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Preface

In a sense, trigonometry sits at the center of high school mathematics. It
originates in the study of geometry when we investigate the ratios of sides
in similar right triangles, or when we look at the relationship between a
chord of a circle and its arc. It leads to a much deeper study of periodic
functions, and of the so-called transcendental functions, which cannot be
described using finite algebraic processes. It also has many applications to
physics, astronomy, and other branches of science.

It is a very old subject. Many of the geometric results that we now
state in trigonometric terms were given a purely geometric exposition by
Euclid. Ptolemy, an early astronomer, began to go beyond Euclid, using
the geometry of the time to construct what we now call tables of values of
trigonometric functions.

Trigonometry is an important introduction to calculus, where one stud-
ies what mathematicians call analytic properties of functions. One of the
goals of this book is to prepare you for a course in calculus by directing
your attention away from particular values of a function to a study of the
function as an object in itself. This way of thinking is useful not just in
calculus, but in many mathematical situations. So trigonometry is a part of
pre-calculus, and is related to other pre-calculus topics, such as exponential
and logarithmic functions, and complex numbers. The interaction of these
topics with trigonometry opens a whole new landscape of mathematical
results. But each of these results is also important in its own right, without
being “pre-” anything.

We have tried to explain the beautiful results of trigonometry as simply
and systematically as possible. In many cases we have found that simple
problems have connections with profound and advanced ideas. Sometimes
we have indicated these connections. In other cases we have left them for
you to discover as you learn more about mathematics.



X Preface

About the exercises: We have tried to include a few problems of each
“routine” type. If you need to work more such problems, they are easy to
find. Most of our problems, however, are more challenging, or exhibit a
new aspect of the technique or object under discussion. We have tried to
make each exercise tell a little story about the mathematics, and have the
stories build to a deep understanding.

We will be happy if you enjoy this book and learn something from it.
We enjoyed writing it, and learned a lot too.

Acknowledgments

The authors would like to thank Martin Stock, who took a very ragged
manuscript and turned it into the book you are now holding. We also thank
Santiago Samanca and the late Anneli Lax for their reading of the manu-
script and correction of several bad blunders. We thank Ann Kostant for her
encouragement, support, and gift for organization. We thank the students of
Bronxvilie High School for their valuable classroom feedback. Finaily, we
thank Richard Askey for his multiple readings of the manuscripts, for cor-
recting some embarrassing gatfes, and for making important suggestlons
that contributed significantly to the content of the book.

Israel M. Gelfand
Mark Saul
March 20, 2001



Trigonometry

f. Gr. tpiywvo - v triangle + - petpio measurement.
— Oxford English Dictionary

In this chapter we will look at some results in geometry that set the stage
for a study of trigonometry.

1 What is new about trigonometry?

Two of the most basic figures studied in geometry are the triangle and the
circle. Trigonometry will tell us more than we learned in geometry about
each of these figures.

For example, in geometry we learn that if we know the lengths of the
three sides of a triangle, then the measures of its angles are completely
determined' (and, in fact, almost everything else about the triangle is de-
termined). But, except for a few very special triangles, geometry does not

tell us how to compute the measures of the angles, given the measures of
the cides

RLEW LFE s s bF o

Example 1 The measures of the sides of a triangle are 6, 6, and 6 cen-
timeters. What are the measures of its angles?

11t is sometimes said that the lengths of three sides determine a triangle, but one must
be careful in thinking this way. Given three arbitrary lengths, one may or may not be able
to form a triangle (they form a triangle if and only if the sum of any two of them is greater
than the third). But if one can form a triangle, then the angles of that triangle are indeed
determined.



2 Trigonometry

Solution. The triangle has three cqual sides, so its three angles are also
equal. Since the sum of the angles is 180°, the degree-measure of each
angle is 180/3 = 60°. Geometry allows us to know this without actually
measuring the angles, or even drawing the triangle. 0

Example 2 The measures of the sides of a triangle are 5, 6, and 7 cen- .
timeters. What are the measures of its angles?

Solution. We cannot find these angle measures using geometry. The
best we can do is to draw the triangle, and measure the angles with a pro-
tractor. But how will we know how accurately we have measured? We will
answer this question in Chapter 3. 0

Example 3 Two sides of a triangle have length 3 and 4 centinietefs, and
the angle between them is 90°. What are the measures of the third side, and
of the other two angles? :

Solution. Geometry tells us that if we know two sides and an included
angle of a triangle, then we ought to be able to find the rest of its measure-
ments. In this case, we can use the Pythagorean Theorem (see page 7) to
tell us that the third side of the triangle has measure 5. But geometry will ,
not tell us the measures of the angles. We will learn how to find them in
Chapter 2. ‘ O

Exercise Using a protractor, measure the angles of the triangle below as -
accurately as you can. Do your measurements add up to 180°?

™~

Let us now turn our attention to circles.

Example 4 In a certain circle, a central angle of 20° cuts off an arc that
is 5 inches long. In the same circle, how long is the arc cut off by a central
angle of 40°?
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»

Solution. We can divide the 40°angle into two angles of 20°. Each of
these angles cuts off an arc of length 5, so the arc cut off by the 40°angle
is 5 4+ 5 = 10 inches long.

?
57
20° 40°
~— N~
That is, if we double the central angle, we also double the length of the arc
it intercepts. u

Example 5 In a certain circle, a central angle of 20° determines a chord
that is 7 inches long. In the same circle, how long is the chord determined
by a central angle of 40°?

Solution. As with Example 4, we can try to divide the 40° angle into
two 20° angles:

However, it is not so easy to relate the length of the chord determined by
the 40° angle to the lengths of the chords of the 20° angles. Having doubled
the angle, we certainly have not doubled the chord. 0

Exercises

1. In a circle, suppose we draw any central angle at all, then draw a
second central angle which is larger than the first. Will the arc of the
second central angle always be longer than the arc of the first? Will
the chord of the second central angle also be larger than the chord of
the first?

2. What theorem in geometry guarantees us that the chord of a 40°
angle is less than double the chord of a 20° angle?
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3. Suppose we draw any central angle, then double it. Will the chord of
the double angle always be less than twice the chord of the original
central angle?

Trigonometry and geometry tell us that any two equal arcs in the same
circle have equal chords; that is, if we know the measurement of the arc,

tham tha lanmath ~AF tha AhiAard 10 datarmiinad DRt aveast 131 cmanial ~iraryeme
LICIT WG 10 UL Ul UHIC ViluIU 1D UCiCdiicu, UL, CALCPL 111 DPGL«Ial CILU UL~

stances, geometry does not give us enough tools to calculate the length of
the chord knowing the measure of the arc.

Example 6 In a circle of radius 7, how long is the chord of an arc of 90°?

Solution. If we draw radii to the endpoints of the chord we need, we
will have an isosceles right triangle:

Then we can use the Pythagorean Theorem to find the length of the chord.
If this length is x, then 72 + 72 = x2, so that x = /98 = 74/2. =k

Example 7 In a circle of radius 7, how long is the chord of an arc of 38°?

Solution. Geometry does not give us the tools to solve this problem.
We can draw a triangle, as we did in Example 6:

38° 7

But we cannot find the third side of this triangle using only geometry. How-
ever, this example does illustrate the close connection between measure-
ments in a triangle and measurements in a circle. |
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Exercises

1. What theorem from geometry guarantees us that the triangle in the
diagram for Example 7 is completely determined?

2. Note that the triangle in Example 7 is isosceles. Calculate the mea-
sure of the two missing angles.

Trigonometry will help us solve all these kinds of problems. However,
trwonometrv 1S more than mqt an extension of geomeitry. Annhmtmnq of

trigonometry abound in many branches of science.

Example 8 Look at any pendulum as it swings. If you look closely, you
will see that the weight travels very slowly at either end of its path, and
picks up speed as it gets towards the middle. It travels fastest during the
middle of its journey. 0

Example 9 The graph below shows the time of sunrise (corrected for
daylight savings) at a certain latitude for Wednesdays in the year 1995.
The data points have been joined by a smooth curve to make a continuous
graph over the entire year.

7.00 T
5.00 l
Y |
£ =
= 3.00 T
1.00 l— ‘ , - ; ' ‘
0 50 100 150 200 250 300 350
Jan Mar Jun Sep Dec

R at 11 ——

V‘VG C.Xp(‘.‘,(,[ [Illb curve to DC essentially the same ycdr after yedr HUW-
ever, neither geometry nor algebra can give us a formula for this curve. In
Chapter 8 we will show how trigonometry allows us to describe it mathe-
PR gy, | e e PRI PR R L

IIldLlLdlly ll'lgUIlUlllCLI'y d.llUWb us 1o lIlVCbllgdlt‘, dIly pt‘J'lULllL pllCl’lUIIlt‘,l'lUI
— any physical motion or change that repeats itself. O
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2 Right triangles

We will start our study of trigonometry with triangles, and for a while we
will consider only right triangles. Once we have understood right triangles,
we will know a lot about other triangles as well.

Suppose you wanted to use e-mail to describe a triangle to your friend

1n another \..u.y You know from g 5(:\1111(:1.1_‘/ that this uaua.u_y urquucb three

pieces of information (three sides; two sides and the included angle; and so
on). For a right triangle, we need only two pieces of information, since we

alvraady bnrwy that ana anola maaciierac QNG
@il \.;uu.y DVIIVZYY LLIAL VIO ausu.; HIddULLY TV,

In choosing our two pieces of information, we must include at least one
side, so there are four cases to discuss:

a) the lengths of the two legs;
b) the lengths of one leg and the hypotenuse;
c) the length of one leg and the measure of one acute angle;

d) the length of the hypotenuse and the measure of one acute angle.

,<’/,
T o [ ]
(a) (b)
Pay |
ﬁ/_/_ . _\__ ___________ .D 4_ - _\_ ___________ J_—JI
(©) (d)

Suppose we want to know th

cases (a) and (b) we need only algebra and geometry. For cases (c) and (d),
however, algebraic expressions do not (usually) suffice. These cases will
introduce us to trigonometry, in Chapter 1.
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3 The Pythagorean theorem

We look first at the chief geometric tool which allows us to solve cases
(a) and (b) above. This tool is the famous Pythagorean Theorem. We can
separate the Pythagorean theorem into two statements:

Statement I: If g and b are the lengths of the legs of a right triangle, and ¢
is the length of its hypotenuse, then a® + b* = ¢%.

Statement II: If the positive numbers a, b, and ¢ satisfy a® +b* = ¢?, then
1i te 1

a friangle with these side len

length ¢.?

These two statements are converses of each other. They look similar,
but a careful reading will show that they say completely different things
about triangles. In the first statement, we know something about an angle
of a triangle (that it is a right angle) and can conclude that a certain relation-
ship holds among the sides. In the second statement, we know something
about the sides of the triangle, and conclude something about the angles
(that one of them is a right angle).

The Pythagorean theorem will allow us to reconstruct a triangle, given
two legs or a leg and the hypotenuse. This is because we can find, using
this information, the lengths of all three sides of the triangle. As we know
from geometry, this completely determines the triangle.

Example 10 In the English university town of Oxford, there are some-
times lawns occupying rectangular lots near the intersection of two roads
(see diagram).

B

9 meters

%In fact, we can make a stronger statement than statement II:
Statement II : If the positive numbers a, b, and c¢ satisfy a® + b* = ¢2, then there exists
a triangle with sides a, b, and ¢, and this triangle has a right angle opposite the side with
length c.

This statement includes, for example, the fact that if a® + b* = cz, thena +b > c.
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In such cases, professors (as well as small animals) are allowed to cut
across the lawn, while students must walk around it. If the dimensions of
the lawn are as shown in the diagram, how much further must the students
walk than the professors in going from point A to point B?

Solution. Triangle A BC is aright triangle, so statement I of the Pythag-
orean theorem applies:

AR?

AC? + BC?
122 492

1 44 .

e T ¥4
144-|—b = LLD .

I

So AB = 15 meters, which is how far the professor walks.

On the other hand, the students must walk the distance AG +CB =
12 + 9 = 21. This is 6 meters longer than the professor’s walk, or 40%
longer. O

Example 11 Show that a triangle with sides 3, 4, and 5 is a right triangle.

Solution. We can apply sta nt II to see if it is a right trianola. In

W Wi QappEiry u\.uu— AAAVAA» o N’ e Y ) J\l

fact, 5% = 25 = 3% 4+ 47, so the angle opposite the side of length 5 is a right
angle. Notice that we cannot use statement I of the Pythagorean theorem

to solve this prnhlpm 0

AAS G AN L At

Exercises The following exercises concern the Pythagorean theorem. In
solving each problem, be sure you understand which of the two statements
of this theorem you are using.

1. Two legs of a right triangle measure 10 and 24 units. Find the length
of the hypotenuse in the same units.

2. The hypotenuse of a right triangle has length 41 units, and one leg
measures 9 units. Find the measure of the other ]eg

3. Show that a triangle with sides 5, 12, and 13 is a right triangle.

:IZ;

One leg of a right triangle has length 1 unit, and the hypotenuse has
length 3 units. What is the length of the other leg of the triangle?

5. The hypotenuse of an isosceles right triangle has length 1. Find the
length of one of the legs of this triangle.
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6. Inaright triangle with a 30°angle, the hypotenuse has length 1. Find
the lengths of the other two legs.

Hint: Look at the diagram in the footnote on page 11.

7. Two ﬁoints A and B, are given in the plane. Describe the set of
points X such that AX? + BX? = AB%.

(Answer: A circle with its center at the midpoint of AB.)

8. Two points, A and B, are given in th

to far which A Y2 nv2
lJG'l‘ﬁLS IOr wiilCn AA™ — O AT 18 Constan

e plane. Describe the set of

+
i.

4 Ouwr best friends (among right triangles)

There are a few right triangles which have a very pleasant property: their
sides are all integers. We have already met the nicest of all (because its
sides are small integers): the triangle with sides 3 units, 4 units and 5 units.
But there are others.

Exercises
1. Show that a triangle with sides 6, 8, and 10 units is a right triangle.

2. Look at the exercises to section 3. These exercises use three more
right triangles, all of whose sides are integers. Make a list of them.
(Later, in Chapter 7, we will discover a way to find many more such
right triangles.)

3. The legs of a right triangle are 8 and 15 units. Find the length of the
hypotenuse.

4. We have used right triangles with the following sides:

Leg | Leg | Hypotenuse
3 4 5
6 8 10
9 12 15

By continuing this pattern, find three more right triangles with inte-
ger sides.
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5. We have seen that a triangle with sides 5, 12, and 13 is a right tri-
angle. Can you find a right triangle, with integer sides, whose short-
est side has length 10? length 15?

6. Exercises 4 and 5 suggest that we can construct one integer-side right
triangle from another by multiplying each side by the same number
(since the new triangle is similar to the old, it is still a right tri-
angle). We can also reverse the process, dividing each side by the
same number. Although we won’t always get integers, we will al-
ways get rational numbers. Show that a triangle with sides 3/5, 4/5,

ALEAL Rl . LFAELS e RAARE 2 o d Bt

and 1 is a right triangle.

7. Using the technique from Exercise 6, start with a 3-4-5 triangle and
find a right triangle with rational sides whose shorter leg is 1. Then
find a right triangle whose longer leg is 1.

