgroup of the uni tary  group U(n) ;  and therefore 

Inherits a r i g h t  and l e f t  invar iant  Riemannian metric. 

Now suppose t h a t  n i s  even. 

DEFINITION. A complex s t ruc tu re  J on R~ i s  a l i nea r  transfor-  

mation J : Rn -Rn, belonging t o  the orthogonal group, which s a t i s f i e s  

the iden t i ty  J2 = -I. 

on Rn w i l l  be denoted by n1 (n )  . 
The space cons is t ing  of a l l  such complex s t ruc tures  

We w i l l  see presently (Lemma 24.4)  that O l ( n )  is a smooth sub- 

manifold of the orthogonal group O(n) .  

REMARK. Given some fixed J, E n , ( n )  l e t  U(n/2) be the subgroup 

9f O(n) consist ing of a l l  orthogonal transformations which commute with 

J 1  t Then n , ( n )  can be iden t i f i ed  with the  quotient  space O(n)  m n / e ) .  

LEMMA 2 4 . 1 .  The space of m i n i m a l  geodesics from I t o  -I 
on O(n) is hmemorphic t o  the  space n l ( n )  of complex 
s t ruc tures  on R". 

PROOF: The space O(n) can be iden t i f i ed  with the group of n x n 

Its tangent space s = TO(nII can be iden t i f i ed  with Wthogonai matrices. 

the space of n x n skew-sgmmetric matrices. Any geodesic 7 with  
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7 ( 0 )  = I can be wr i t ten  uniquely as 

for some A E 9. 

Let  n = 2m. Since A i s  skew-symmetric, there  e x i s t s  an element 

T E O(n)  so tha t  

TAT-’ = ( -?2* . . O:y 
-a 0 

with a 1  ,a2, .  . . ,am 2 0. A short  computation shows that T(exp n A)T-’  i s  

equal t o  
cos  na, s i n  n a ,  0 0 ... \ 

*. .  \ / - s in  n a l  cos “al 0 0 

0 0 cos n a 2  s i n  n a 2  . . .  

0 0 - s in  n a 2  cos <a2 ... 
... . . .  \ ... ... 

Thus exp(nA) i s  equal t o  -I i f  and only i f  a 1 , a 2 ,  ...,am a re  odd in tegers .  
2 2  2 

The inner product < A , A >  i s  e a s i l y  seen t o  be 2(a1 + a2 +...+a,). 

Therefore the geodesic r ( t )  = exp(nt  A) from I t o  -I i s  minimal i f  

and only if a 1  = a2 = ... = am = 1 .  

I f  7 i s  minimal then 

hence A i s  a complex s t ruc ture .  

Conversely, l e t  J be any complex s t ruc tu re .  Since J i s  orthogo- 

nal we have 
J J *  = I 

where J* denotes the transpose of J .  Together with the  iden t i ty  

J J = -I t h i s  implies that J* = -J. Thus J i s  skew-symmetric. Hence 

f o r  some &,,a2,  ... a > 0 and some T .  Now the iden t i ty  J2  = -I implies 

that a, = . . .  = = 1 ;  and hence that exp n J  = -I. T h i s  completes the 
m -  

proof. 

LEMMA 2 4 . 2 .  Any non-minimal geodesic from I t o  -I 
i n  O(2m) has index 2 2m-2 .  

The proof i s  similar t o  that of 2 3 . 2 .  Suppose that the geodesic has 

the form t --L exp(nt  A) with 

A =  

where 

non-zero eigenvectors of the l i nea r  transformation KA = - & (Ad A ) 2  

I )  for each i < j the number (ai + a j ) 2 /  4 ,  and 

2)  

a,  2 a2 2 . . . 2 am > 0 a re  odd in tegers .  Computation shows t h a t  the 

are  

f o r  each i < j with ai # a j  the number (ai - a j ) 2 /  4 .  

This leads t o  the formula Each of these eigenvalues i s  t o  be counted twice. 

= C (ai + a j  - 2 )  + 1 (ai - a j  - 2)  . 
j i < j  ai > a 

For a minimal geodesic we have a1 = a2 = ... - & m = ’  - so  that 

= 0 ,  as expected. For a non-minimal geodesic we have a ,  2 3 ;  s o  t h a t  

2 1 ( 3 + 1 - 2 )  + 0 = 2m - 2 .  

2 

This completes the proof. 

NOW l e t  us apply Theorem 22.1 .  The two lennnas above, together w i t h  
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the statement t ha t  a , ( n )  i s  a manifold imply the following. 

THEOREM 2 4 . 3  (Bott)  . 
induces isomorphisms of homotopy groups i n  dimensions 
< n-4. Hence 

The inclusion map a,  (n)  - R O(n) 

- 
fii 0, (n )  = f l i + ,  O(n) 

for i .( n-4. 

Now we w i l l  i t e r a t e  this procedure, studying the space of geodesics 

from J t o  -J i n  n l ( n ) ;  and so  on. Assume that n i s  d iv i s ib l e  by a 

high power of 2. 

Let J , ,  . . . ,Jk-l be f ixed complex s t ruc tures  on Rn which anti- 

commute *, i n  the sense that 

JrJs + JsJr = 0 

fo r  r # s. Suppose that there e x i s t s  a t  l e a s t  one other complex s t ruc ture  

J which anti-commutes with J l , . . . , Jk - l .  

DEFINITION. Let n,(n) denote the s e t  of a l l  complex s t ruc tures  J 

on Rn which anti-commute with the fixed s t ruc tures  J,, . . . , Jk- l .  
. 

