Tarea núm. 2

(Fecha de entrega: 6.9.96)

- 1. Sea $A \subset X$ un abierto en un espacio topológico. Prueba que un subconjunto $U \subset A$ es abierto en A si y solo si es abierto en X.
- 2. Sean X y Y dos espacios topológicos. Demuestra los siguientes incisos:
 - a) Una función $f: X \to Y$ es continua si y solo si $f^{-1}(F)$ es cerrado para todo $F \subset Y$ cerrado.
 - b) Si f y g son funciones continuas $X \to Y$, $A \subset X$ es denso y Y es Hausdorff (por ejemplo, métrico), entonces $f|_A = g|_A$ implica f = g.
 - c) ¿Es cierto que si $f: X \to Y$ es continua, entonces f(U) es abierto para todo $U \subset X$ abierto? Si no es cierto, encuentra un contraejemplo.
- 3. Sea p un entero primo fijo. Para un entero $n \in \mathbb{Z}, n \neq 0$, definimos su norma p-ádica por $||n||_p := 1/p^t$, donde p^t es la máxima potencia de p que divide a n. Para n = 0 definimos $||0||_p := 0$. Por ejemplo, $||-18||_3 = 1/9$ y $||n||_p = 1$ si y solo si n y p son primos relativos.
 - a) Prueba que $d_p(a,b) := ||a-b||_p$ define una métrica en \mathbb{Z} (se llama la métrica p-ádica).
 - b) Encuentra las bolas abiertas de radio $1/p^k$ alrededor de 0, $k=0,1,2,3,\ldots$
 - c) Prueba que todas las bolas abiertas son cerradas.
- 4. En cada caso, decide si el subconjunto $A\subset X$ es cerrado, abierto o denso, y encuentra su cerradura e interior:
 - a) $X = \mathbb{R}, A = \mathbb{Q} \{3/4\}.$
 - b) $X = \mathbb{R}, A = \text{números diádicos} = \{x \in X \mid \text{el desarrollo de } x \text{ en base } 2 \text{ es finito}\}.$
 - c) $X = [0,1], A = \{x \in X \mid \text{ se puede representar } x \text{ por una fracción decimal que no contiene } 7\}.$
 - d) $X = l_2, A = \{(x_1, x_2, \ldots) \in l_2 \mid \sum |x_i| < \infty\}.$
 - e) $X = \mathbb{R}^2, A = \{(x, y) \in \mathbb{R}^2 \mid x^3 + y^4 + 5x^6y^7 \neq 8\}.$
 - f) $X = \mathbb{Z}$ con la métrica 3-ádica, $A = \{n \in X \mid n \text{ es impar}\}.$
 - g) X = C[0,1], A =las funciones diferenciables.
- 5. Sea X un espacio topológico. Prueba los siguientes incisos:
 - a) A es cerrado si y solo si $\partial A \subset A$.

- b) A es abierto si y solo si $\partial A \cap A$ es vacío.
- c) Si A es abierto o cerrado, entonces int ∂A es vacío.
- d) Encuentra un $A \subset \mathbb{R}$ tal que int ∂A no sea vacío.
- 6. En este ejercicio damos una demostración "topológica" de la existencia de un número infinito de primos. Consideramos la topología en $\mathbb Z$ generada por las sucesiones aritméticas. (Una sucesión aritmética (SA) es un conjunto de la forma $\{an+b\mid n\in\mathbb Z\}, a,b\in\mathbb Z, a\neq 0$). Prueba los siguientes incisos:
 - $a)\,$ La intersección de dos SA es una SA o vacía. En particular, un abierto no vacío es infinito.
 - b) Cada SA es un cerrado.
 - c) El complemento de $\bigcup_p p\mathbb{Z}$ es $\{1,-1\}$, donde la unión es sobre todos los primos $p=2,3,5,7,11,\ldots$
 - d) Concluye de los tres incisos anteriores que hay un número infinito de primos.