8. Start with a 5-12-13 right triangle, and find a right triangle with ra-
tional sides whose hypotenuse is 1. Then find one whose shorter leg
is 1. Finally, find a right triangle whose longer leg is 1. ‘

]

9. Note that the right triangles with sides eqﬁal to5, 12,13 and 9, 12,
15 both have a leg equal to 12. Using this fact, find the area of-a
triangle with sides 13, 14, and 15.

10. (a) Find the area of a triangle with sides 25, 39, 56.
(b) Find the area of a triangle with sides 25, 39, 16.

5 Ouwur next best friends (among right triangles)

In the previous section, we explored right triangles with nice sides. We
will now look at some triangles which have nice angles. For example, the
two acute angles of the right triangle might be equal. Then the triangle is
isosceles, and its acute angles are each 45°.

Or, we could take one acute angle to be double the other. Then the
triangle has acute angles of 30 and 60°.

But nobody is perfect. It turns out that the triangles with nice angles
never have nice sides. For example, in the case of the 45° right triangle, we
have two equal legs, and a hypotenuse that is longer:
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»

If we suppose the legs are each 1 unit long, then the hypotenuse, measured
in the same units, is about 1.414213562373 units long, not a very nice
number.

For a 30°right triangle, if the shorter leg is 1, the hypotenuse is a nice
length: it is 2. But the longer leg is not a nice length. It is approximately
1.732 (you can remember this number because its digits form the year in
which George Washington was born — and the composer Joseph Haydn).

It also turns out that triangles with nice sides never have nice angles.

potenuse has length 1. Challenge: Find the length correct to nine
decimal places without using your calculator (but using information
contained in the text above!).

~ 2. Using the Pythagorean theorem, find the hypotenuse of an isosceles
right triangle whose legs are each three units long.

31f you don’t remember the proof, just take two copies of such a triangle, and place

them back-to-back:
i

30°
30°

60°

You will find that they form an equilateral triangle. The side opposite the 30°angle is
half of one side of this equilateral triangle, and therefore half of the hypotenuse.
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3. The shorter leg of a 30-60-90°triangle is 5 units. Using the Pythago-
rean theorem (and the facts about a 30°-60°-90° triangle referred to
above), find the lengths of the other two sides of the triangle.

4. In each of the diagrams below, find the value of x and y:

A 0 x “R
X L L
30°
4
4 x y
y 5
() (e) (£
|| 1 |
C y B P : S
AC=BC PORS is a square '

rs [ S I, R a _aw
0 DOome standara notaton

A triangle has six elements (“parts”): three sides and three angles. We will
agree to use capital letters, or small Greek letters, to denote the measures
of the angles of the triangle (the same letters with which we denote the
vertices of the angles). To denote the lengths of the sides of the triangle,
we will use the small letter corresponding to the name of the angle opposite
this side.

Some examples are given below:
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Appendix

I. Classifying triangles

Because the angles of any triangle add up to 180°, a triangle can be classi-
fied as acute (having three acute angles), right (having one right angle), or
obtuse (having one obtuse angle). We know from geometry that the lengths
of the sides of a triangle determine its angles. How can we tell from these
side lengths whether the triangle is acute, right, or obtuse?

Statement II of the Pythagorean theorem gives us a partial answer: If
the side lengths a, b, c¢ satisfy the relationship a? + b* = c?, then the
triangle is a right triangle. But what if this relationship is not satisfied?

We can tell a bit more if we think of a right triangle that is “hinged”
at its right angle, and whose hypotenuse can stretch (as if made of rubber).
The diagrams below show such a triangle. Sides a and b are of fixed length,
and the angle between them is “hinged.”

B

&

C b A
As you can see, if we start with a right triangle, and “close down” the
hinge, then the right angle becomes acute. When this happens, the third

side (labeled c) gets smaller. In the right triangle, c? = a® + b, so we can
see that:

Statement I1I: If angle C of AABC is acute, then ¢ < a? + b2
In the same way, if we open the hinge up, angle C becomes obtuse, and
the third side gets longer:

B

] ™~ \ .
. C b A C b A
So we see that

Statement IV: If angle C of AABC is obtuse, then ¢2 > a? + b2,
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Exercise Write the converse of statements 11T and 1V above.

While the converses of most statements require a separate proof, for
these particular cases, the converses follow from the original statements.
For example, if, in AABC, ¢* < a*+b?, then angle C cannot be right (this
would cOntfadict statement IT of the Pythagorean Theorem) and cannot be .
obtuse (this would contradict statement IV above). So angle C must be
acute, which is what the converse of statement III says. '

Statements III and IV, together with their converses, allow us to decide
whether a triangle is acute, right, or obtuse, just by knowing the lengths of
its sides.

Some examples follow:

1. Is a triangle with side lengths 2, 3, and 4 acute, right or obtuse?
Solution. Since 4> = 16 > 2% 4+ 3% = 4 4+ 9 = 13, the triangle is
obtuse, with the obtuse angle opposite the side of length 4.

Question: Why didn’t we need to compare 3% with 22 4 42, or 22
with 3% 4 427

I

. Is a tnangle with sides 4, 5, 6 acute, right, or obtuse?
Solution. We need only check the relationship between 6> and
4% 4 5%, Since 6% = 36 < 4% + 52 = 41, the triangle is acute.

3. Is the triangle with side lengths 1, 2, and 3 acute, right, or obtuse?

Solution. We see that 32 = 9 > 22 4 12 = 5, so it looks like the
triangle is obtuse.

Question: This conclusion is incorrect. Why?

Exercise
If a triangle is constructed with the side lengths given below, tell wheth-
er it will be acute, right, or obtuse.

a) {6,7, 8} b) {6, 8, 10} c) {6, 8,9} d) {6,8, 11}
e) {5,12,12} D {5, 12, 14} g) {5,12,17}

IL. Proof of the Pythagorean theorem

There are many proofs of this classic theorem. Our proof follows the Greek
tradition, in which the squares of lengths are interpreted as areas. We first
recall statement I from the text:
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If @ and b are the lengths of the legs of a right triangle, and c is the length
of its hypotenuse, then a® + b* = ¢2.

Let us start with any right triangle. The lengths of its legs are a and b, and
the length of its hypotenuse is c:

N

We draw a square (outside the triangle), on each side of the triangle:

We must show that the sum of the areas of the smaller squares equals the
area of the larger square:

2
-
S
|

C'}N

Or:
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The diagram below gives the essence of the proof. If we cut off two
copies of the original triangle from the first figure, and paste them in the
correct niches, we get a square with side c:

We fill in some details of the proof below.

We started with an oddly shaped hexagon, created by placing two
squares together. To get the shaded irtangle, we lay off a line segment equal
to b, starting on the lower left-hand corner. Then we draw a diagonal line.
This will leave us with a copy of the original triangle in the corner of the
hexagon:

A a

(Notice that the piece remaining along the bottom side of the hexagon has
length a, since the whole bottom side had length a + b.)

Triangle ABC is congruent to the one we started with, because it has
the same two legs, and the same right angle. Therefore hypotenuse A B will
have length c.

Next we cut out the copy of our original triangle, and fit it into the niche
created in our diagram:
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& B
./l
/]
B »

¥_

A

The right angle inside the triangle fits onto the right angle outside the
hexagon (at D), and the leg of length a fits onto segment B D, which also
has length a.

Connecting A to E, we form another triangle congruent to the original
(we have already seen that AF = a, and EF = b because each was a side
of one of the original squares).

This new copy of the triangle will fit nicely in the niche created at the top
of the diagram:

Why will it fit? The longer leg, of length b, is certainly equal to the upper
side of the original hexagon. And the right angles at G must fit together.
But why does G H fit with the other leg of the triangle, which is of length a?
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Let us look again at the first copy of our original triangle. If we had placed
it alongside the square of side b, it would have looked like this:

But in fact we draw it sitting on top of the smaller square, so it was pushed
equal

up vertically by an amount equal to the side of this square, which is a:
H

e ———
!
|
D ;
|

Eb
a |
;
i
________________ 1

So the amount that it protrudes above point G must be equal to a. This is
the length of G H, which must then fit with the smaller leg of the second
copy of our triangle.

One final piece remains: why is the final figure a square? Certainly, it
has four sides, all equal to length c. But why are its angles all right angles?

; /

~/

C

Let us look, for example, at vertex B. Angle C BD was originally a right
angle (it was an angle of the smaller square). We took a piece of it away
when we cut off our triangle, and put the same piece back when we pasted
the triangle back in a different position. So the new angle, which is one
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in our new figure, is still a right angle. Similar arguments hold for other
vertices in our figure, so it must be a square.

In fact all the pieces of our puzzle fit together, and we have transformed
the figure consisting of squares with sides a and b into a square with side c.
Since we have not changed the area of the figure, it must be true that a
a’ 4 b* = c2.

Finally, we prove statement II of the text:

If the positive numbers a, b, and c satisfy a® + b> = ¢?, then a
] [ 1 £3

triangle with these side

side with length c.

"

&
ey

We prove this statement in two parts. First we show that the numbers a,
b, and c are sides of some triangle, then we show that the triangle we’ve
created is a right triangle.

Geometry tells us that three numbers can be the sides of a triangle if and
only if the sum of the smallest two of them is greater than the largest. But
can we tell which of our numbers is the largest? We can, if we remember
that for positive numbers, p? > ¢ implies that p > g. Since ¢? = a? + b?,
and b*> > 0, we see that ¢ > a2, so ¢ > a. In the same way, we see that
¢ > b.

Now we must show that a + b > ¢. Again, we examine the squares of
our numbers. We find that (a + b)? = a® +2ab +b? > a* +b? = ¢2 (since
2ab is a positive number). So a + b > ¢ and segments of lengths a, b, and
c form a triangle.

What kind of triangle is it? Let us draw a picture:

b

Does this triangle contain a right angle? We can test to see if it does by
copying parts of it into a new triangle. Let us draw a new triangle with

sides a and b, and a right angle between them:

»
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-

b

How long is the hypotenuse of this new triangle? If its length is x, then
statement I of the Pythagorean theorem (which we have already proved)
tels us that x* = a? 4 b%. But this means that x> = ¢?, or x = ¢. It remains
to note that this new triangle, which has the same three sides as the original
one, is congruent to it. Therefore the sides of length a and b in our original
triangle must contain a right angle, which is what we wanted to prove.



Chapter 1

1 Definition of sin«

Definition: For any acute angle o, we draw a right triangle that includes «.
S
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this angle to the length of the hypotenuse of the triangle.

B
o .
O
& s
W
a3
3 te
o sin q= 4 _ opposite leg
¢ ~ hypotenuse
A b C

adjacent leg

For example, in the right triangle A BC (diagram above), sina = a/c.
We can see immediately that this definition has a weak point: it does not
tell us exactly which right triangle to draw. There are many right triangles,
large ones and small ones that include a given angle «.

Let us try to answer the following questions.

Example 12 Find sin 30°.

“Solution” 1. Formally, we are not obliged to solve the problem, since
we are given only the measure of the angle, without a right triangle that
includes it. =



22 Trigonometric Ratios

Solution 2. Draw some right triangle with a 30° angle:

B
c=20
a=10
_~30°
A b C

For example, we might let the length of the hypotenuse be 20. Then the
length of the side opposite the 30° angle measures 10 units. So
10 1
sin 30° = - =10.5.
20 2

We know, from geometry, that whatever the value of the hypotenuse, the
side opposite the 30° angle will be half this value,! so sin 30° will always
be 1/2. This value depends only on the measure of the angle, and not on
the lengths of the sides of the particular triangle we used. g

Example 13 An American student is writing by e-mail to her friend
in France, and they are doing homework together. The American student
writes to the French student: “Look at page 22 of the Gelfand-Saul Trigo-
nometry book. Let’s get the sine of angle D.”

E

/

5] F
s

i

The French student measured E F with his ruler, then measured E D,
then took the ratio £ F'/ E D and sent the answer to his American friend. A

T A theorem in geometry tells us that in a right triangle with a 30° angle the side opposite
this angle is half the hypotenuse (see Chapter 0, page 11).
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few days later, he wokc up in the middle of the night and realized, “Sacré
bleu! 1 forgot that Americans use inches to measure lengths, while we use
centimeters. I will have to tell my friend that I gave her the wrong answer!”
What must the French student do to correct his answer?

Solution. He does not have to do anything — the answer is correct. The
sine of an angle is a ratio of two lengths, which does not depend on any unit
of measurement. For example, if one segment is double another when mea-
sured in centimeters, it is also double the other when measured in inches. O

In cen R P A'.o (Erme 0 L valine f ol
in ger ieral, for any angie o fo (oTvV < o < 7U), the value of sino

depends only on «, and not on the right triangle containing the angle.? This
is true because any two triangles containing acute angle « are similar, so
the ratios of corresponding sides are equal. Sin « is merely a name for one
of these ratios.

Exercises

1. In each diagram below, what is the value of sin?

A
a) b) <)
B B

13 o] o5 ¢

BS 3 13 12
a, o p
A 12 C C 4 A

B ™

B 5 C

2'[3 la 17 chawc t tha uahia Af ¢ dAnnc nat danand Aan tha nart] lar triamola
CXAMpIC 1. SNOWS uial e vaiue €1 sina 4ocs NoL depend on ine parucuidr Lﬂuﬂé;u

which contains «. Example 13 shows that the value of sin« does not depend on the unit
of measurement for the sides of the triangle. In fact, we can examine Example 12 more
closely. To determine the value of sin30°, we need three pieces of information: (a) the
angle; (b) the right triangle containing the angle; (c) the unit of measurement for the sides
of the triangle. We have just shown that the value of sine does not in fact depend on the
last two pieces of information.
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d) €) f)

A
g h A
B 3 C
b B
5 4 7
c
A RN
C 3 B

2. In each of the diagrams above, find sin 8.

3. In the following list, cross off each number which is less than the
sine of 60°. Then check your work .with a calculator.

01 02 03 04 05 06 07 08 09

Hint: Remember the relationships among the sides of a 30-60-90

triangle.
2 Find the hidden sine

Sometimes the sine of an angle lurks in a diagram where it is not easy to
spot. The following exercises provide practice in finding ratios equal to the
sine of an angle, and lead to some interesting formulas.



2. Find the hidden sine 25

Exercises

1. The diagram below shows a right triangle with an altitude drawn to
the hypotenuse. The small letters stand for the lengths of certain line

segments.
N

o9

a) Find a ratio of the lengths of two segments equal to sin «.
b) Find another ratio of the lengths of two segments equal to sin «.

c) Find a third ratio of the lengths of two segments equal to sin .

2. The three angles of triangle A BC below are acute (in particular, none
of them is a right angle), and C D is the altitude to side AB. We let
CD=h,and CA =b.

N

=

<
S

c
a) Find a ratio equal to sino.

b) Express & in terms of sin « and b.

c) We know that the area of triangle ABC is hc/2. Express this
area 1n terms of b, ¢, and sin o.

d) Express the area of triangle ABC in terms of a, ¢, and sin 8.

e) Express the length of the altitude from A to BC in terms of ¢

and sin B. (You may want to draw a new diagram, showing the
altitude to side BC.)
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3. a) Using the diagram above, write two expressions for #: one us-
ing side b and sin o and one using side a and sin .

b) Using the result to part (a), show that a sin 8 = b sinc.

c) Using the result of part (e) in problem 2 above, show that
csin 8 =bsiny.

&,

a b c . .
d) Prove that —— = —— = ——. This relation is true for any
sitne sSmpB8  Slny -

acute triangle (and, as we will see, even for any obtuse tri-
angle). It is called the Law of Sines.