Thus we have 

n,(n) C C ... C n l ( n )  C O(n) . 
Clearly each n,(n) 

na tu ra l  t o  define n 0 ( n )  t o  be O(n) 

i s  a compact s e t .  To complete the de f in i t i on  i t  i s  

** LEMMA 2 4 . 4 .  Each n k ( n )  i s  a smooth, t o t a l l y  geodesic 
submanifold of O(n ) .  The space of minimal geodesics from 
Jf t o  -Jf i n  O,(n) i s  homeomorphic t o  n f + l ( n ) ,  f o r  
O < f < k .  

It follows that each component of n,(n) i s  a s y m e t r i c  space. 

For the isometric r e f l ec t ion  of O(n)  i n  a point  of n k ( n )  w i l l  automati- 

ca l ly  carry n k ( n )  t o  i t s e l f .  

* These s t ruc tures  make Rn i n t o  a module over a sui table  Cl i f ford  algebra. 
However, the Cl i f ford  algebras w i l l  be suppressed i n  the following presen- 
t a t ion .  
** 

A submanifold of a Riemannian manifold i s  ca l led  t o t a l l y  geodesic if 
each geodesic i n  the submanifold i s  a l s o  a geodesic i n  l a rge r  manifold. 

PROOF of 2 4 . 4 .  Any point  i n  O(n) close t o  the iden t i ty  can be 

expressed uniquely i n  the form exp A, where A i s  a " s m a l l , "  skew- 

sgmmetric matrix. Hence any point  i n  O(n) close t o  the complex s t ruc ture  

J can be expressed uniquely as J exp A,; where again A i s  s m a l l  and 

skew. 

ASSERTION 1 .  J exp A i s  a complex s t ruc ture  i f  and only i f  A 

anti-commutes with J .  

PROOF: If A anti-commutes with J ,  then J - l A  J = -A hence 

I = exp(J-'A J )  exp A = J- ' (exp A ) J  exp A . 
Therefore (J exp A ) 2  = -I. Conversely i f  (J exp A ) 2  = -I then the 

above computation shows that 

exp(J-lA J) exp A = I . 
Since A i s  small ,  this implies that 

1 J- A J = -A 

so  that A anti-commutes with J .  

ASSERTION 2.  J exp A anti-commutes with the complex s t ruc tures  

J1,...,Jk-l i f  and only i f  A commutes with J1 , . . . , Jk- l .  

The proof i s  similar and straightforward. 

Note that Assertions 1 and 2 both put l i nea r  conditions on A. 

Thus a neighborhood of J i n  %(n) cons is ts  of a l l  poin ts  J exp A where 

A ranges over a l l  small matrices i n  a l i nea r  subspace of the Lie algebra 

T h i s  c l ea r ly  implies t h a t  n k ( n )  

g. 

i s  a t o t a l l y  geodesic submanifold of 

O(n ) .  

2 Now choose a spec i f i c  point  Jk  E n k ( n ) ,  and assume that there  

exists a complex s t ruc tu re  J which anti-commutes with J1, ..., Jk. Set t ing  

J = J@ w e  see e a s i l y  t h a t  A i s  a l s o  a complex s t ruc ture  which anti- 

c m u t e s  w i t h  Jk. However, A comutes with J1 ,..., Jk-l. Hence the 

formula 

t -+ Jk exp(nt  A) 

defines a geodesic f rm Jk t o  -Jk i n  l l k ( n ) .  Since this geodesic i s  

minimal i n  o ( n ) ,  it i s  ce r t a in ly  minimal  i n  n k ( n ) .  



1 3 6  IV. APPLICATIONS 139 $24. THE ORTHOGONAL GROUP 

Conversely, let 7 be any minimal geodesic from Jk to -Jk in 

a,(n). Setting y(t) = Jk exp(nt A), it follows from 24.1 that A is 

a complex structure, and from Assertions 1,2 that A commutes with 

Jl, ... ,Jk-l and anti-commutes with Jk. It follows easily that Jip 

belongs to Qk+l(n). This completes the proof of 24.4. 

REMMRK. The point Jip E flk+l(n) which corresponds to a given 

geodesic y has a very simple interpretation: it is the midpoint y ( $ )  

of the geodesic. 

In order to pass to a stable situation, note that nk(n) 

imbedded in nk(n+nt) as follows. Choose fixed anti-commuting complex 

structures J;, . . . ,Ji on Rn’ . 
structure J f3 21; on Rn @Rn’ 

can be 

Then each J E nk(n) 

which anti-commutes with J, @ JA for 

determines a complex 

CY = 1,  ..., k-1.  

DEFINITION. Let nk denote the direct limit as n-r m of the 

SFaces a,(n), with the direct limit topology. 

The space 0 =no is called the infinite orthogonal group. 
(I.e., the fine topology.) 

It is not difficult to see that the inclusions 

-r ank . 
-r 0 n,(n) 

give rise, in the limit, to inclusions nk+l 
THEOREM 24.5. For each k 2 0 this limit map fik+l - 
0 ak is a homotopy equivalence. Thus we have isomorphisms 

nh 0 E nhw1 n, z nh-, n, g . . . = - “lnh-l * 

The proof will be given presently. 

