Exámen Final

7 junio, 2007

Duración: 3 horas.

- 1. (40 pts) En cada uno de los siguientes incisos hay que dar un ejemplo del objeto indicado o demostrar que no existe.
 - a) Un campo vectorial en \mathbb{R}^2 que se anula en un solo punto.
 - \vec{b}) Un campo vectorial en \mathbb{R}^2 que no es un campo gradiente.
 - c) Un campo vectorial no nulo en \mathbb{R}^3 cuya divergencia se anula.
 - d) Un campo vectorial no nulo en \mathbb{R}^3 cuyo rotacional se anula.
 - e) Un campo vectorial no nulo en \mathbb{R}^3 cuyo integral de línea a lo largo de cualquer curva cerrada se anula.
 - f) Un campo vectorial no nulo en \mathbb{R}^3 cuyo integral de superficie a lo largo de cualquer superficie cerrada orientada se anula.
 - g) Un conjunto acotado con área $A\subset \mathbb{R}^2$ y una función contínua en A que no es integrable.
 - h) Un abierto $U \subset \mathbb{R}^2$ y una forma lineal en U que es cerrada pero no exacta.
- 2. (40 pts) Calcular:
 - a) El área de la superficie $S = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = R^2, a \le z \le b\}$, donde a, b, R son números reales tales que $0 \le a < b \le R$.
 - b) El volumen del elipsoide $(x-1)^2 + 2(y-2)^2 + 3(z-3)^2 \le 1$.
 - c) La integral de la forma cuadrática $(xdydz+ydzdx+zdxdy)/(x^2+y^2+z^2)^{3/2}$ sobre la superficie $(x-1)^2+2(y-2)^2+3(z-3)^2=1$ (con su orientación usual).
 - d) La integral de la función $f(x,y) = x^2 + y^2$ sobre la elipse $(x-1)^2 + 2(y-2)^2 \le 1$.
- 3. (20 pts) Sea $A \subset \mathbb{R}^2$ un subconjunto.
 - a) Define: A tiene área.
 - b) Define: la frontera de A.
 - c) Demuestra: si la frontera de A tiene area 0 entonces A tiene área.