3 The cosine ratio

Definition: In a right triangle with acute angle «, the ratio of the leg adja-
cent to angle « to the hypotenuse is called the cosine of angle «, abbrevi-
ated cos «.

B
9

@Q“c’ o

d g

o e S

a3

2
o _ b adjacent leg
A b c oS O="-"= hypotenuse

adjacent leg

Notice that the value of cos «, like that of sin«, depends only on « and
not on the right triangle that includes «. Any two such triangles will be
similar, and the ratio cos « will thus be the same in each.

Exercises

1. Find the cosines of angles o and 8 in each of the triangle figures in
Exercise 1 beginning on page 23.
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2. Find the cosines of angles o and 8 in each triangle below.

A

B 5
B
B B . B
a) b) <) )
12 20
A 6 a /Brllo M
o , o=30° _ o |
A 3 C Ne A C A C
B
é B
a=45° 3] o
A C A 4 C A

x
C

3. The diagram below shows a right triangle with an altitude drawn to
the hypotenuse. The small letters stand for the lengths of certain line

segments.
N
N
a
d b
P A\
14 q

-}

¢
a) Find a ratio of the lengths of two segments equal to cos «.

b) Find another ratio of the lengths of two segments equal to cos «.

c) Find a third ratio of the lengths of two segments equal to cos «.



28 Trigonometric Ratios
4 A relation between the sine and the cosine

Example 14 In the following diagram, cos @ = 5/7. What is the numeri-
cal value of sin 8?7

A

A 5 C

Solution. By the definition of the sine ratio

sin AC
i —_ —
p AB

The value of this ratio is 5/7, which is the same as cosaw. O

Is this a coincidence? Certainly not. If « and 8 are acute angles of the
same right triangle, sin« = cos 8, no matter what lengths the sides of the

triangle may have. We state this as a
Theorem If o + 8 = 90°, then sin@ = cos 8 and cos o = sin .
Exercises

1. Show that sin 29° = cos 61°.

2. If sin 35° = cos x, what could the numerical value of x be?

3. Show that we can rewrite the theorem of the above section as: sin ¢ =
cos (90 — a). ‘

5 A bit of notation

If we are not careful, ambiguity arises in certain notation. What does sin x>
mean? Do we square the angle, then take its sine? Or do we take sin x first,
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then square this number? The first case is very rare: why should we want
to square an angle? What units could we use to measure such a quantity?

The second case happens very often. Let us agree to write sin® x for
(sinx)?, which is the case where we take the sine of an angle, then square
the result. For example, sin® 30° = 1/4.

Exercise

In the diagram below, find the numerical value of the following expres-

P 1. sin*a 2. sin® B
4 3. cos’a 4. cos’f
5. sina +cosla 6. sin®a + cos® B
7. cos’a + sin® B
o [
3

- 6 Another relation between the sine and the cosine

If you look carefully among the exercises of the previous section, you will
see examples of the following result:

Theorem For any acute angle «, sin o + cos? o = 1.
Proof As usual, we draw a right triangle that includes the angle «a:

B

A L C
Suppose the legs have lengths @ and b, and the hypotenuse has length c.
Then sin® @ + cos?a = (a/c)* + (b/c)? = (a* + b*)/c?. But the Pythag-
orean theorem tells us that a® + b* = ¢2, so the last fraction is equal to 1;
that is, sin® @ + cos?a = 1. O
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Exercises

1. Verify that sin® o +cos® @ = 1, where « is the angle in the following
diagram:

/.

3

2. Did you notice that no right angle is indicated in the diagram above?
Is that an error?

3. Verify that sin®> 8 + cos? 8 = 1, where B is the other angle in the
diagram.

4. Find the value of cosa if « is an acute angle and sin o = 5/13.
5. Find the value of cos & if « is an acute angle and sino = 5/7.

6. If o and 8 are acute angles in the same right triangle, show that
sin“o + sin“ 8 = 1.

7. If « and B are acute angles in the same right triangle, show that
cos’a + cos® B = 1.

7 Our next best friends (and the sine ratio)

It is usually not very easy to find the sine of an angle, given its measure.
Tt Fre onra n“a,n; T anrmerlan i+ 10 1nmt an diFRAnlt Wa hava aleandy onne $land
UL 1V UG Dl.lbblal a.llslcb, U I3 LIVL DU ML LTIV ULL, YY U LIAYD CIU.UG.U-Y oSCCLL LAl
sin30° = 1/2

Solution. To use our definition of the cosine of an angle, we must draw
a right triangle with a 30° angle, a triangle with which we are already
friendly.
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30°

V3

We know that the value of cos30° depends only on the shape of this tri-
angle, and not on its sides. So we can assume that the smaller leg has
length 1. Then the lengths of the other sides are as shown in the diagram,
and we see that cos 30° = +/3/2. O

Example 16 Show that cos 60° = sin 30°.

Solution. In the 30-60-90 triangle we’ve drawn above, one acute angle
is 30°, and the other is 60°. Standing on the vertex of the 30° angle, we
see that the opposite leg has length 1, and the hypotenuse has length 2.
Thus sin 30° = 1/2. But if we walk over to the vertex of the 60° angle, the
opposite leg becomes the adjacent leg, and we see that the ratio that was

sin 30° earlier is also cos 60°, O
Exercises
1 T L ala . £ 11t a LY X ame PPN I, T TR S S
1. 111 111 LIIC lUllUWlllg LdDIC. 10U Ildy WdAIIL 1O UNC LLC HIDACT Llld[lglt:b
given in the diagram below
2
1
30°
V3
N
vz N\
1 3
45 \ B\
4

(The angles o and 8 are angles in a 3-4-5 right triangle.)
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angle x | sinx | cosx

30°

45°

60°
o

B

2. Verify that sin 60° = cos 30°.

(V]

. Verify that sin” 30° + cos?30° = 1.

4. Let the measure of the smaller acute angle in a 3-4-5 triangle be «.
Looking at the values for sin @ and cos a2, how large would you guess
« 18? Is it larger or smaller than 30°? Than 45°? Than 60°?

8 What is the value of sin 90°?

So far we have no answer to this question: We defined sin« only for an
acute angle. But there is a reasonable way to define sin 90°. The picture be-
low shows a series of triangles with the same hypotenuse, but with different
acute angles «:

ﬁﬁﬁﬂﬂl

As the angle o gets larger, the ratio of the opposite side to the hypotenuse
approaches 1. So we make the following definition.

o

Definition sin90° = 1.

The diagram above also suggests something else about sin «. Remem-
ber that the hypotenuse of a right triangle is longer than either leg. Since
sina is the ratio of a leg of a right triangle to its hypotenuse, sina can
never be larger than 1. So if someone tells you that, for a certain angle
a, sina = 1.2 or even 1.01, you can immediately tell him or her that a
mistake has been made.
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9. An exploration: How large can the sum be?

The same series of triangles lets us make a definition for cos90°. As
the angle « gets closer and closer to 90°, the hypotenuse remains the same
length, but the adjacent leg gets shorter and shorter. This same diagram
leads us to the following definition.

Definition cos90° = 0.

Exercises

|

. How does the diagram above lead us to make the definition that

sin 0° = 07

2. What definition does the diagram in this section suggest for cos0°?

Answer: cos0° = 1.
3. Check, using our new definitions, that sin 0° 4 cos?0° = 1.
4. Check, using our new definitions, that sin” 90° + cos?90° = 1.

5. Your friend tells you that he has calculated the cosine of a certain
angle, and his answer is 1.02. What should you tell your friend?

9 An exploration: How large can the sum be?

We have seen that the value of the expression sin® & 4 cos? « is always 1.
Let us now look at the expression sin« + cos «. What values can this ex-
pression take on? This question is not a simple one, but we can start think-
ing about it now.

Exercises

1. We can ask our best friends for some information. Fill in the blank
spaces in the following table, using a calculator when necessary .
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sin 0° 4+ cos 0° 0+1 1
sin 30° + cos 30°
sin 45° + cos 45°

3 1 :
sin 60° +- cos 60° —\;—— + 3 1.366 (approximately)
sin 90° + cos 90°
sine + cosa, where o 3 4
is the smaller acute angle 3 + 3 1.4

in a 3-4-5 right triangle
sin & +- cos &, where « is
the larger acute angle in
a 3-4-5 right triangle

2. Prove that sin o 4 cos « is always less than 2.
Hint: Geometry tells us that sine < 1 and cos @ < 1. Can they both
be equal to 1 for the same angle?

3. Show that sin« 4 cosa > 1 for any acute angle «.
Hint: Notice that (sin e+ cos «)? = 142 sin & cos &, and think about
how this shows what we wanted.

4. For what value of ¢ is sina + cosa = «/5?

5. We can see, from the table above, that sin « + cos &« can take on the
value 1.4. Can it take the value 1.5?7 We will return to this problem
a bit later. For now, use your calculator to see how large a value you
can get for the expression sin & 4 cos «.

10 More exploration: How large can the product be?

Now let us consider the p

Fill in the table below:
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(sin0”)(cos ") 0.1 0
(sin 30°)(cos 30°)
(sin 45°)(cos 45°)
(sin 60°)(cos 60°) 0.43301 (approximately)
(sin 90°)(cos 90°)
(sina)(cosa), where «
is the smaller acute angle
in a 3-4-5 right triangle
(sina){cosa), where «
is the larger acute angle
in a 3-4-5 right triangle

hiWw

Wl o~
<
S
oo

How large do you think the product (sina)(cosa) can get? We will
return to this problem later on.

11 More names for ratios

In a right triangle,

B
2

& / S

N o

ﬂﬁo\pc g
A a Z

4]
— 2

o

A b C
adjacent leg
we have a total of six different ratios of sides. Each of these ratios has been
given a special name.
We have already given a name to two of these ratios:

b

[Py

, coso = —,
c

sina =

N Q!

Below we give names for the remaining four ratios. The first two are very
important.
The ratio

leg opposite angle v a tan o — opposite leg
leg adjacentto angle b ~ adjacent leg
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is called the rangent of «, abbreviated tan

The ratio

o,
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leg adjacent to angle «

b
leg opposite angle « a

cota =

adjacent leg

opposite leg

is called the cotangent of «, abbreviated ¢

Two more ratios are used in some textbooks, but are not so important

mathematicallyv. We list them here for comnleteness, but will not be work-
h Tor completeness, but wi e wWork
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ing with them:

The ratio

otc.

hypotenuse

—

¢
b

leg adjacent to angle «

s€ca =

hypotenuse

adjacent leg

is called the secant of «, abbreviated sec «.

A LXK

The ratio
A WS

hypotenuse

P o I )
pposiie angic &

I

CcsSco

hypotenuse

it
it

(¢"

is called the cosecant of «, abbreviated csc «.

For practice, let’s take the example of a 3-4-5 right triangle:

i

3
We have six ratios and six names:

i 4 3

sina = ~ cose = —

5 5

3 5

coty = — secy = —

4 3

tano =

CSCY¥ =

Bl WA




1. More names [or ratios

To sum up, given the triangle

B
<&
& S
S S
o 2
a g
T
i .
A b C
adjacent leg
we have:
sinw | opposite leg/hypotenuse | a/c
cosa | adjacent leg/hypotenuse | b/c
tanc | opposite leg/adjacent leg | a/b
cota | adjacent leg/opposite leg | b/a
seca | hypotenuse/adjacentleg | ¢/b
csca | hypotenuse/opposite leg | ¢/a

As before, these ratios depend only on the size of the angle «, and not on
the lengths of the sides of the particular triangle we are using, or on how
we measure the sides. The following theorem generalizes our statement of

this fact for sin«.

Theorem The values of the trigonometric ratios of an acute angle depend
only on the size of the angle itself, and not on the particular right triangle

containing the angle.

Proof Any two triangles containing a given acute angle are similar, so
ratios of corresponding sides are equal. The trigonometric ratios are just

names for these ratios.

Exercises

1. For the angles in the figure below, find cos«, cos 8, sinw, sin g,

tan ¢, tan 8, cot« and cot 8.
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2. Did you assume that the triangle in the figure above is a right tri-
angle? Why is this assumption correct?

3. Gtven the figure below, express the quantities cos«, cos 8, sin«,
sin 8, tan &, tan 8, cote and cot 8 in terms of a, b, and c:

b

- /
P

4. In the diagram below, find the numerical value of cos «, cos 8, cot«
and cot 8.

a

5. In the diagram below, find the numerical value of cos &, cos 8, cota
and cot 8.

B 7 C

B L

25

A\
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10.

[E—

6. Find two names for each ratio given. The first example is already

[a—y

filled in.
E=sinae=cos,8 B
c
b
bo_ - h
C C
a _ a
> = =
b LI
P = C b A

The sine of an angle is 3/5. What is its cosine? What is its cotangent?
If tana = 1, what 1s cos a? What is cot o ?
What is the numerical value of tan 45°?

What is the numerical value of tan30°? Express this number us-
ing radicals. Then use a calculator to get an approximate numerical
value.

Fa
L1

S
need a calculator to compute this?
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Chapter 2

Relations among
Trigonometric Ratios

1 The sine and its relatives

We have studied four different trigonometric ratios: sine, cosine, tangent,
and cotangent. These four are closely related, and it will be helpful to ex-
plore their relationships. We have already seen that sin® & + cos?a = 1,
for any acute angle «. The following examples introduce us to a number of
other relationships.

Example 17 If sina = 3/5, find the numerical value of cos @, tan «, and
coto.

Solution. The fraction 3/5 reminds us of our best friend, the 3-4-5 tri-
angle:

In fact, @ is the measure of one of the angles in such a triangle: the one
opposite the side of length 3 (see the diagram above). Having drawn this
triangle, we easily see that cosa = 4/5, tanae = 3/4, and cotae = 4/3. O
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Example 18 If sina = 2/5, find the numerical value of cos «, tan e, and
cote.

Solution. We can again draw a right triangle with angle «:

B

s
/ O
A V21 C

We know only two sides of the triangle. To find cos @, we need the third

side. The Pythagorean theorem will give this to us. Because a* + b? = ¢2,
we have b? + 2% = 52, s0 b? = 21 and b = +/21. Now we know all the

sides of this triangle, and it is clear that

V21 2 V21

cosey = ——, tany = —— cotazT.

5 V21

b2

O

Example 19 We can find an answer to the question in Example 18 in a
different way. For the same angle «, we have the right to draw a different

right triangle, with hypotenuse 1, and leg 2/5. Do the calculation n this

AR

0O

case for yourself. It will produce the same result.

Example 20 If sino = a, where 0 < a < 1, express in terms of a the
value of cos &, tan &, and cot «.

Solution. As before, we choose a right triangle with an acute angle

equal to a:

a [
\ll—a2

The simplest is one in which the hypotenuse has length 1 and the leg oppo-
site & is a. Let the other leg be x. Then x> +a? = 1,50 x = +/1 — a2. Now
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we know all the sides of this triangle, and we can write everything down
casily:

1 —a?, taney = ——,

COsSc =
1 —a? a

voarcicec
F3 S V¥ B WY Iw L Wi )

1. Suppose sina = 8/17. Find the numerical value of cos «, tan «, and
cotu.

2. Suppose cosa = 3/7. Find the numerical value of sin«, tan «, and
col .

3. Suppose cosa = b. In terms of b, express sin ¢, tan &, and cot .
4. Suppose tana = d. In terms of d, express sin «, cos«, and cota.