Next we will give individual descriptions of the manifolds ak(n) 

f o r  k = 0,1,2, ..., 8. 
n,(n) is the orthogonal group. 

nl(n) is the set of all complex structures on Rn . 
Given a fixed complex structure J, we may think of Rn as being a vector 
space Cn/2 over the complex numbers. 

n,(n) can be described as the set of “quaternionic structures” on 

the complex vector space Cn’2. Given a fixed J2 en2(n) We m y  think of 

Cn/, as being a vector space gl4 over the quaternions H .  Let Sp(n/4) 

be the group of isometries of this vector space onto itself. 

can be identified with the quotient space 

Then n,(n) 

U(n/2)/ Sp(n/‘c). 

Before going further it will be convenient to set n = 16r. 

LEMMA 24.6 - (3). can be identified 
with the quaternionic Grassmam manifold consisting of 

The space a,( 1 6 r )  

quaternionic subspaces of 

PROOF: Any complex structure J3 e n 3 ( 1 6 r )  determines a splitting 

of H4r = R’6r into two mutually orthogonal subspaces V, and V, as fol- 

lows. Note that JlJ2J3 is an orthogonal transformation with square 

J,J2J3J,J2J3 equal to + I. Hence the eigenvalues of J,J,J3 are 1. 

b t  V, C R16r be the subspace on which JlJ2J3 

be the orthogonal subspace on which it equals -I. Then clearly 

equals + I; and let V, 

= V, f3 V,. Since JlJ,J3 commutes with J, and J, it is clear 

that both V, and V, are closed under the action of J, and J,. 

. Conversely, given the splitting H4k = V, @ V, into mutually 

orthogonal quaternionic subspaces, we can define J3 E n3(l6r) by the 

identities 

J3P1 = -J1J,IV1 I J31V2 = JlJ21V2 . 
T h i s  proves Lemma ?4.6 - ( 3 ) .  

The space ( 1 6 r )  is awkward in that it contains components of 3 
varying dimension. It is convenient to restrict attention to the component 

of largest dimension: namely the space of 2r-dimensional quaternionic sub- 

spaces of H4r. Henceforth, we will assume that J has been chosen in 

this way, so that 
3 a 

dimHV1 = dimHV2 = 217. 

LEMMA 24.6 - ( 4 )  . The space n4( 16r) can be identified 
with the set of all quaternionic isometries from Vl to 
V,. Thus n4(16r) is diffeomorphic to the symplectic 
group S p ( 2 ~ ) .  

PROOF: Given J,, E n4( 1 6 r )  note that the product J3J4 anti- 

Commutes with JlJ,J3 . Hence J3J4 maps V, to V2 (and V, to V 1 )  
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Since J3J4 commutes with J ,  and J, we see that 

J 3 J 4 1 V ,  : V, -+v, 

is a quaternionic isomorphism. 

T : V, -V,  i t  i s  e a s i l y  seen that J4  i s  uniquely determined by the 

i d e n t i t i e s :  

Conversely, given any such isomorphism 

J 4 1 V ,  = Jil T 

J41V2 = -T-’ J 3  

 his proves 24.6 - ( 4 )  I 

LEMMA 24.6 - ( 5)  . 
with the s e t  of a l l  vector spaces 

vector space) and 

The space n5( 16r )  can be iden t i f i ed  
such that W C V, 

( I )  W i s  closed under J ,  ( i . e . ,  W i s  a complex 

( 2 )  V1 s p l i t s  a s  the orthogonal sum W 8 J, W .  

PROOF: Given J5 E a,( 1 6 r )  note that the transformation J 1 J 4 J 5  

commutes with J,J,J3 and has square + I. Thus J,J4J5 maps V,  i n t o  

i t s e l f ;  and determines a s p l i t t i n g  of i n t o  two mutually orthogonal sub- 

spaces. L e t  W C V, be the subspace on which J,J4J5 coincides with + I. 

Since J 2  anti-commutes with J,J4J5, it follows that J 2 W  c V, is 

precise ly  the orthogonal subspace, on which J,J4Jg equals -I. Clearly 

V, 

J I W  = W. 

Conversely, given the subspace W, it i s  not d i f f i c u l t  t o  show t h a t  

J5 i s  uniquely determined. 

REMARK. If U ( 2 r )  C Sp(2r) denotes the group of quaternionic auto- 

morphisms of V, keeping W f ixed,  then the quotient  s w c e  Sp( 2r )  / U( 2 r )  

can be iden t i f i ed  with n 5 (  1 6 r )  . 

LEMMA 24 .6  - (6). The space a6( 161’) 
with the set of a l l  real subspaces X C W such that W 
s p l i t s  as the  orthogonal sum 

can be iden t i f i ed  

X fB J , X .  

PROOF. Given J6 E n6(16r) note that the transformation J,J4J6 

commutes both with J,J2J3 and with J1J4Jg. Hence J,J4J6 maps W i n t o  

i t s e l f .  Since ( J , J 4 J 6 ) 2  = I, it follows that J 2 J 4 J g  determines a 

s p l i t t i n g  of W i n t o  two mutually orthogonal subspaces. Let X C W be the 

subspace on which J2J4J6 equals +I. Then J , X  w i l l  be the orthogonal 

subspace on which it equals -I. 

Conversely, given X C W, i t  i s  not hard t o  see that J6 i s  unique- 

l y  determined. 

REMARK. I f  O ( 2 r )  C U ( 2 r )  denotes the p o u p  of complex automor- 

phisms of W keeping X f ixed,  then the quotient  space U( 2 r )  / O( 2r) can 

be iden t i f i ed  with a6(16r). 
- 

L F M  24.6 - ( 7 ) .  
with the r e a l  Grassrnann manifold consist ing of 
subspaces of X s Rzr. 