5. Fill in the following table. In each row, the value of one trigonomet-
ric function is assigned a variable. Express each of the other trigono-
metric functions in terms of that variable. The work for one of the
rows is already done.

sin o COoS & tan o cot o
sin o a V1 —a2 a V1 - a2
l—a a

cos o a

tana a

coter a
Please do not try to memorize this table. Its first row can be filled
with the help of the triangle
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whose sides can be found from the Pythagorean theorem. For the
other rows, you can use use the triangles

1 5 1+a? Vi+a?

l-a a 1

o ol e O e »

a 1 a

This is all you’ll ever(need.
?'. . “1 T[’\:-\ .:-‘

Remark. We have implicitly ‘assumed that for every number a between 0

and 1, there exists a right triangle that contains an angle whose sine is a.

But this is clear from geometry: we can construct such a triangle by taking

the hypotenuse to be 1, and one leg to be a.!

2 Algebra or geometry?

Example 21 Suppose sine = 1/2. Find the numerical value of cosc,
tana, and cote.

Solution. We can do this geometrically, by drawing a triangle (as in
Exercise 5 above). Or we can do this algebraically, using the results of
Example 20. For instance,

cosa =1 —a?= 1—(1)2=\/1—41=\/§=?.

2

Or did you notice right away that « is an angle in one of our friendly
triangles? [

1You may have some objection to taking the hypotenuse of our triangle to have length
1. If you insist, we can take some length c for this hypotenuse. We will then get the same
results, but the calculations will be longer. For example, suppose sin« = x. Choose a right
triangle that contains a, and that has hypotenuse of length ¢. Suppose the leg opposite «
has length a. Then a/c = x, since sina = x. So a = cx. If we are asked for cosa, we can
suppose the length of the other leg is b. Then b2 =c? —a? =c? - c2x2, and

2 n2,2 )
Ve ceX =c\/1 X _ /—”—“l_x2.
¢ ¢

COos a =

o | g
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Exercises
1. Find sin’® 30°.

Solution. Since sin 30° = 1/2, we see that

sin230° = (-;-)2 -

S

2. Find sin® 45°. Check the result with a calculator.

3. Rewrite the table from Exercise 5 on page 43, but using the names
of the trigonometric ratios. The first row below has been filled in as
an example.

sin o Cos & tan o« cota

— sin & V1 —sin®«
vV1—sma :
V1 —sin’a Siho

sine || sina

cos

tan o

(@]
(@]
—
L

3 A remark about names

We have already seen that if o and B are complementary, then sina =
cos 8. Historically, the preﬁx “co-" stands for “complement,” since two

1t nwolae 1 tha cana . | 1 - A 5% o ¥4

i P oo Soan =% vio
abulb ausu.«a 11 l.JJ.D S4i1iic Llslll |.l lauslc alrc L«U.l.lli} cliuiila ly

The following exercises extend this note.
Exercises

Using the diagram on the right, show that if « and 8 are complemen-
tary, then:
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n
1. tanw = cot .
2. cota = tan . c
a
3. seca = csc B.
4. csca = sec B. o H
A b C

4 An identity crisis?

From the table on page 45 we see, for example, that cose = /1 — sin’a.
We have also seen that, for any angle «, sin’« + cos>a = 1. Such equa-
tions, which are true for every value of the variable, are called identities.

From the identities we have, we can derive many more. But there is no
need for anxiety. We will not have an identity crists. If you forget all these
identities, they are easily available from the three fundamental identities
below:

sina + cos’ o = 1
sin o
tano =
COoSs o
i
cota =
tan

From these simple identities we can derive many others involving the
sine, cosine, tangent, and cotangent of a single angle. One way to derive a
new identity is to draw a right triangle with an acute angle equal to «, and
substitute a /¢ for sin«, b/c for cos «, and so on.

sin o

Example 22 Prove that tano =

cosa
Solution. We can draw a right triangle with legs a, b, hypotenuse ¢, and
acute angle o opposite the leg of length a. Then we have '

(a/c)

sina/cosa = —— = (a/c)(c/b) = a/b = tana..

(b/c)
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Another way to prove a new identity is to show that it follows from
other identities that we know already.
Example 23 Prove the identity tano coto = 1.

Solution. From our table, we see that tan o = sin«/ cos «. We also see
that cotor = cos o/ sin«. Therefore,

Sin¢ \ /COS &
tanacotoz-:——( )( - ):1. W,
cosa/ \sina

Example 24 Show that tana +1=1 / cos? .

Solution. We know that sin® & 4 cos?« = 1, s0

sinfa cosla 1

cos2ae  cosla cosla

or
_ ) 1
tan‘a + 1 =

cos?a

You will have a chance to practice both these techniques in the exer-
cises below.

Exercises
1. Verify that sin® o + cos® @ = 1 if  equals 30°, 45°, and 60°.

2. The sine of an angle is +/5/4. Express in radical form the cosine of
this angle.

3. The cosine of an angle is 2/3. Express in radical form the sine of the
angle.

4. The tangent of an angle is 1/+/3. Find the numerical value of the
sine and cosine of this angle.

5. Prove the following identities for an acute angle «:

a) cotx sinx == COs X.
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tan x 1
b) — = :
sinx  cosx
c) cos?a — sin*a = 2cos?a — 1.
a) sin o 1 —cosa
1 + cosa sina
e) (sina + 2cos?a — 1)/cot’a = sin® w.
f) cos?a = 1/(1 + tan® ).
2, 2
g) sin“a = 1 /(cot*a + 1).
h) 1 —cosa ( Sin o )2
l1+cose \l+4cosa/’
. sin’ o — cos® ,
1) — = 14 smocos «.
Sino — COS &
6. a) For which angles « is sin* @ — cos* & > sin*a — cos? a?
b) For which angles « is sin* & — cos* @ > sin® @ — cos? a?
7. If tana = 2/5, find the numerical value of 2 sin & cos «.
8. a) Iftana = 2/5, find the numerical value of cos? & — sin’ .
b) If tan = r, write an expression in terms of r that represents
the value of cos?a — sin’ a.
. sina — 2coso
9. If tana = 2/5, find the numerical value of —.
cosee — 3sina
10. If tane = 2/5, and a, b, ¢, d are arbitrary rational numbers, with
asina +bcosa )
5¢ + 2d # 0, show that —— 1§ a rational number.
ccosa +dsina :
11. For what value of « is the value of the expression (sin & + cosa)? +
(sina — cos «)? as large as possible?
5 Identities with secant and cosecant

While we do not often have to use the secant and cosecant, it is often
convenient to express the fundamental identities above in terms of these
two ratios. We can always restate the results as desired, using the fact that
seca = 1/cosa andcsca = 1/sina.
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Example 25 Show that sec’a = 1 + tan® a for any acute angle a.

Solution. We know that

so the given identity is equivalent to the statement that

=1+tan’ca.

cos? o

This last identity was proven in Example 24, page 47. ]

Exercises

1. Rewrite each given identity using only sine, cosine, tangent or cotan-
gent.

a) tano csca = seca.

b) cotaseca = csca.

C)

csca = cota.

sec o
d) tan’« = (seca + 1)(seca — 1).
e) csc’a = 1 + cot? a.

2. Rewrite in terms of secant and cosecant, tangent or cotangent. Sim-
plify your answers so that they do not involve fractions.
tan o 1

a) — = .
sinad  cos«

b) —— cosa = cota.
sin o

1
cosla’

¢) tana + 1 =

1
= 1 4+ cot?c.

d
) sin’ o
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6 A lemma

We have already seen that if @« = cos o and b = sin« for some acute angle
o, then a? + b? = 1. We can also prove the converse of this statement: If a
and b are some pair of positive numbers such that a? + b* = 1, then there
exists an angle @ such that a = cos @ and b = sin#. Indeed, if we draw
a ulauglc with sides a, b, and 1, the r_yumgmcau theorem (statement II)
guarantees us that this is a right triangle. Then the angle 6 that we are

looking for appears in the triangle “automatically.”

2

0 []

Exercises

1. Suppose « is some angle less than 45°. If @ = cos’>a — sin’ & and

b = 2sina cos «, show that there is an angle 6 such that a = cos#

and b = sinf.

2. Suppose that o is some angle. If @ = /(1 +cosa)/2 and b =
V(1 — cos)/2, show that there is an angle 6 such that a = cosé
and b = siné.

3. Suppose that o is some angle. If a = 4cos’a — 3cosa and b =
3sina — 4sin’ a, show that there is an angle # such that a = cos 8
and b = sin6.

4. Suppose that ¢ is a number between 0 and 1. If
1—12 2t

a = — and b=

1+ 12 1412’
show that there 1s an angle 8 such that -

£

— e and h
—_— WD S A s

(49§}

= siné.

5. (A non-trigonometric identity) If p?> + g = 1, show that (p? —
%)% + 2pg)? = 1 also. Which trigonometric identity, of those in
the exercises above, is this similar to?
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7 Some inequalities

You may remember from geometry that the hypotenuse is the largest side
in a right triangle (since it is opposite the largest angle). So the ratio of
any leg to the hypotenuse of a right triangle is less than 1. It follows that
sin < 1 and cosa < 1 for any acute angle .

Paasaat ]
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Exercises

1. For any acute angle o, show that 1 — sina > 0. For what value(s) of
a do we have equality?

2. For any acute angle «, show that 1 —cosa > 0. For what value(s) of
a do we have equality?

3. Which of the following statements are true for all values of «?
a) sin‘a +cos?a = 1.
b) sin?« + cos?a > 1.

c) sin’a + cos?a < 1.
Answer. They are all correct. Can you see why?

4. There are 4 supermarkets having a sale. Which of these are offering
the same terms for their merchandise?

e In supermarket A, everything costs no more than $1.
e In supermarket B, everything costs less than $1.
e In supermarket C, everything costs $1 or less.

e In supermarket D, everything costs more than $1.
5. Which inequality is correct?

a) For any angle «, sin + cosa < 2.

b) For any angle «, sina + cosa < 2.

6. What is the largest possible value of sina? Of cos a?
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8 Calculators and tables

It is, in general, very difficult to get the numerical value of the sine of an
angle given its degree measure. For example, how can we calculate sin 19°?

One way would be to draw a right triangle with a 19° angle, and mea-
sure its sides very accurately. Then the ratio of the side opposite the angle

tm tha 111 lha tha ~F 100
10 uic u_yPULCUHS’U‘ wili oe the muc o1 1Y .

But this is not a method that mathematicians like. For one thing, it
depends on the accuracy of our diagram, and of our rulers. We would like

~fAnd a + 1 Tat 1009 1 rithrmat t1 N +h
tona a way wo C?uC'L'uaLe sin 19 uSing oy arithmetic operations. wver e

centuries, mathematicians have devised some very clever ways to calculate
sines, cosines, and tangents of any angle without drawing triangles.

We can benefit from their labors by using a calculator. Your scientific
calculator probably has a button labeled “sin,” another labeled ““cos,” and a
third labeled “tan.” These give approximate values of the sine, cosine, and
tangent (respectively) of various angles.

Warning: Most “nice’” angles do not have nice values for sine, cosine,
or tangent. The values of tan 61° or sin 47° will not be rational, and will not
even be a square root or cube root of a rational number. There are a very
few angles with integer degree measures and “nice” values for sine, cosine,
or tangent.

Exercises

1. Find a handheld scientific calculator, and get from it the values of
sin 30°, sin45°, and sin 60°. Compare these values with those we
found in Chapter 1.

2. Betty thinks that the tangent of 60° is /3. How would you check this
using a scientific calculator?

3. How would you use a calculator to get the cotangent of an angle of
30°? of 20°?

Hint: Many calculators have a button labeled “1/x.” If you press this,
the display shows the reciprocal of the number previously displayed.

4. Fill in the following tables:
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in radical or rational form

o sino Cos tan o cotx
30°
45°
60°

in decimal form, from calculator

o sin o cos & tan o cota
30°
45°
60°

9 Getting the degree measure of an angle from its sine

Example 26 What is the degree measure of the smaller acute angle of a
right triangle with sides 3, 4, and 57

Solution. We could draw a very accurate diagram, and use a very ac-
curate protractor to answer this question. But again, mathematicians have
developed methods that do not depend on the accuracy of our instruments.
Your calculator uses these methods, but you must know how the buttons
work.

The sine of the angle we want is 3/5 = .6. Enter the number .6, then
look for the button marked “arcsin” or ““sin~!" (for some calculators, you
must press this button first, then enter .6). You will find that pushing this
button gives a number close to 36°. This is the angle whose sineis .6. O

On a calculator, you can read the symbol “arcsin” or “sin™!” as “the
angle whose sine is ... ” Similarly, “arccos” means “the angle whose co-
sine is ... ” and “tan—!” means “the angle whose tangentis ... ”

Exercises

1. Inthe text, we found an estimate for the degree-measure of the smaller
acute angle in a 3-4-5 triangle. Using your calculator, find, to the
nearest degree, the measure of the larger angle. Using your estimate,
does the sum of the angles of such a triangle equal 180 degrees?
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. Using your calculator, find

a) arcsin 1.
b) arccos0.7071067811865.

. Using your calculator, find the angle whose cosine is .8 .

Using your calculator, find the angle whose sine is .6.

. We know that sin 30° = .5. Write down your estimate for sin 15°,

then check your estimate with the value from a table or calculator.

. Suppose sinx = .3. Use your calculator to get the degree-measure

of x. Now check your answer by taking the sine of the angle you
found.

. Suppose arcsinx = 53°. Use your calculator to get an estimate for

the value of x. Now check your answer by taking the arcsin of the
number you found.

O HauAd 2 spratlemvad 1303
s L11IUL Ay WILLIVUL UD]

arcsin x

t

f 60
Using your calculator, find arcsin (sin 17°).
Using your calculator, find sin (arcsin 0.4).

Find arcsin (sin 30°) without using your calculator. Then find sin
(arcsin 1/2), without using the calculator. Explain your results.

With a calculator, check that cos® A +sin® A = 1 if A equals 20° and
if A equals 80°.

With a calculator, check that tan A = sin A/ cos A if A equals 20°
and if A equals 80°.

Using a calculator to get numerical values, draw a graph of the value
of sin x as x varies from 0° to 90°.
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10 Solving right triangles
Many situations in life call for the solution of problems like the following.

Example 27 The hypotenuse of a right triangle is 5, and one of its acute
angles is 37 degrees. Find the other two sides.

Solution. From a calculator, we obtain sin 37° & .6018 and cos37° =

0.7986.

5sinot

A Scoso B
Since sina = BC/AC = BC/5, we have that BC = 5sin37° = 5 x
0.6018 = 3.009. Similarly, AC = 5¢0s37° = 5 x 0.7986 = 3.993 . Both
values are correct to the nearest thousandth. O

Exercises’

1. Find the legs of a right triangle with hypotenuse 9 and an acute angle
of 72 degrees.

2. The two legs of a right triangle are 7 and 10. Find the hypotenuse
and the two acute angles.

3. Arighttriangle has a leg of length 12. If the acute angle opposite this
leg measures 27 degrees, find the other leg, the other acute angle, and

the IlyPOI.CIl use.

4. A right triangle has a leg of length 20. If the acute angle adjacent
to this leg measures 73 degrees, find the other leg, the other acute
angle, and the hypotenuse.
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11 Shadows

Because the sun is so far away from the earth, the rays of light that reach it
from the earth are almost parallel. If we think of a small area of the earth
as flat (and we usually do!), then the sun’s rays strike this small region at
the same angle:

tree’s shadow _—]

So we can, for example, tell how long the shadow of an object will be,
given its length.

)\ E— | TE 4len wennsee ~F & — .-.-.n e e
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long will the shadow be of a tree which is 20 feet high?
Solution. In the diagram below, AC is the tree, and BC is the shadow:

A
20
] 23°
C | x | B

We have that

AC 20 20

tan23° = — = —, orx =

B X tan 23°
From a calculator, tan 23° = 0.4244, so x = 20/0.4244 = 47.13 feet. O
Exercises

1. When the sun’s rays make an angle with the ground of 46 degrees,
how long is the shadow cast by a building 50 feet high?
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2. Ata certain moment, the sun’s rays strike the earth at an angle of 32
degrees. At that moment, a flagpole casts a shadow which is 35 feet
long. How tall is the flagpole?

3. Why are shadows longest in the morming and evening? When would
you expect the length of a shadow to be the shortest?

4. Can it happen that an object will not cast any shadow at all? When
and where? You may need to know something about astronomy to
investigate this question.

12 Another approach to the sine ratio
There is a simple connection between the sine of an angle and chords in a
circle.

Theorem If « is the angle subtended by a chord P B at a point on a circle
of radius r (such as point A in the diagram below), then

Before we prove this theorem, let us resolve a problem in the way it
is stated. We can pick different points on the circle (such as A" and A" in
the figure below), and consider the different angles subtended by the same
chord PB:
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AP

Does it matter which point we pick? No, it does not. An important theorem
of geometry asserts that all the angles subtended by a given chord in a
circle are equal?, so that it makes no difference which point on (major) arc
P B we choose.

For this reason, we can prove our theorem by making a very special
choice: for point A, we choose the point diametrically opposite to point B:

/)

The same geometric theorem about inscribed angles assures us that /AP B
is a right angle, so sinoe = PB/AB = P B/2r. This completes the proof.

We can give another proof of this theorem. Consider the diagram

2See the theorem on inscribed angles in the appendix to this chapter.
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We have shown here a perpendicuiar from the center of the circie O to the
chord P B. Geometry tell us that the foot of this perpendicular H is the

midpoint of P B.

Then, as before, /AP B = 90°, which implies that AP and H O are
parallel. Thus, /HOB = /PAB = «. Now in right triangle HO B, we
have

i HB 1 PB PB

sinet = — = = — = ——,
OB 2 OB 2r
as we know from the first proof.

Exercises

- 1. The diagram on the left below shows a chord AB and its central
angle LZAOB = 0:

Suppose the diameter of the circle is 1. How is the length of AB
related to 87

Answer. AB = sin(8/2).

2. Now, using the same diagram, suppose the radius of the circle is 1.
How is the length of AB related to 8 now?

. Answer. AB = 2sin(6/2).
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3. The diagram below shows a circle of diameter 1, and two acute
angles 6 and ¢:

P

How does the diagram suggest that if ¢ > 8, then sing > sin6?

4. We know from geometry that a circle may be drawn through the three
vertices of any triangle. Find the radius of such a circle if the sides
of the triangle are 6, 8, and 10.

5. Starting with an acute triangle, we can draw its circumscribed circle

(the circle that passes through its three vertices). If « is any one of
the angles of the triangle, show that the ratio a : sin « is equal to the
diameter of the circle.

6. Use Exercise S to show that if , 8, y are three angles of an acute

triangle, and a, b, and c are the sides opposite them respectively, then
a b c

sine sinB  siny’

7. The diagram below shows a circle with center O, and chords AB

and AC:
O A

De

7
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10.

11.

Arc AC is double arc AB. Diameter B P, chord AP and chord C P
are drawn in, and B P = 1 (the diameter of the circle has unit length).
If angle AP B measures o degrees, use this diagram to show that
sin2o < 2s8in«.

You may need the theorem known as the triangle inequality: The

length of the third side.

. In a circle of diameter 10 units, how long is a chord intercepted by

an inscribed angle of 60 degrees?

. In a circle of diameter 10 units, how long is a chord intercepted by a

central angle of 60 degrees?

Find the length of a side of a square inscribeci in a circle of diameter
10 units.

If you knew the exact numerical value of sin36°, how could you
calculate the side of a regular pentagon inscribed in a circle of diam-
eter 10?

Appendix — Review of Geometry

I. Measuring arcs

One natural way to measure an arc of a circle is to ask what portion of its
circle the arc covers. We can look at the arc from the point of view of the
center of the circle, and draw the central angle that cuts off the arc:

grees, then we say that arc AB mea-
sures « degrees as well.

/7\
If central angle A O B measures « de-
04
o
\’/B
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Exercises
1. What is the degree measure of a semicircle? A quarter of a circle?

2. What 1s the degree measure of the arc cut off by one side of a reg-
ular pentagon inscribed in a circle? A regular hexagon? A regular
octagon?

I1. Inscribed angles and their arcs

v
==
-
[q’]
joR
ly]

An important theorem of geometry relate:

Al AR IR ALt LI e

to its central angle, but to any inscribed angle which intercepts that arc:

Theorem The degree measure of an inscribed angle is half the degree mea-
sure of its intercept arc. '

Proof We divide the proof into three cases.

1: First we prove the statement for the case in which one side of the
inscribed angle is a diameter.

Take inscribed angle PA B, and draw P O (where O is the center of
the circle). Since O P and OA are radii of the circle, they are equal,
and triangle PAO is isosceles. Hence /APO = /PAO = «. But
/P OB is an exterior angle of this triangle, and so is equal to the
sum of the remote interior angles, which is @« + @ = 2. So the
degree-measure of arc P B is also 2ct, which proves the theorem for
this case.

2: Suppose the center of the circle is not on one side of the inscribed
angle, but inside it.
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If we draw diameter AC, then angles PAC, BAC are inscribed
angles covered by Case 1, so ZPAC = wé—l”C and ZCAB = %—CB.

Now LPAB = LPAC + [CAB = }PC + 1CB = 1 PB, which s
what we wanted to prove.

3: Suppose the center of the circle is outside the inscribed angle.

If we draw diameter AC, then angles PAC, BAC are inscribed
angles covered by Case 1, so ZPAC = %PC and /ZCAB = %CB.

Now (PAB = [PAC — LCAB = 1PC — 1CB = 1 PB, which is
what we had to prove. O

As a corollary to the theorem above, we state Thales’s theorem, one of
the oldest mathematical results on record:

The proof is a simple application of the previous result, and is left for
the reader as an exercise.
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Exercises

1. If two inscribed angles intercept the same arc, show that they must
be equal.

2. Find the degree-measure of an angle of a regular pentagon.

3. If aquadrilateral is inscribed in a circle, show that its opposite angles
must be supplementary.

III. ... and conversely

If we have a particular object, which we will represent as a line segment,
we are sometimes not so much interested in how big it is, but how big
it looks. We can measure this by seeing how much of our field of vision
the object takes up. If we think of standing in one place and looking all

around, our field of vision is 2z. The object (A B in the diagram below) is
seen at the angle A P B if you are standing at point P. We often say that

vl Jid o IR<RILUE RS ] Al 1 (0 g hwi g
o

AB subtends angle AP B at point P.
A

r — B

P

For example, viewed from the earth, the angle subtended by a star is
very, very small, although we know that the star is actually very large. And
the angle subtended by the sun is much greater, although we know that the
sun, itself a star, is not the largest one.

Suppose the angle subtended by object AB at P measures 60°. Can
we find other points at which AB subtends the same angle? From what
positions does it subtend a larger angle? From what positions a smaller
angle?

The answer is interesting and important. If we draw a circle through
points A, B and P, then AB will subtend a 60° angle at any point on the
circle, to one side of line AB:
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LN,

N

Also, A B will subtend an angle greater than 60° at any point inside the
circle (to one side of line AB), and will subtend an angle less than 60° at
any point outside the circle.

All this follows from the converse theorem to the one in the previous
section:

Theorem Let A B subtend a given angle at some point P. Choose another
point Q on the same side of the line A B as point P. Then

e If AB subtends the same angle at point Q as at point P, then Q is

on the circle through A, B and P.

e If AB subtends a greater angle at Q, then Q is inside the circle

through A, P and B.

o If AB subtends a smaller angle at Q, then Q is outside the circle

through A, P and B.

(Remember that Q and P must be on the same side of line AB.) The
proof of this converse will emerge from the exercises below.

Exercises

1.

From what points will the object A B subtend an angle of 120°?

. From what points will the object A B subtend an angle of 90°?

. The diagrams below show an object A B, which subtends angle o at

nnlnf P. TTmnc thece diaoramg hpln\v show fhaf |‘F noint O is nnfcnﬂp
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the circle, then AB subtends an angle less than « at point Q, and if
point R is inside the circle, AB subtends an angle greater than « at
point R.
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X

4. How does Exercise 3 prove that if an angle is half of a given arc, then
it is inscribed in the circle of that arc?

5. The set of points P at which object A B subtends an angle equal to «
is not the whole circle, but only the arc A P B. What angle does AB
subtend from the other points on the circle?



1 Geometry of the triangle

We would like to develop some applications of the trigonometry we’ve
learned to geometric situations involving a triangle.
Let us work with the three sides and three angles of the triangle.

C

. / /\K
A c B
How many of these measurements do we need in order to reconstruct the
triangle?!

This question is the subject of various “congruence theorems” in geom-
etry. For example, if we know a, b and ¢ (the three sides), the “SSS theo-
rem” tells us that the three angles are determined. Any two triangles with
the same three side-lengths are congruent.

But can we use any three side-lengths we like to make up our triangle?
The “triangle inequality” of geometry tells us no. We must be sure that the

1Remember that if points A, B, and C are the vertices of a triangle, then we will also
call the measures of the angles of the triangle A, B, and C. Then the length of the sides
opposite angles A, B, and C are called a, b, and ¢, respectively. There are also other “parts”
of a triangle: its area, angle bisectors, altitudes, medians, and still more interesting lines and
measurements.
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sum of any two of our three lengths is greater than the third; otherwise, the
sides don’t make a triangle. With this restriction, we can say that the three
side-lengths of a triangle determine the triangle.

What other sets of measurements can determine a triangle? A little
reflection will show that we will always need at least three parts (sides or
angles), and various theorems from geometry will help us in answering this
question.

Exercise

1. The table below gives several sets of data about a triangle. For
example, “A Ba” means that we are discussing two angles and the
side opposite one of these angles. Some of the cases listed below are
actually duplicates of others.

Data | Determine a triangle? | Restrictions?

ABa
ABD
ABc
AbC
ABC
Abc
Bbc
Cbhe

PI]

oo ] O\ W ] L2

For each case, decide whether the given data determines a triangle.
What restrictions must we place on the data so that a triangle can be
formed? Some of these restrictions are a bit tricky. The case “abc”
was discussed above.

Please do not memorize this table! We mct want you to ecall what

L L2 SRR AR e i R8T L4 3 }

geometry tells us — and what it does not tell us — about rlangle

2 The congruence theorems and trigonometry

Some of the sets of data described above determine a triangle. For example,
“SAS” data (the lengths of two sides of a triangle and the measure of the
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angle between them) always determines a triangle, and there is always a
triangle which three such measurements specify.

But suppose we are given the lengths of two sides and the included
angle in a triangle. How can we compute the length of the third side, or the
degree-measures of the other two angles? The SAS statement of geometry
doesn’t tell us this. The next series of results will allow us to find missing
parts of a triangle in this situation, and also in many others.

3 Sines and altitudes

A triangle has six basic elements: the three sides and the three angles. We
would like to explore the relationship between these six basic elements and
other elements of a triangle.

We begin with altitudes

B IR AN
C

B P
The diagram shows triangle ABC and the altitude to side BC. We use the

iagre
symbol h, to denote the length of this altitude, since it is the height to side
a in the triangle. Similarly, we use hb and h. to denote the altitudes to sides
b and c, respectively.

We can use the sine ratio to express 4, in terms of our six basic el-
ements. In fact, we can do this in two different ways: from right triangle

ABP, we have sin 8 = h,/c, so that
h,=csinp.

From right triangle AC P, we have siny = h, /b, so
h,=bsiny.

We can get formulas for each of the other altitudes by replacing each
side with another side and the corresponding angles. This replacement is
made easier if we think of it as a “cyclic” substitution. That is, we replace:

i) a with b, b with ¢, and ¢ with a, and
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1) « with 8, 8 with y, and y with a.
We obtain the following two new sets of relations:

hy csineg = asiny,
h, = bsina = asinf.

Exercises

1. By drawing diagrams showing h, and h., check that these last two

cnte ~f ralatiAane ara ~Arrant
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2. In triangle ABC, o = 70° and b = 12. Find £..

3. Check to see that the expressions for the altitudes of a triangle are
correct when the triangle is right-angled. (Remember how we de-
fined the sine of a right angle on page 32.)

4. In triangle PQR, p = 10, g = 12 and ZPRQ = 30°. Find its area.

4 Obtuse triangles

If a triangle contains an obtuse angle, two of its altitudes will fall outside
the triangle. In the section above, we have not taken this possibility into
account. Let us now correct this oversight.

In triangle ABC below, angle B is obtuse. Let us again try to express
its altitude A, in terms of its basic elements (sides and angles). (Note that
h, lies outside the triangle.)

A

iL N\ [] e

———————————— C

As before, triangle APC is a right triangle, so we have

AP =h, =bsiny.
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By the result in the previous section, we would also expect that
AP =h, =csing.

But we have no definition for sin 8, since 8 is an obtuse angle.
We can remedy the situation by looking at right triangle A P B, in which
AB = c. Wefindthat AP = AB x sin({ABP), or

h, = csin (180° — B).
little bit cumbersome, so we take a rather daring step. We
same as sin (180° — B).
In fact, we make the following general agreement:

Definition The sine of an obtuse angle is equal to the sine of its supplement.

Then we can write h, = c¢sin 8 even when B is an obtuse angle. The
remaining relations in such a case will follow from our rule for cyclic sub-
stitution, which still holds.

As we will see, this definition is convenient, not just to obtain this for-
mula, but for other applications of trigonometry as well.

Exercise
1. Check to see that our new definition allows us to write

h, = csinae = asiny,
h. bsimnae = asinfB,

as a cyclic substitution would produce.

5 The Law of Sines

In a triangle, we have two expressions for A,
h,=asinf =bsinu.

We obtain an interesting relationship if we divide the last two equal quan-
tities by the product sin « sin 8:

asin B bsin o

sinasing  sinasing’
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or
a b

sine sing’
And we can get corresponding proportions from the other pairs of sides by
making the same cyclic substitution as before. We obtain

a b C

sine sinf  siny

This is a very important relationship among the sides and angles of a tri-
angle. It is known as the Law of Sines.

This formula has many interesting connections. For example, you may
have learned in geometry that if two sides of a triangle are unequal, then
the greater side lies opposite the greater angle: If 8 < o then AC < BC.

C

/ AN

A B

But it is not true that if angle 8 is double the angle «, then side BC is
double the side AC. This is shown clearly in the figure below, with a 30-
60-90 triangle. As we know, there is a side double the smallest, but it’s not
the one opposite the 60 degree angle. It’s the hypotenuse.