The space a,( i 6 r )  can be iden t i f i ed  
r e a l  

PROOF: Given J7, anti-commuting with J , ,  ..., J6 note that 

J,J6J7 commutes with J,J2J3, with J,J4J5, and with J2J4J6; and has 

square +I. Thus J,J6J7 determines a s p l i t t i n g  of X i n t o  two mutually 

orthogonal subspaces: X ,  ( m e r e  J,J6J7 equals +I) and X, (where 

J1J6J7 equals -I) .  Conversely, given X ,  C X it can be sharn that J7  

I s  uniquely determined. 

T h i s  space a7(16r), l i k e  n3(16r), has components of varying dimen- 

sion. 

sion, by assuming that 

Thus we obtain: 

Again we w i l l  r e s t r i c t  a t t en t ion  t o  the component of l a rges t  dimen- 

dim X ,  = dim X p  = r .  

ASSERTION. 

the  Grassmann manifold cons is t ing  of r-dimensional subspaces of 

UMNA 2 4 . 6  - ( 8 ) .  
with the  s e t  of a l l  r e a l  isometries from 

The l a rges t  component of n7( 16r)  i s  diffeomorphic t o  

R2’. 
a 

The space a , (  1 6 r )  can be ident i f ied  

X, t o  X,. 

PROOF. I f  J8 E a8(16r) then the  orthogonal transformation J7J8 

c-utes with J,J2Jj, J,J4J5,  

&nce JrJ8 maps X, isomorphically onto X,. Clearly this isomorphism 

determines J8 uniquely. 

and J2J4J6; but  anti-commutes with J,J6J7. 

Thus w e  see that n8( 1 6 r )  i s  diffeomorphic t o  the orthogonal 
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group* O ( r ) .  

Let us consider this diffeomorphism a8( 16r )  - + O ( r ) ,  and pass t o  

the l i m i t  a s  r -c m. It follows that O8 i s  homeomorphic t o  the i n f i n i t e  

orthogonal group 0. Combining this f a c t  with Theorem 24.5, we obtain the 

following. 

THEOREM 2 4 . 7  (Bott)  . The i n f i n i t e  orthogonal group 0 has 
the same homotopy type as i t s  own 8- th loop space. 
the homotopy group n i 0  i s  isomorphic t o  ni+8 0 fo r  i 2 0 .  

Hence 
% 

L 

I f  Sp =a4 
argcunent a l so  shows t h a t  0 

n R n R  Sp, and t h a t  Sp has the  homotopy type of the &-fold loop space 

Rnnn 0 .  

denotes the i n f i n i t e  symplectic group, then the above 

has the homotopy type of the &-fold loop space 

The ac tual  homotopy groups can be tabulated as follows. 

i modulo 8 n i 0  "i SP 
1 1 

0 z2 

z2 

3 Z Z 

4 0 Z2 
5 0 Z2 

0 

0 1 

2 0 0 

6 0 0 

7 Z Z 

The ve r i f i ca t ion  tha t  these groupsare correct  w i l l  be l e f t  t o  the reader. 

(Note that SP(1) i s  a ?,-sphere, and that S O ( 3 )  i s  a projective 3-space.) 

The remainder of this section w i l l  be concerned with the proof of 

Theorem 24.5. It i s  f i r s t  necessary t o  prove an algebraic lemma. 

Consider a Euclidean vector space V with anti-commuting complex i 

k' s t ruc tures  J l ,  ..., J 

* For k > 8 it can be shown that ak(l 6 r )  i s  diffeomorphic t o  ak-8(r). 
I n  f a c t  any addi t ional  complex s t ruc tures  Jg,Jlo,. . . ,Jk on R16r give 

r i s e  t o  anti-commuting complex structures J8Jg, J8Jl0, J8J l l ,  ..., J8Jk 

X l ;  
w i l l  be su f f i c i en t  t o  stop w i t h  k = 8. 

on 

and hence t o  an element of ak-8(r). However, fo r  our purposes i t  

DEFINITION. V i s  a minimal ( J , ,  . . . ,  Jk) -space i f  no proper, non- 

t r i v i a l  subspace i s  closed under the ac t ion  of J l ,  . . . ,  and Jk. Two such 

minimal vector spaces a re  isomorphic i f  there i s  an isometry between them 

which commutes with the ac t ion  of J,, . . . ,  Jk. 

LEMMA 2 4 . 8  (Bott  and Shapiro) . For k f 3 (mod 4), any 
two minimal ( J 1 , . , . , J k )  vector spaces a re  isomorphic. 

The proof of 24.8 follows tha t  of 2 4 . 6 .  For k = 0,1, or 2 a 

m i n i m a l  space i s  j u s t  a 1-dimensional vector space over the reals, the 

complex numbers or the quaternions. Clearly any two such a re  isomorphic. 

For k = 3 a minimal space i s  s t i l l  a 1-dimensional vector space 

over the quaternions. However, there  a re  two p o s s i b i l i t i e s ,  according as 

J3  i s  equal t o  +J1J2 or -J,J2. Thisgivestwo non-isomorphic minimal 

spaces, both with dimension equal t o  4 .  Call these H and H I .  

For k = 4 a minimal space must be isomorphic t o  H @ HI, with 

J3J4 mapping H t o  H I .  The dimension i s  equal t o  8. 