60° )

30°

The Law of Sines generalizes correctly the fact that the greater side
lies opposite the greater angle, because it tells us that the ratio of two sides
of a triangle is the ratio of the sines of the opposite angles. And, as we
have seen, the sines of two angles are not in the same ratio as their degree-
measures.

The Law of Sines can help us in another way too, which we mentioned
at the start of this chapter. We know from geometry that two triangles are
congruent if two pairs of corresponding angles are equal, and a pair of cor-
responding sides are equal (in many textbooks, this is called ASA or SAA,
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depending on whether the side is between or outside of the two angles).
Another way to say this is to assert that the measure of two angles and one
side determines the triangle. Geometry shows us one way to get the third
angle (using the fact that the three angles of a triangle sum to 180°). But
geometric methods do not let us compute the lengths of the other two sides.
The law of sines allows us to do this,

Exercises

1.

2.

=S

Verify that the cyclic substitutions give the equalities shown above.

Check that the Law of Sines holds in a 30-60-90 triangle.

. Use the Law of Sines in the triangles below to determine the lengths

of the missing sides. (Use your calculator for the computations.)

VAWAN

SN\ e
50 12

i0

We have defined the sine of an obtuse angle as equal to the sine of
its supplement. With this definition, show that the law of sines is true
for an obtuse triangle.

Use the Law of Sines in the triangles below to determine the lengths
of the missing sides.

150, % 14/\

(o]
i 1209/ To° 25

6. Use the Law of Sines to find the two missing angles in the triangle

below:
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50°

10

7. Recall from geometry that SSA does not guarantee congruence. That
is, if two triangles match in two sides and an angle not included
between these two sides, then the triangles may not be congruent.
Look back at Problem 6. Is the triangle determined uniquely? How
many possible values are there for the degree measurements of the
remaining angles?

8. Suppose triangle ABC is inscribed in a circle of radius R. Prove the
extended Law of Sines:

a b c
- = — = — =2R.
sin A sin B sinC

6 The circumradius

We can learn more about the Law of Sines another way if we give a geo-
metric interpretation of the ratio a/ sin« in any triangle ABC.
We construct the circle circumscribing the triangle:?
B

i
N '
! A
i

'

Suppose the radius of this circle (the circumradius of the triangle) is R. We
know from the result on page 57 that

BC =a=2Rsina.

ZRecall that the perpendicular bisectors of the three sides of a triangle coincide at a point
equidistant from all three vertices. This point is the center of the triangle’s circumscribed
circle.
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So the ratio a/ sin« is simply equal to 2R.
Exercises

1. Find the circumradius of a triangle in which a 30° angle lies oppo-
site a side of length 10 units. Note that this information does not
determine the triangle.

2. Find the circumradius of a 30-60-90 triangle with hypotenuse 8. Do
you really need the result of this section to find this circumradius?

7 Area of a triangle

Our altitude formulas have given us one interesting result: the Law of
Sines. We now show how they lead to a new formula for the area of a
triangle. But in fact, the formula we present is not really new. It is just the
usual formula from geometry, written in trigonometric form.

If § denotes the area of a triangle, we know that

1
S = — ha .
2a
But i, = bsiny, so we can write
S ! b sin
= -~q .
3 Y

This is our “new” formula. As with our other formulas, we can use “cyclic
substitutions” (see page 69) to get two more formulas:

S = —bcsin
2cs;a

S=§casinﬁ.

Exercises

1. Find the area of a triangle in which two sides of length 8 and 11
include an angle of 40° between them.
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. Find the areas of the triangles shown:

10
3‘\ 3 900

(a) (b) (c)

Can you use our new formula for part (c)? Is it necessary to use this
formula?

. The area of triangle ABC is 40. If side AB is 6 and angle A is 40

degrees, find the length of side AC.

In triangle POR, side PQ =5, and side PR = 6. If the area of the
triangle is 9, find the degree-measure of angle P.

Hint: There are two possible answers. Can you find them both?

. Two sides of a triangle are a and b. What is the largest area the

triangle can have? What is the shape of the triangle with largest area?
Answer: The largest area is ab/2, achieved when the angle between
the two sides is a right angle.

Challenge: There is another right triangle with sides a and b. Find
this triangle and its area.

The length of a leg of an isosceles triangle is x. Express in terms of
x the largest possible area the triangle can have.

. Show that the area of a parallelogram is ab sin C, where a and b are

two adjacent sides and C is one of the angles. Does it matter which
angle we use?

We start with any quadrilateral whose diagonals are contained inside
the figure. Show that the area of the quadrilateral is equal to half
the product of the diagonals times the sine of the angle between the
diagonals. Should we take the acute angle formed by the diagonals,
or the obtuse angle?

Show that we can use the same formula to get the area of a quadri-
lateral whose diagonals (when extended) intersect outside the figure.
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10.

11.

12.

13.

In the figure, AD = 4, AE = 6, AB = 8, AC = 10. Find the ratio
of the area of triangle A DE to that of triangle ABC.
A

E

/ AN
B C

In quadrilateral PQ RS, diagonals PR and QS intersect at point 7.
The sum of the areas of triangles PQT and RST is equal to the sum
of the areas of triangles PST and Q RT. Show that T is the midpoint
of (at least) one of the quadrilateral’s diagonals.

R

v ™~

P S

Solution. The sines of angles PT Q, QT R, RT S, ST P are all equal.
If this sine is s, and using absolute value for area, we have |PQT| +
IRST| = (1/2)PT x QT x s+ (1/2)ST x RT x s = |QRT| +
|PTS| = (1/2)QT x RT xs+({1/2)PT x ST xs,50 PT x QT +
RT x ST = QT x RT+ PT x ST,ot PT x QT + RT x ST —
QT X RT — PT xST =0,0r (PT — RT)(QT —ST) = 0. But this
means that one of the factors must be zero, so that 7 is the midpoint
of at least one of the diagonals. O

In quadrnlateral ABC D, diagonals AC and BD meet at point P.

.Again using absolute value for area, show that |APB| x [CPD| =

|BPC|x|DPA|.Ts this true if the intersection point of the diagonals
1s outside the quadrilateral?
In acute triangle ABC, show that ¢ = acos B 4+ bcos A.

Hint: Draw the altitude to side ¢. How must we change this result if
angle A or angle B is obtuse?
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8 Two remarks

Remark 1: Note that these formulas express the area of a triangle in terms
of two sides and an included angle. We knew from geometry that these
three pieces of information determine the triangle (and therefore its area),
but we need trigonometry to actually compute the area. We will see in the
next section how trigonometry allows us to compute other ele

triangle determined by two sides and their include angle.

1. In a right triangle with an acute angle ¢, sin« is the ratio of the leg
opposite « to the hypotenuse:

opposite |
sing = PPOSTIC '©8

hypotenuse

2. Inany triangle, sin « is the ratio of the side opposite « to the diameter
of the circumscribed circle:

2R’
3. In any triangle, sin ¢ is the ratio of twice the area to the product of
the two sides which include «
, 28
sina = — .
bc

We can use whichever fits the situation we are working in. Indeed, it turns
out that any of these could actually function as the definition of sino.

-
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ery old theorem. It appears in Euclid’s Elements,

eometrv. althouch Euclid does not use the term
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cosine. It is a generalization of the Pythagorean theorem.

In triangle ABC, if angle B is an acute angle, then

b*> = a* + c¢* — 2accos B.
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In fact, this is not difficult to prove:

C
b
a ih
/N ~
B p D q A
Czp‘l‘q

From right triangle BDC, we have p = acos B. Using the Pythagorean
theorem twice, in triangles ACD and BCD, we have b* = h% + ¢* =
a’® - p’>+(c—p)? = a*+c*—-2pc = a* + ¢ — 2cacos B, which is what
we wanted to prove.

The Pythagorean theorem says that the square of a side of a triangle
opposite a right angle is equal to the sum of the squares of the other two
sides.

One of the ways in which the law of cosines generalizes the Pythago-
rean theorem is by showing that the square of a side of a triangle opposite
an acute angle is less than the sum of the squares of the other two sides.

What if we take the side of a triangle opposite an obtuse angle?

Exercise Show that if 4 is a side opposite an obtuse angle of a triangle,
then b? = a®+ ¢?+2accos B’, where B’ is the measure of the supplement
of obtuse angle B.

(A hint is contained in the diagram below.)

—_—————————

On the basis of this result, we make a second daring definition (to fol-
low our daring definition of the sine of an obtuse angle):

Definition The cosine of an obtuse angle is the cosine of its supplement,
multiplied by —1.
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So we have three results: the Pythagorean theorem for a right angle, and
the two new results for an acute and an obtuse angle. Just as with the sine
function, we can make all these results into a single formula, the so-called
Law of Cosines: In triangle ABC,

b? =a2+cz-—2accosB.

Exercises

1. Check to see that this is correct, whether angle B is acute, right, or
obtuse.

2. In each of the triangles below, use the Law of Cosines to express the
square of the indicated side in terms of the other two sides and their
included angle:

Z Y
// \\ \\\\
Y X X Z
x2= _x2=
A B A B A B
2 .2 2
a = b = Cc =

3. We know, from geometry, that a triangle is determined by SAS (the
lengths of two sides and the angle between them). Explain how the
Law of Cosines allows us to calculate the missing parts of a triangle,
if we are given SAS.

4. Find the side or angle marked x in each diagram below:
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S.

o0

/N N
/ \ /x\
9 12

In triangle ABC, AB = 10, AC = 7, and BC = 6. Find the mea-
sures of each angle of the triangle.

. Peter’s teacher gave the following problem:

A parallelogram has sides 3 and 12. Find the sum of the
squares of its diagonals.

But Peter had trouble even drawing the diagram. He knew that
opposite sides of a parallelogram are equal, so he knew where to put
the numbers 3 and 12. But then he didn’t know what kind of paral-
lelogram to draw. He drew a rectangle (which, he knew, is a kind of
parallelogram). Then he drew a parallelogram with a 30° angle, and
another parallelogram with a 60° angle. But he didn’t know which
one to use to do the computation.

Can you help Peter out?

. Show that the sum of the squares of the sides of any parallelogram

is equal to the sum of the squares of the diagonals.

. If M is the midpoint of side BC in triangle ABC, then AM is called

a median of triangle ABC. Show that for median AM, 4AM? =
2AB? 4+ 2AC? — BC-.

Hint: The diagram for this problem is “half” of the diagram for
Exercise 7 above.
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10.

11.

12.

13.

Relationships in a Triangle

. Show that the sum of the squares of the three medians of a triangle

is 3/4 the sum of the squares of its sides.

The diagonals of quadrilateral ABC D intersect inside the figure.
Show that the sum of the squares of the sides of the quadrilateral is

equal to the sum of the squares of its diagonals, plus four times the

length of the line segment connecting the midpoints of the diagonals

(notice that this generalizes problem 6).

In triangle ABC, angle C measures 60 degrees,a = 1 and b = 4,
Find the length of side c.

In triangle ABC, angle C measures 60 degrees. Show that ¢* =
a® + b? — ab. What is the corresponding result for triangles in which
angle C measures 120 degrees?

Three riders on horseback start from a point X and travel along three
different roads. The roads form three 120° angles at point X. The
first rider travels at a speed of 60 MPH, the second at a speed of
40 MPH, and the third at a speed of 20 MPH. How far apart is each
pair of riders after 1 hour? After 2 hours?

Appendix — Three big ideas and how we can use them

I. Invariants: Motions in the plane

We often talk about the congruence of triangles. Two triangles are congru-
ent if one can be moved so that it fits exactly on the other. So we can say
that two congruent triangles are exactly the same, except for their position.

The two triangles below cannot be considered congruent if we confine
our motions to the plane. To move one of them onto the other, we must flip
it around (reflect it in a line) before we can make it fit. These triangles are
mirror images of each other.

/

AN
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Exercises

1. Most triangles cannot be placed on their mirror images without
reflecting them in a line. However, there are certain special triangles
that can be placed onto their mirror images without using reflections
at all. Draw one such triangle.

2. Describe the set of all triangles that can be placed onto their mirror
images without reflection in a line.

()

Draw some quadrilaterals that can be placed onto their mirror
images without reflection in a line.

I.1 Triangle invariants

A triangle invariant is a quantity associated with a triangle that is un-
affected by its position. Thus the value of a triangle invariant for any two
congruent triangles will be equal. Some examples of triangle invariants are
the lengths of the sides, the measures of the angles, and the area. While
these seven invariants are basic, there are many others (such as the lengths
of the aititudes, or the radius of the circumscribed circle):

When we work with the relationships among triangle invariants, we are
connecting the geometry of the triangle with algebra and trigonometry. A
mathematician would say that algebra and trigonometry are the analytical
tools of geometry.

1.2 The sine and triangle invariants

We can give an alternative definition of the sine of an angle in terms of
triangle invariants. Indeed, we have already seen how.
We have seen (Chapter 3, section 7) that for any triangle,

|
S = éab sin y
where y is the angle included between two sides of lengths a and b. So if
we start with any angle y, draw a triangle (not necessarily a right triangle?!)
including it, and denote by a and b the measures of the stdes surrounding
¥» then we can define sin y as equal to 25/ab, where S is the area of the
triangle.
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R N

a C

Whether you think of this statement as a consequence of our original devel-
opment, or as a definition of the sine of an angle, is your choice. In either
case, we have the following:

: 28 . 28 : 25
singg = —, sinf=—, siny=-—.
bc ac ab

Exercises
1. Note that if « is a right angle in the diagram above, then the area of

AABC is be/2. Show that in this case, the formulas for sin 8 and
sin y given above are just what were given in Chapter 1.

]
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1. Symmetry

Let us look once more at the formula which expresses the area of a triangle
s in terms of two sides and the sine of the included angle. We already know
that there are three of these formulas:

1 1 1

S = %absiny, S = %bcsina, S = -l-casinﬂ.

Each of them is obtained from the others by cyclic substitutions of a, b and
¢, and o, B and y, respectively.

In general, when we have a formula for a triangle, we can expect this
sort of symmetry. No one of the sides and angles plays a special role with
respect to the others, so if in the formula we perform a cyclic substitution
of them, we should get a valid formula as well.
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We can also look at this process in reverse. We can consider the three
equal quantities:

absiny = bcsina = casin§.

When we have three symmetric expressions that are equal, sometimes we
can find a geometric reason why they are all equal. In this case, they are all
equal to twice the area of the triangle.

In applying cyclic substitutions, we must be sure that each variable in
our formula can represent any side or angle in a triangle. For instance, the
Pythagorean theorem says that if a and b are the legs of a right triangle,
and c the hypotenuse, then a? + b? = ¢%. We cannot subsitute g for b, b for
¢, and ¢ for a, because ¢ cannot be any side of the triangle; it must be the
hypotenuse. (However we can substitute a for b and b for a.)

Exercises
1. The law of cosines says that

(;2 — az L 112 — Yabh gy
] (F.g e A LS W ST r .

 Using cyclic substitutions, write down two more formulas like this
one.

2. The law of sines says that

a b c

sine_ sinf  siny
Can you find a geometric reason why these three quantities are equal?
Hint: See page 74.

II1. The sine and its dimension

Physicists often deal with dimensions as well as numbers, since the num-
bers they use are often the result of some measurement. For example, sides
of triangles are measured in units of length (such as centimeters), while
their areas are measured in units of length squared (such as square cen-
timeters). We can borrow this idea from the physicist, by noting that in
an algebraic or trigonometric identity, both sides should have the same di-
mension. For example, in the Pythagorean theorem, the dimension of both

sides is length squared, the same dimension as areas. And in fact, our proof
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of this theorem interpreted it as a statement about areas (as does the proof
in Euclid’s Elements).

What is the dimension of sin@? As we originally defined it, sin is the
ratio of two lengths, so in fact its dimension is 0. (This is another way of
saying that the unit of length used to measure the sides of a triangle does
not affect the value of the sines of its angles.)

Let us check that the dimensions are correct in our new formulas. We
have written sina = 25/bc. Now S has dimension length squared, and the
product bc has the same dimension (length times length), so the dimensions
cancel out, and sin o has dimension 0. This agrees with our previous resuit.

Exercise

1. Check that the dimensions of each side are the same in the following
formulas:

a) — =

b)

c) §=
d) cc=a°+5b
IV. Hero’s formula

We know that any two triangles with the same three side lengths are con-
gruent. This means that they will give the same value for any triangle in-
variant, such as the area. That is, the lengths of the sides of a triangle de-
termine its area.

There is a wonderful formula, credited to Hero (or Heron) of Alexan-
dria, which expresses the area of a triangle in terms of the lengths of its

LR T W, ) A iGiisie 221 LA Alls WA RL2 LAY | 2123 WA

sides. If these lengths are a, b and ¢, and if s = (@ + b +¢)/2, we have that

S=+s(s—a)s —b)s—c).

Let us prove this formula.
We know that sin y = 25/ab, so that

sin® y = 45°
Y= a’b?’
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From the law of cosines, we have
2 =a*+b*—2abcosy,
or
a? 4+ b? — c?
2ab ]

cosy =

Hence,
COS2 _ (a2 + b2 _ 02)2
Y= 4a’b?

Finally, we remember that sin? y + cos? y = 1, and now we have all that
we need. If we substitute the results above for sin? y +cos? i, we will have
a relationship that includes only S, a, b, and c, just what we want.

Indeed,

i 45? (@? + b? — ?)?
sin y + cos? y = s + 575 =1,
a’b 4a%b
or
102 4 .2 12 O 2N\2 _ 4212
vy +—\w4u v C ) —4a v ,
or

165% = 4a*b? — (a® + b> — ?)*.

This is the relationship we need, but it doesn’t look very “nice.” In partic-
ular, it doesn’t look symmetric in a, b and c.

But in fact it is. We can show this by factoring the right-hand side as
the difference of two squares:

1652 = 4a’b* — (a® + b* — ¢*)?
= (2ab + (@® + b* — ¢*))(2ab — (a* + b* — ¢P)),

Craane NS

Each of the factors above on the right is again the difference of two squares:

165% = ((a + b)* — c*)(c* — (a — b)?),
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50 we can factor once more:

((a +b)+c)(a+b) —c)c+(a—b))(c—(a—b))
(a+b+c)ya+b—-—ca—b+c){—a+b+c),

1652

and we now see the beautiful symmetry of the expression. We can write
this relationship as

_ (a+b+c)a+b—c)ic—a+b)(c+a—b)

SZ
16

or

B Ja+b+cYa+b—c)c—a+bc+a->b)
— 2 )

This formula is nice, but it can be made even nicer if we sets = (a + b +
c)/2. Then we have:

S

a+b—-c = 2s—-2c,
c—a+b = 25s—2a,
c+a-—b>b 2s — 2b.

Substituting these results into the formula above, we then obtain

25)2(s — a)2(s — b)2(s — ;
Sz\/( $)2(s a)4(s b)2(s c)z\/s(s——a)(s—-b)(s—-—c).

Exercises

1. Show that Hero’s formula gives the correct value for the area of a
triangle with sides 3, 4 and 5.

2. Show that Hero’s formula gives the correct value for the area of a

trianole with cideec S 12 and 12
A A ¥Y Lvid 7 L] A
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3. Using Hero’s formula, show that the area of an equilateral triangle
with side of length [ is given by I24/3 /4.

4. Show that the formula § = %ab sin y also leads to the formula in
Problem 3 above.

5. Use Hero’s formula to solve Problems 9 and 10 on page 10.
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V. A physicist’s interpretation

Hero’s formula may seem strange. In most area formulas, you multiply just
two quantities together, but here we multiply four quantities together. We
make up for it by taking a square root, but this is also unusual for an area
formula.

To help us make a bit more sense of this formula, we can imagine
Richard Feynman, a Nobel Laureate in Physics, who was very skilled at
explaining subtle ideas simply. He might have explained Hero’s formula in
the following way: }

In high school I had a very good course in geometry, and I remember
studying Hero’s formula, which relates the lengths of the side of a triangle
to its area. But I've forgotten its exact form. Let’s see what I can recall. 1
know it had a square root in it.> Now the dimension of the area is length
squared, so under the square root we must have a polynomial of degree
four:* We can get such a polynomial by multiplying together four factors,
each of degree 1.

What could these factors be? Well, if a + b = c, then our triangle is
actually a line segment (as the triangle inequality tell us), which has area
0. So when a + b — ¢ = 0, the whole polynomial is zero. This means that
a+ b— c is a factor of the polynomial. Similarly, a — b+ ¢ must be a factor,
and so must be —a + b + c.

a L N\b
|
a+b>c or a+b—-c>0: :
e

a ! b
a+b>c or a+b-c>0: |
©

a+b>c or a+b—-c>0; a E b
C ]
|

a+b=c or a+b-c=0: a - j b

3n fact, Feynman’s mathematician friends couid explain why there must be a square
root in the formula. The explanation involves attaching a sign to the triangle’s area, de-
pending on the orientation of the triangle.

4For a polynomial of several variables, the degree of each term is the sum of the expo-
nents of all the variables that appear in it, and the degree of the polynomial is the highest
of the degrees of its terms,
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So we have three of the four factors of the polynomial under the square
root. What can the fourth factor be? It must be linear in a, b and ¢, and
it must be symmetric in these three variables.> This means that the fourth
factor must be of the form k(a + b + c¢), for some constant k.

So we must have

C LAYy 1-\___ AN —_ L. 3 n\f____n [ A

for some constant C. We can determine this constant by examining one

particular triangle, and I remember that a triangle with sides 3, 4 and 5 is
a right triangle. The area of this triangle is 6, and the expression

CVla+b+c)a+b—ca—b+c)—a+b+c)

has the value C/(12)(2)(4)(6) = C x 24 for this particular triangle.
Therefore, C = 6/24 = 1/4. I also remember that we can clean this up
algebraically by introducing s = (a + b + ¢)/2, but I will leave this to my
friends the mathematicians. And now that I've had fun figuring out what
the formula must be, I also leave to them the actual proof. They are good
at that.

SWhat Feynman would mean here is that if we interchange any two of the variables a,
b and c, the value of the polynomial would be unaffected.



1 Measuring rotations

In previous chapters we explored the meaning of expressions such as
sin 30°, cos 45° and tan 60°. In this chapter and the next we show how we
can use expressions such as sin 180°, tan 300° or even sin 1000°.

But what might 1000° measure? Certainly it is not the measure of the
angle of a triangle. These can only be between 0° and 180° (acute, right or
obtuse). Nor can it be the measure of an angle (or an arc) in a circle. These
can only be between 0° and 360°.

If you have ever owned toy electric trains, you may have set up the
tracks in a circle, and run the trains around the circle. The diagram below
shows a circular track. If a train starts at point A, travels around the circle,
and arrives back at point A, we say that it has made one full rotation around
the circle.

Ta

P SN

Since we divide a circle into 360 degrees, it is natural to say that the train
has rotated around the circle by 360 degrees.

Now suppose the train continues past point A, and travels around the
circle again. Then we can say that it has rotated through more than 360
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degrees. If it travels around the circle twice, returning to point A, we say
that it has rotated 360 + 360 = 720 degrees.

And if it travels a bit further around the circle, along an arc measuring 280°,
we say that it has rotated 720° + 280° = 1000°:

@A

A rotation of 1000°

Here is another example. Look at the hour hand of a clock. In 12 hours
it has made a full rotation, or rotated by 360°.

But this time the rotation is clockwise (by definition!), while our train was
rotating counterclockwise. In a plane, there are two different directions
of rotation, and it turns out to be important to distinguish between them.
Mathematicians call a counterclockwise rotation positive and a clockwise
rotation negative. So we say that in 12 hours, the hour hand of a clock

performs a rotation of —360°.
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Exercise

1. Draw diagrams showing the following rotations:

2) 160° b) 190° ¢) 400°
d) 600° &) 1200° f) —70°
g) —400°  h) 360° ) —270°

2 Rotation and angles

Picture a circle of radius 1, with its center at the origin of a system of
coordinates:

)

\_’/

We take an acute angle with one leg along the x-axis. The other leg will
end up someplace in the first quadrant. If the measure of this acute angle
is, say, 40°, then we can get from point @ to point P by rotating through
40°.

A

y

//‘

N
40° 0.
/ x
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So we can associate angles with rotations. Even if the rotation exceeds
180°, we sometimes talk about the “‘angle” instead of the “‘rotation.” The
figure below gives some examples.

Pty

|32

R @,
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3 Trigonometric functions for all angles

e

n

Let us look again at what we mean by sin40°. We will do so in such a
way that it will help us understand what is meant by sin 300°, cos 1100°, or
tan (—240°).

We draw a circle of radius » centered at the origin of coordinates. To
find sin 40°, we mark the point P in the first quadrant such that /POR =
40°, and drop the perpendicular P R to the x-axis:

From right triangle PO R, we see that

PR PR
Si]’l40° = mmee— IS e
oP r
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Similarly, we can write

OR
cos40® = — .
r
But if the coordinates of P are (x, y), we see that y = PR and x =

O R. So we can write

sin40° = X, cos 40° =
r

~ | =

© i~

So far we have said nothing new.

Or have we?

We can use this observation to extend our definitions of sine and cosine
to our new angles, which measure rotations. Suppose a point P starts at
position (r, 0), and rotates through an angle o.

3

:“Q
7

-

(r,0)

N

If P has coordinates (x, y), we define cos o and sin o by writing

cos =

sinae =

N [~ =

Example 29 Find the numerical values of sin 130° and cos 130°.

Note that by Chapter 3, page 71, we already know that sin 130° =
sin (180° — 130°) = sin 50°, so in fact, this quantity had been defined al-
ready. But let us see if our new definition gives the same result.

Solution. The diagram below shows ZQO P = 130°:
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T 1130°
0

\ N
. // x
The circle in the diagram has radius r, and the point P has rotated

through an angle of 130° from point Q. If the coordinates of P are (x, y),
our new definition tells us that

cos 130° =

sin 130° =

B A T

Now we look at right triangle O PR, in which /P O R = 50°, and note
that

=

Y

r
So this is the value of sin 130°.

Triangle O PR will also give us the numerical value of cos 130°, but
we must be careful. Since the x-coordinate of point P is negative, we must
write

= sin 50°.

0|'7:r
v

X OR

cos 130° = - = “OP = —cos 50°.
Thus, cos 130° = —cos(180° — 130°) = — cos50°. This value agrees
with the one given by the definition on page 79. 0

It is important to note that the result above does not depend on the
length of O P. We can choose a circle of any radius and draw the corre-
sponding diagram for a 130° angle. Triangle O P R will always have the
same angles, and the computation will be the same.

Example 30 What are the values of cos 210° and sin210°?

Solution. Since the radius of the circle will not matter, we are free to
choose, for example, a circle of radius 1. Then our new definitions lead to
the diagram below:
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3 t
cos210° = -—£ and §in210° = ——.
2 2
Notice that both the sine and cosine of 210° are negative numbers. D

Example 31 Find the values of cos 360° and sin 360°.

Solution. We choose a circle of radius 1. For a rotation of 360°, the
coordinates of point P are (1, 0). Therefore, cos 360° = 1 and sin 360°

= 0. 0
Now that we have definitinne for cine and cocineg of anv anola we can
ANWYY LILAAL VY W LI Y W LW ILIRALIVLIED LV D11l AW WO LIW UL uu] uu&xw, Y¥w willl

make definitions for the other trigonometric functions of these angles.
For any angle o,

sin of
tanoa = ,
Cos &
cos o
cotlay = - R
sin of
1
seco = ,
CoS o
1
cscoe = @ ——.
sin of

Example 32 Find the numerical value of tan 210°.
Solution. From the results of Example 30, we have that

in210°  —1 !
an210° = 2220 _ 12

cos210° /372 3

Note that this value is posttive. O
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Our new definitions of sine and cosine give values forany angle «. But
this is not quite true for our new definitions of tangent, cotangent, secant
and cosecant, because they involve division. We must be sure that we are
not dividing by 0.

Indeed, we will not define tan« if cosoe = 0. Expressions such as
tan 90°, tan 270°, and tan (—90°) must remain undefined.

For simiiar reasons, we cannot define cot 0°, or csc 180°.

Exercises

1. Find the numerical value of the following expressions. Do this with-
out using your calculator, then check your answers with your calcu-

lator.
a) sin390° b) cos 3720° c) tan 1845°
d) sin315° e) cot420° f) tan (—30°)

2. Find the numerical value of each expression below, or indicate if the
given expression 1s undefined.

a) tan360° b) sin 180° c) cos 180°
d) cot90° e) cot 360° f) tan (—270°)

4 Calculations with angles of rotations

Let us look back at our original picture of an angle in a circle:

b

y
S
/ 40° 0
Originally, we thought of this as an angle of 40°. But a diagram of a 400°
angle would look exactly the same, as would a diagram for 760° or —320°.

—
X
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The diagram will look the same for any two angles which differ by a full
rotation. Therefore, sina = sin (@ + 360°).

Similarly, cosa = cos (o + 360°) for any angle o.

These observations allow us to find the sine, cosine, tangent, or cotan-
gent of very large angles easily.

Trmzinade 33 YITh ok Sa0 mme 11 AN
LnXAIPIC 00 I1al 15 COS 114U

Solution. If we divide 1140 by 360, the quotient is 3 and the remainder
1s 60, that is, 1140 = 3 - 360 + 60. So cos 1140° = cos (3 - 360 + 60°) =
cos 60° = 1/2. 0

O )
14
.

Example 34 Is the sine of 100,000° positive or negative?

Solution. If we divide 100,000 by 360, we get 277, with a remainder
of 280. So the sine of 100,000° is the same as sin 280°. Since the position
of point P is in the fourth quadrant, its y-coordinate is a negative number.
The sine of 100,000° is therefore negative. O

You can check the logic of these solutions using your calculator, which
already “knows” if the sine of an angle is positive or negative. That is,
the people who designed it did exercises like yours before they built the
calculator.

But it is also important to be able to “predict” certain values of the
trigonometric functions, or at least tell whether their values will be positive
or negative. It’s not difficult to see that if point P ends up in quadrant I, all
functions of the angles are positive. If point P lies in quadrant II, the sine
and cosecant are positive, and all other functions are negative, and so on.

Exercise Check to see that the diagrams below give the correct signs for
the functions of angles in each quadrant.

A A
+ — |+ - |+ - |+
— — |+ + + | —
sine cosine tangent cotangent

We can even, sometimes, predict a bit more about the values of the
trigonometric functions. If you look at each of the diagrams below, you
may see that sin @ is equal, in absolute value, to the sine of the acute angle
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made by one side of the angle and the x-axis (the angle marked y in each
diagram below):

AN

| 0 J Y /

N P<_

Example 35 Find sin 300°.