For  k = 5,6  we obtain the same minimal vector space H @ HI. The 

complex s t ruc tures  J5,J6 merely determine preferred complex or r e a l  sub- 

spaces. For  k = 7 we again obtain the same space, but  there  are  two 

p o s s i b i l i t i e s ,  according a s  J7 i s  equal t o  +J1J2J3J4JgJ6 o r  t o  

-J1J2J3J4J5J6. 

vector spaces; c a l l  these L and L ' .  

Thus i n  this case there a re  two non-isomorphic minimal 

For k = 8 a minimal vector space must be isomorphic t o  L L', 

with J7J8 mapping L onto L'. The dimension i s  equal t o  16 .  

For k > 8 it can be shown that the s i t ua t ion  repeats more o r  l e s s  

Periodically.  However, the cases k 5 8 w i l l  suf f ice  f o r  our purposes. 

L e t  mk denote the dimension of a m i n i m a l  ( J l ,  ..., Jk)-vector space. 

From the  above discussion we see tha t :  

mo = 1, m l  = 2 ,  m2 = m3 = 4 ,  

m4 = mg = m6 = m7 = 8, m8 = 16 .  

For k > 8 it can be shown that mk = 1 6 m ~ - ~ .  

REMARK. These numbers mk a r e  closely connected with the problem 

of constructing l i nea r ly  independent vector f i e l d s  on spheres. 

example that 
Suppose f o r  

J , ,  ..., Jk are  anti-commuting complex s t ruc tures  on a vector 
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space V of dimension rmk.  Here r can be any pos i t ive  in teger .  Then 

f o r  each un i t  vector u E V the  k vectors J l u ,  J2u, ..., Jku are perpen- 

dicular  t o  each other and t o  u .  Thus w e  obtain k l i nea r ly  independent 

vector f i e l d s  on an (rmk-l)-sphere. For example we obtain 3 vector 

f i e l d s  on a (4r - l ) -sphere ;  7 vector f i e l d s  on an (8r-l)-sphere;  8 vector 

f i e l d s  on a (16r-I)-sphere;  and so  on. These r e s u l t s  a r e  due t o  Hurwitz 

and Radon. (Compare B. E c h m ,  Gruppentheoretischer Beweis des Satzes von 

Hurwitz-Radon ..., Commentarii Math. Helv. V o l .  15 ( 1 g 4 3 ) ,  pp. 358-366.) J.  

F.  Adam has recently proved that these estimates a r e  bes t  possible.  

PROOF of Theorem 24.5 for k f 2 (mod 4 ) .  We must study non- 

minimal geodesics from J t o  -J i n  n k ( n ) .  Recall  that the tangent space 

of n k ( n )  a t  J cons is ts  of a l l  matrices J A where 

1 )  A i s  skew 

2 )  A anti-commutes with J 

3) A commutes with J , ,  ..., Jk-, .  

L e t  T denote the vector space of a l l  such matrices A .  A given A E T 

corresponds t o  a geodesic t - J exp (nL4) from J t o  -J i f  and only i f  

i t s  eigenvalues a re  a l l  odd mult iples of i. 

Each such A E T determines a se l f -adjo in t  transformation 

KA: T - T .  Since n k ( n )  i s  a t o t a l l y  geodesic submanifold of O(n ) ,  w e  

can compute KA by the formula 

K A B = -+ [ A , [ A , B I I  = (-A2B + PABA - BA2)/4 , 
j u s t  as before. We must construct  some non-zero eigenvalues of KA so as 

t o  obtain a lower bound f o r  the index of the corresponding geodesic 

t -, J exp(nt  A) . 
S p l i t  the vector space Rn as a d i r e c t  sum M, 8 M2 Q . . . Q M, of 

mutually orthogonal subspaces which are closed and minimal under the  ac t ion  

of J,  ,..., Jk-l,  J and A. Then the eigenvalues of A on Mh must be 

a l l  equal, except f o r  s i p . *  For otherwise Mh would s p l i t  as a sum of 

* 
transformation. Hence these eigenvalues a r e  pure imagiinars; and occur i n  
conjugate pa i r s .  

We are dealing with the complex eigenvalues of a r e a l ,  skew-symmetric 

F 
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eigenspaces of A; and hence would not be minimal. L e t  +_ iah be the two 

eigenvalues of AIMh; where a l ,  ..., as a re  odd, pos i t ive  in tegers .  
1 Now note that Jl = ah JAIMh; i s  a complex s t ruc ture  on Mh which 

anti- comutes with J1 ,..., Jk-l,  and J .  Thus Mh i s  (J1 ,..., Jk-, ,J,J ')-  

minimal. Hence the dimension of Mh i s  mkCl .  Since k + 1 f 3 (mod 4) 

we see that M l , M 2 ,  ..., Ms are mutually isomorphic. 

For each pa i r  h , j  with h # j we can construct  an eigenvector .' 
E: Rn -Rn of the l i nea r  transformation KA: T - T as follows. Let 

BIMp be zero f o r  P # h , j .  Let BIMh be an isometry from Mh t o  M 

which s a t i s f i e s  the conditions 
j 

BJ, = JJ! for a = 1 ,  ..., k-1; 
E?J = -JB and BJ' = + J I B  . 

In  other words B(Mh i s  an isomorphism from Mh t o  Mj; where the bar in-  

dica tes  that we have changed the s ign  of J on M j .  Such an isomorphism 

e x i s t s  by 24.8. F inal ly  l e t  BIMj be the negative adjo in t  of B(Mh. 

Proof that B belongs t o  the vector space T.  Since ?- 

.I <Bv,w) = <v , -  Bw) for v c Mh, w E M 

r 
a. 

it i s  c l ea r  that B i s  skew-symmetric. It i s  a l s o  c l ea r  that BIMh com- 

mutes with J1,...,Jk-l and anti-commutes w i t h  J .  It follows e a s i l y  that 

the negative adjo in t  BIMj a l s o  commutes with J1,. . . ,Jk-l  and anti- 

cammutes w i t h  J .  Thus B E T.  

W e  claim that B i s  an eigenvector of KA corresponding t o  the 

eigenvalue (ah + aj)2/4. For example i f  v E Mh then 

( K ~ B ) ~  = + ( - A ~ B  + ~ A B A  - m 2 ) v  
1 2  2 = ( a  Bv + 2a Ba v + Bah)v 

j j h  
= Ti 1 ( a j  + ah)2 BV ; 

j *  
and a similar computation appl ies  fo r  v E M 

Now l e t  us count. The number of minimal spaces Mh C Rn i s  given 

by s = n/mk+l. For at  least one of these the in teger  &n must be 2 3 .  

For otherwise we would have a minimal geodesic. 

(always fo r  k f 2 (mod 4) ) : 

T h i s  proves the following 

ASSERTION- KA at  least 9-1 eigenvalues which a re  

- > (3+112/4  = 4.   he in teger  s = n/mk+l tends t o  i n f i n i t y  w i t h  n. 
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Now consider the geodesic t -+ J exp(nt A ) .  Each eigenvalue e 2  

of KA gives r i s e  t o  conjugate points along this geodesic for 

t = e-l , 2e-l, 3e-’, . . . by 20.5 .  Thus i f  e2  2 4 then one obtains a t  

l e a s t  one i n t e r i o r  conjugate point .  Applying the index theorem, t h i s  proves 

the following. 

ASSERTION. The index of a non-minimal geodesic from J t o  -J i n  

nk (n )  i s  2 n/mk+’- I .  

It follows tha t  the inc lus ion  map 

f i k + l ( n )  -+ n %(n) 

induces isomorphisms of homotopy groups i n  dimensions L n/mk+l - 3 .  This 
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NOW consider a geodesic 

t - J exp(ntA) 

from J t o  -J i n  n k ( n ) .  Since A commutes with i = JIJ,  . . . Jk-’ 

(compare Assertion 2 i n  the proof of 24:b) we may think of 

complex l i nea r  transformation. I n  f a c t  A i s  skew-Hermitian; hence the 

t race  of A i s  a pure imaginary number. Now 

A a l s o  as a 

b n t  t r ace  A f ( J  exp(ntA)) = determinant (exp(ntA)) = e 
i 

Thus f maps the given geodesic i n t o  a closed loop on S’ which i s  com- 

p l e t e ly  determined by the t race  of A .  I t  follows tha t  t h i s  t r ace  i s  in-  

var iant  under homotopy of  the geodesic within the path space n(nk(n) ;J,-J) . 
The index X of this aeodesic can be estimated a s  follows. A s  - 

number tends t o  i n f i n i t y  with n. Therefore, passing t o  the d i r e c t  l i m i t  

as n-  m, i t  follows t h a t  the inclusion map i : Qk+, -+ n % induces 

isomorphisms of homotopy groups i n  a l l  dimensions. But i t  can be shown 

that both nk+’ and 12 % have the homotopy type of a CW-complex. There- 

fore,  by Whitehead’s theorem, i t  follows tha t  i i s  a homotopy equivalence. 

T h i s  completes the proof of 2 4 . 5  providing that 

before s p l i t  Rn i n t o  an orthogonal sum M ,  @ . . . G3 where each Mh 

is closed under the ac t ion  of J l , . . . , J k - l , J ,  and A ;  and i s  minimal. 

Thus for each h, the complex l i nea r  transformation AIMh can have only 

one eigenvalue, say iah. For otherwise Mh would s p l i t  i n t o  eigenspaces. 

7 Thus AIMh coincides with ahJ1J2 . . .  J k - l I M h .  Since Mh i s  minimal under 
k $ 2 (mod 4 ) .  

the ac t ion  of J l , . . . , J k - l ,  and J ;  i t s  complex dimension i s  m k / 2 .  

PROOF of 24.5 for k 2 (mod 4). The d i f f i c u l t y  i n  t h i s  case may 

has an i n f i n i t e  cycl ic  fundamental be ascribed t o  the fact .  t ha t  n,(n) 

group. Thus n fik(n) has i n f i n i t e l y  many components, while the approximat- 

ing  subspace n k + , ( n )  has only f i n i t e l y  many. 

To describe the fundamental group n&(n) we construct  a map 

f : nk(n) - S’ c c 

as follows. Let J , ,  ..., Jk-, be the f ixed anti-commuting complex s t ruc-  

t u re  on Rn. Make Rn i n t o  an (n/2)-dimensional complex vector space by 

defining 

Jk-iv i v  = J , J2  . . .  
fo r  v E Rn; where i = c l  E C .  The condition k I 2 (mod 4) guarantees 

that i2 = - 1 ,  and t h a t  J , , J ,  ,..., Jk-l commute with i. 

Choose a base point  J E fi,(n). For any J ‘  E nk(n)  note that the 

composition J-’J’ commutes w i t h  i. Thus J-lJ’ i s  a uni tary  complex 

l i nea r  transformation, and has a well  defined complex determinant which w i l l  

be denoted by f ( J ‘ ) .  

~~ 

Therefore the t race  of A i s  equal t o  i ( a l +  ...+ a r ) m k / 2 .  

Now fo r  each h # j an eigenvector B of the l i nea r  transforma- 

t ion  
B -+ KAB = (-A2B + PABA - BA’) /4 

Can be constructed much as before.  Since Mh and M. a re  ( J1 , . . . , Jk - ’ , J ) -  

minimal it follows from 24.8 t h a t  there  e x i s t s  an isornet-y 
J 

BIMh : M h - +  M. J 

which commutes with J l , . . . , J k - l  and anti-commutes with J .  Let BIMj be 
t 
rT 

the negative adjo in t  of BIMh; and l e t  BIMp be zero for e # h , j .  Then 

an easy computation shows that 

KAB = (ah  - aj)2B/4 . 
Thus f o r  each ah > a j  we obtain an eigenvalue (ah - aj)‘/4 f o r  KA. 

Since 

towards the index X, we obtain the  inequal i ty  

each such eigenvalue makes a contribution of (ah - a . ) / 2  - 1 
J 

2X 1. 1 (ah - a j  - 2)  . 
a h >  & j  
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Now l e t  us  r e s t r i c t  a t t en t ion  t o  some fixed component of nClk(n).  

T h a t  i s  l e t  us look  only a t  matrices A such that t r ace  A = icmk/2 where 

c i s  some constant in teger .  

Thus the in tegers  a l ,  ... ar s a t i s f y  

1 )  

2) a1 +...+ a = c, and 

3 )  Max Iahl 2 3 ( f o r  a non-minimal geodesic) .  

a1 = a2 I ... ar E 1 (mod 2 ) ,  ( s ince  exp(nA) = -I),  

h 

Suppose f o r  example that some ah i s  equal t o  - 3 .  L e t  p be the sum of 

the  pos i t ive  ah and -9 the sum of the  negative ah. Thus 

P - 9  = c,  ~ + q > r  , 

hence 2p 2 r + c .  Now 

2~ 2 1 (ah - a j  - 2) > 1 (ah  - ( - 3 )  - 3 )  = P , 
% >  a j  ah > 0 

hence 4 X  2 2p 2 r + c;  where r = n/mk tends t o  i n f l n i t y  with n. It 

follows that the component of 

higher dimensions by the corresponding component of (n )  , as n - m . 
Passing t o  the d i r e c t  l i m i t ,  w e  obtain a homotopy equivalence on each com- 

ponent. T h i s  completes the  proof of 24.5. 

n %(n) i s  approximated up t o  higher and 
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APPENDIX. THE HOMOTOPY TYPE OF A MONOTONE UNION 

The object  of this appendix w i l l  be t o  give an a l t e rna t ive  version 

for  the f i n a l  s tep  i n  the  proof of Theorem 17 .3  ( t he  fundamental theorem 

of Morse theory).  Given the subsets R C nal  C na2  C ... of the pa th  

space a = n(M;pJq), and given the information that each nai has the 

homotopy type of a ce r t a in  CW-complex, we wish t o  prove that the  union 

a l so  has the  homotopy type of a c e r t a i n  CW-complex. 

More generally consider a topological  space X and a sequence 

a 

R 

X, C X1 C X2 C ... 
X determined by the homotopy types of the Xi? 

of subspaces. To w h a t  extent  i s  the  homotopy type of 

I t  i s  convenient t o  consider the i n f i n i t e  union 

x, = xo X I O J l l  " x l x  [ 1 , 2 1  u x2 x [ 2 , 3 1  u ... . 
T h i s  i s  t o  be topologized as a subset of X x R. 

DEFINITION. We w i l l  say that X i s  the homotopy d i r e c t  l imi t  of 

the sequence [Xi) i f  the  projec t ion  map p : X, + X,  defined by 

p(x,.r) = x, i s  a homotopy equivalence. 

EXAMPLE 1 .  Suppose that each point  of X l i e s  i n  the i n t e r i o r  of 

some Xi, and that X i s  paracompact. Then using a p a r t i t i o n  of uni ty  one 

can construct  a map 

f : X + R  

tr 6* SO that f ( x )  2 i + l  f o r  x q! XiJ and f ( x )  2 0 f o r  a l l  x .  Now the corres- 

pondence x +  ( x , f ( x ) )  maps X homeomorphically onto a subset of X, which 

i s  c l ea r ly  a deformation r e t r a c t .  Therefore p i s  a homotopy equivalence; 

and X i s  a homotopy d i r e c t  l i m i t .  

EXAMPLE 2. Let X be a CW-complex, and le t  the  Xi be subcomplexes 

w i t h  union X. Since P : Xz - X induces isomorphisms of homotopy groups 

i n  a l l  dimensions, it fo l lows  frm W t e h e a d ' s  theorem that X 

d i r e c t  l i m i t .  

i s  a homotopy 
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a s  follows (where it i s  always t o  be understood that 

n = 0 , 1 , 2  ,... ) .  

0 5 t 5 1 ,  and 
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EXAMPL3 3. The u n i t  i n t e r v a l  [0 ,11 i s  not the homotopy d i r e c t  

l i m i t  of the sequence of closed subsets LO1 [ l / i , l l .  

The main r e s u l t  of this appendix i s  the following. 

THEOREM A .  Suppose that X i s  the homotopy d i r e c t  
l i m i t  of (Xi] and Y i s  the homotopy d i r e c t  l i m i t  
of (Yi ) .  Let f :  X +  Y be a map which ca r r i e s  each 
Xi i n t o  Yi by a homotopy equivalence. Then f 
i t s e l f  i s  a homotopy equivalence. 

Assuming Theorem A, the a l t e rna t ive  proof of Theorem 17.3 can be 

given as follows. Recall  that we had constructed a commutative diagram 

KO C K, C K2 C . .. 

of homotopy equivalences. Since n = U nai and K = U Ki a r e  homotopy 

d i r e c t  l i m i t s  (compare Examples 1 and 2 above), it follows t h a t  the l imi t  

mapping - K i s  a l s o  a homotopy equivalence. 

PROOF of Theorem A. Define f, : - Y, by f , ( x , t )  = ( f ( x ) , t ) .  

f z  It i s  c l ea r ly  su f f i c i en t  t o  prove t h a t  i s  a homotopy equivalence. 

CASE 1 .  Suppose that Xi = Yi and that each map f i  : X i +  Yi 

(obtained by r e s t r i c t i n g  f )  

t h t  f i s  a homotopy equivalence. 

i s  homotopic t o  the iden t i ty .  We must prove 

c 

FEWARK. Under these conditions it would be na tu ra l  t o  conjecture 

that 

examples can be given. 

f c  must ac tua l ly  be homotopic t o  the iden t i ty .  However counter- 

For each n l e t  

$ :  %'Xn 

be a one-parameter family of mappings, w i t h  

Define the hornotopy 

= fn, h: = i den t i ty .  

% : % - %  

f Taking u = 0 t h i s  defines a map hO : % + X, which i s  c l ea r ly  homotopic 

t o  f,. The mapping hl : X, + X, on the other hand has the following 

proper t i e  s : 

hl (x ,n+ t )  = (x ,n+2t)  f o r  o < t < $  

h l ( x , n + t )  E X,+l x [ n + l l  fo r  3 5 t 5 1 . 

We w i l l  show that any such map hl i s  a homotopy equivalence. In  f a c t  a 

homotopy inverse g : X, - $ can be defined by the formula 

t f (x ,n+2 t )  o < t < +  

h L t "  . g(x ,n+ t )  = 

This i s  well  defined since 

h l (x ,n++)  = h l ( x , n + l )  = (x ,n+ l )  . 

Proof that the composition h l g  i s  homotopic t o  the iden t i ty  map 

Of X,. Note that 

(x ,n+4t)  o < t < t  

t < t < h  
h < t < 1  . 3 hl(x,n+? - t) 

c 
P 

Define a homotopy Q : Xc + % as follows. For 0 5 u < 3 l e t  
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This i s  well  defined since 

h lg (x ,n+( l -u ) /2 )  = hlg(x,n+$+u) = hl(x ,n+l-u) .  

Now Ho i s  equal t o  h l g  and HA i s  given by 

Clearly this i s  homotopic t o  the  iden t i ty .  

Thus h l g  i s  homotopic t o  the iden t i ty ;  and a completely analogous 

argument shows that ghl i s  homotopic t o  the iden t i ty .  T h i s  completes the 

proof i n  Case 1 .  

CASE 2 .  Now l e t  X and Y be a rb i t r a ry .  For each n l e t  

$I : Y n -  be a homotopy inverse t o  fn .  Note that the diagram 

$I 
'n xn 

'n+ 1 ' %+l 

] j n  $I+ 1 lin 

(where in and jn  denote inc lus ion  maps) i s  homotopy commutative. In  

f a c t  

in% * %+lfn+iin% = h + i J n f n &  %+iJn  . 

Choose a speci f ic  homotopy 

and define G : Yc - %  by the  formula 
$ : Yn + XnC1 with h: = in%, hy = gn,, jn; 

( % ( Y )  ,n+2t)  o < t < 4  - 
G(y,n+t) = { 

(h:t-l (y )  , n+ l )  f 5 t 5 1 . 

HOMOTOF'Y OF A MONOTONE UNION 

($1, and conclude that Gf, i s  a homotopy equivalence. 

T h i s  proves t h a t  f z  has a l e f t  homotopy inverse.  A s imi lar  

argument shows t h a t  fzG : Y, - Yc i s  a homotopy equivalence, so  that 

' f, has a right homotopy inverse.  T h i s  proves that f, i s  a homotopy 
I 

equivalence (compare page 22)  and completes the proof of Theorem A. 

COROLLAFZ. Suppose t h a t  X i s  the  homotopy d i r e c t  
limit of (Xi) .  I f  each Xi has the  homotopy type 
of a CW-complex, then X i t s e l f  has the homotopy 
type of a CW-complex. 

The proof i s  not d i f f i c u l t .  

We w i l l  show that the  composition 

Let X: denote the subset of X, cons is t ing  of a l l  p a i r s  (x , r )  with 

T 5 n. (Thus $ = Xo x [ O , l l  u .. . s-l x [n-1 ,nl u Xn x [ n l . )  The compo- 

s i t i o n  Gf, c a r r i e s  i n t o  i t s e l f  by a mapping which i s  homotopic t o  the 

iden t i ty .  I n  f a c t  contains Xnx [n l  as deformation r e t r a c t ;  and the , 
t mapping Gf, r e s t r i c t e d  t o  X n x  [n l  can be iden t i f i ed  w i t h  %fn, and 

hence i s  homotopic t o  the iden t i ty .  Thus w e  can apply Case 1 t o  the sequence 1 

Gf, : 3 + X, i s  a homotopy equivalence. 1 

i 
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