Solution. Point P, having rotated through 300°, will end up in quadrant
IV. So sin300° is negative. Furthermore, the angle made by one side and
the x-axis is 60°. Hence sin300° = — sin 60° = ~~/3/2. O

P

A
v

/

,_
-
<

~—y

4
%

Exercises

1. In what quadrant will the point P lie after a rotation of 400°? 3600°?
1845°7 —30°? —359°7

2. Fill in the table below (you won’t need a calculator). What is the
relationship between sinc« and sin (~«)?

sin 30° sin (—30°)
sin 135° sin (—135°)
sin 210° sin (—210°)
sin 300° sin (—300°)
sin 390° sin (—390°)
sin 480° sin (—480°)

3. Solve the following equations for «, where 0 < o < 360°:

a) sine = 0 b) cose =0 c) sine =1
d) cosa =1 e) sino = —1 f) cosa =3
g) sina = —3 h) sin®e =} i) cos?a = —3

4. a) i sincx

possible values of cos a?

5/13, in what quadrant can o lie? What are the
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b) If sina = —5/13, in what quadrant can « lie? What are the
possible values of cos a?

5. We have seen (Chapter 2, page 50) that if a and b are non-negative
numbers such that a> + b> = 1, then there exists an angle # such

that sin@ = a and cos @ = b. Show that this is true, even if a or b is
negative,

5 Odd and even functions

Consider the result of Exercise 2 on page 100. If you have filled in the table
correctly, you will note that, for the angles given there, sin« and sin (—o)
have opposite signs. This relationship holds in general:

sin (—o) = —sina  for any angle o .

Similarly, we find the following:

cos (—o) = cos .

In general, we can distinguish two type of functions.

A function is called even if, for every x, f(—x) = f(x).
A function is called odd if, for every x, f(—x) = — f(x).

So, for example, the functions
L iy . o 1
fx)=cosx, [f(x)=x"+3, and f(x)= "3
X
are all even, while the functions

f(x) =tanx, f(x)=x3+4x, and f(x)=;cl—7

are all odd. The following functions are neither even nor odd:

Fx)=x>+x%, f(x)=sinx +cosx.
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In summary:
COS x Is an even function, while sin x, tan x, and cot x are odd functions.

This may be the reason that some mathematicians prefer to work with
the cosine function, rather than the sine.

Exercises

1. Which of the following functions are even? Which are odd? Which
are neither?

a) f(x)=x0—x2+4+7 b) f(x)=x>—sinx
¢) f() = d) f(x)=secx

e) f(x) =cscx f) f(x) =2sinxcosx
g) f(x) =sin*x h) f(x) = cos®x

i) f(x)=sin’x +cos?x

2. If f(x) is any function, show that

gx) = 3(f(x) + f(=x))

h(x) = 3(f(x) = f(=x))

is an odd function. Use these results to show that every function can
be written as the sum of an even and an odd function.

3. Express the following functions as the sum of an even and odd func-
tion:

¢) flx)y=2%
I —sinx
B fx) = l +sinx
1
e) f(x) =——=



Radian Measure

1 Radian measure for angles and rotations

So far, our unit of measurement for angles and rotations is the degree. We
measure an angle in degrees using a protractor:

Why are there 360 degrees in a full rotation? The answer to this lies in
history, not in mathematics. It turns out that there is a more convenient way
to measure angles and rotations called radian measure. Mathematicians
and scientists find it natural to use radian measure to express relationships.
Unlike degree measure, radian measure does not depend on an arbitrary
unit.

To measure an angle in radians, we place its vertex at the center of
any circle, and think about the length of arc AB, as measured in inches,
centimeters, or some other unit of length:
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0 /B

The length of this arc depends on the size of angle A O B:

EEH

But is also depends on the size of the radius of the circle:

So we cannot simply take the length of this arc as the measure of the
angle. But the ratio of the length of the arc to the radius of the circle de-
pends only on the size of the angle:

&
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Definition The radian measure of an angle is the ratio of the arc it cuts off
to the radius of any circle whose center is the vertex of the angle.!

This definition reminds us of the definition of the sine of an angle,
which is also a ratio, and which does not depend on the particular right
triangle that the angle belongs to.

Example 36 What is the radian measure of an angle of 60°?

Answer. We placc the vertex f ur 60° angle at the center of a circle
of radius r, and examine the arc it cuts off. Since ﬁﬂ/’%ﬁﬂ =1 /ﬁ this arc is

P LN LS v e gfAZ22 w QA 2 L8 i WARS S LIRILS LEER g S

1/6 of the CerumeanCL of the Cll'ClL. So its length is (1/6)(2nr) = mr/3
units.? By our definition, the radian measurement of our 60° is the ratio

wr/3
r

T
3 .

Numerically, this is approximately 1.0471976, or a little more than
1 radian. O

Answer. 2rrr/r = 2r radians. O

Example 38 What is the degree measure of an angle of 1 radian?

Answer. An angle of 2w radians is 360 degrees (see Example 37). So
an angle of 1 radian is 360/27 = 180/7 degrees. 0

In Example 38, we have used the very important fact that radian mea-
sure 1s proportional to degree measure. In fact, it 1s not hard to see that

'There are two simple tests that this measurement passes. First, the bigger the angle, the
bigger its radian measure. Second, if we place two angles next to each other (see figure),

\O/
the measure of the larger angle they form together is the sum of the measures of the two
original angles.

ZRecall that if r is the radius of a circle, the length of its circumference is given by the
formula 27 r.
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the ratio of the radian measure of an angle to its degree measure is always
/180:

radians i g

degrees 180

In general, if we are measuring an angle in radians, we do not use any
special symbol like the “degree” sign.

Solution. We first express the angle in degrees. If D is the required
degree measure, we have

radians  7w/6 g

degrees D T 180°

which leads to D = 30°, and we know that sin 30° = 1/2. ]

Example 40 In a circle of radius 1, what is the length of the arc cut off by
a central angle of 2 radians?

Solution 1 (the long and hard way). We s

$
measure of this angle is about 114°. So the arc c

approximately

114
— X 2 & 1. 472
360 X 2m &~ 1.989675347274

units long. |

Solution 2 (the neat and easy way). In a unit circle (whose radius is 1
unit), the radian measure of a central angle is just the length of the arc it
cuts off. This tells us that the required arc is exactly two units long (and
gives us an idea of the error we made in using the approximate degree
measure in Solution 1). 0O

Example 41 A central angle in a circle of radius 2 units cuts off an arc
5 units long. What is the radian measure of this angle?

Solution. By definition, this radian measure 1s 5/2. O
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Exercises

1.
2.

What is the radian measure of an angle of 180°? 90°?

What is the degree measure of an angle of 2 radians?

. What is the radian measure of 1/4 of a full rotation?
. What is the radian measure of a rotation through an angle of 45°?

. Fill in the following table:

Degree measure | Radian Measure

90
180
270
360
/2
T
3m/2
27

6. Fill in the following tables:

Degree measure | Radian measure

0
30
72
120
135
/6
/5
/4
/3
2m/3

Tr /10
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Degree measure | Radian measure

198

210

216

225

240

117 /10

1077 /9
T /6
67/5
Sm/4
4 /3

7. What is the radian measure of an angle of 1 degree?

8. Using your calculator, find the sine of an angle of (a) 1 radian;

p—
o

11.

12.
13.

(b) 1 degree.

Without using your calculator, fill in the following table:

¢ (in radian) | sin¢ | cos«
/6
/3
/2
2m/3
T /6

=

In acircle o

ia ~ar i 2anE

e of radius 1, what is the length of an arc cut off by a central
angle of 2 radians? Of 3 radians? Of 7 radians?

In a circle of radius 3, what is the length of an arc cut off by a central
angle of 2 radians? Of 3 radians? Of 7 radians?

If sinw/9 = cos @ and « is acute, what is the radian measure of «?

If « is an angle between 0 and 7 /2 (in radian measure), which is
bigger: sina or cos (/2 — «)?



2. Radian measure and distance 109

14. Let us take an angle whose radian measure is 1. Using the picture
below, prove that its degree-measure is less than 60°. (In fact, an
angle of radian measure 1 is approximately 57 degrees.)

VANVAN
vV N/ N\
N /\ /
\VARV/

2 Radian measure and distance

Imagine a wheel whose radius is 1 foot. Let this wheel roll, without slip-
ping, along a straight road:?

1o NNCifrn
(2104

»n
e ry FVUD 13 14

¥

original after a rotation
position by o radians
T SO
~—— O feet

Since the wheel does not slip as it rolls, the distance it rolls, in feet, is just
the length of the arc that the angle « cuts off.

Example 42 How far will a wheel of radius 1 foot travel after 1 rotation?

Solution. Because it rotates without slipping, the wheel will travel ex-
actly the length of the circumference of the circle. But if the radius of the
circle is r, then the circumference is 27 r. Since r = 1, the answer is just
27, or approximately 6.28 feet. O

3Sometimes a car wheel slips as it rolls. This is called a skid, and it happens when there
is not enough friction between the wheel and the road (for example when the road is icy or
wet). A car wheel can also turn without rolling: sometimes, a car stuck in deep snow will
spin its wheels. We assume that neither of these things is happening to our wheel.
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Example 43 A wheel of radius 1 foot rotates through 1/2 a rotation. How
far will it travel?
Answer. It will travel a distance of 7, or about 3.14 feet. O

Example 44 How far does a wheel of radius 1 foot travel along a line, if
it rotates through an angle of 2 radians?

Answer. Two feet.

Example 45 Through how many radians does a circle of radius 1 foot
rotate, if it travels 5 feet down a road?

Answer. Five radians.

Example 46 How much does a wheel with radius 1 foot rotate if it travels
1000 feet along a road? Give the answer in radians and also in degrees.

Solution. In radians, this is easy: it has rotated through 1000 radians.

In degrees, the answer is more difficult to find. Each full rotation covers
27 feet. Soin traveling 1000 feet, our wheel has rotated through 1000/27 =

180 bt V2 ea b b e mm P A

LY. 1.).) rotations. Dlllbt}' Cd(,ll fUl.dl.lUIl lb JUU ’ I.[lC UCglCU measure Or a
rotation of 1000 radians 1s
159,155 x 360 =~ 572906° m|

Example 47 What is the radian measure of an angle of 1000°?

Solution. A rotation of 1000° is 1000/360 ~ 2.77 rotations, and each
rotation is 27 radians. So 1000° is

2.77 x 2w ~ 17.405

in radian measure. O

Example 48 Is sin 500 (in radian measure) a positive or a negative num-
ber?

Solution. blnce DUU/ZJT 79.577, 500 radians is 79 full rotations, plus
approximately 0.57 of one more rotation. Since 0.5 < 0.57 < 0.75, this is
between 1/2 and 3/4 of one rotation. So a rotation of 500 radians will end
up in the third quadrant, and its sine is a negative number. O
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Exercises

1.

10.

Through how many radians does a circle of radius 1 foot rotate, if it
travels 5 feet down a road?

. Through how many degrees does a circle of radius 1 foot rotate, if it

travels 5 feet down a road?

. How far does a circle of radius 1 foot travel, if it turns through an

angle of 4 radians?

How far does a circle of radius 1 foot travel, if it turns through an
angle of 120°?

. In a circle of radius 1, what is the length of an arc cut off by an angle

with radian measure 1/2? v /2? ¢?

What is the radian measure of an angle of 720 degrees? 1440 de-
grees? 3600 degrees? 15120 degrees? What is the degree measure of
an angle whose radian measure is 127r? 1577 1007 ?

. In a circle of radius 3, what is the length of an arc cut off by an angle

with radian measure 1/2? 7w /2? «?

. In a circle of radius 3, how long is the arc cut off by an angle with

radian measure 1.5?

In a circle of radius 5, how long is the arc cut off by an angle of
80 degrees?

In a circle of radius 2, what is the radian measure of a central angle

"~ whose arc has length 3 units?

11.

12.

13.

In a circle of radius 6, what is the degree-measure of a central angle
whose arc has length 2 units?

A circle of radius 7 units rolls along a straight line. If it covers a
distance of 20 units, what is the radian measure of the rotation it has

made?

A circle of radius 8 rolls along a straight line, through an angle of
150 degrees. How far does it roll?
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14.

15.

16.

17.

18.

19.

20.

Radian Measure

Through what angle does the hour hand of a watch rotate in one
hour? Give your answer in radians.

Through what angle does the minute hand of a watch rotate in one
hour? The second hand?

In answering problem 14, Joe Blugg gave the following solution:
One hour on the face of a watch is 1/12 of the circle, so itis 27 /12 =
7 /6 radians. In degrees, the answer is 360/12 = 30 degrees. But Joe
is not correct, either in degrees or in radians. Find and correct his
mistake. Did you make the same error here and in similar problems
about a watch?

Hint: Do the hands of a clock rotate? In which direction?

Let us look at a pocket watch whose hour hand is exactly one inch
long. Suppose the tip of this hour hand travels a distance of 1000
inches as it goes around. How long does this trip take?

.

Suppose the length of the hour hand of Big Ben is exactly one yard

1 TX~xx: 1 e wa 211 24 &, D~ D o Tacnaves lamand & USRI ST
1Ullg. nuw lUllg IL WII1 Il LdKC Dlg DCI1I & 11UUL 114l ) LWLkl uuuugu

1000 radians?

A wheel with radius 1 meter is rolling along a straight line. One
of its spokes is painted red. At the starting position this spoke is
vertical, with its endpoint towards the ground. How many radians
does the wheel turn before the spoke is again in this position? How
many radians does the wheel turn before the spoke is vertical, with
its endpoint towards the sky?

A wheel whose radius is 1 meter rolls along a straight path. The path
is marked out in 3-meter lengths, with red dots three meters apart.
The wheel has a wet spot of blue paint on one point. When it starts
rolling, that point is touching the ground. As the wheel rolls, it leaves
a blue mark every time the initial point touches the ground again.

3
J

b) Through what angle has the wheel rolled between the time it

makes a blue mark and the time it makes the next blue mark?

¢) Will a blue mark ever coincide with a red mark?
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d) When the blue marks do not coincide with the red marks, how
close do they come to the red marks? (If you know how to
program a computer or calculator, you may need to write a
program to answer this question.)

e) Now suppose each interval between the red dots is divided
into four equal sub-intervals, say by pink dots in between. A
blue mark is created as the wheel completes its 100th rotation.
Between what two dots does this blue mark occur?

3 Interlude: How to explain radian measure
to your younger brother or sister

When you drive with Mom or Dad in the car, did you ever notice the
odometer? That’s the little row of numbers in front of the steering wheel.
It measures the distance covered by the car, in miles.
But how does it know this? The odometer cannot read the road signs,
tellin ng us how far we’ve come. It must 5u the information fr h
wheels. But the car’s wheels can only tell the odometer how much they

have turned. The more the car’s wheels turn, the more distance we cover.

)

PRI MAQ--

The odometer knows how to convert rotations to miles. In geoimciry, wc
learn that a circle of radius r has a circumference of 2xr. This, and the
radius of the wheel in feet, is all the odometer really needs to know.

Suppose the wheel tells the odometer that it has rotated 50 times. Then
the odometer knows that the wheel has traveled 50 x 2 r feet, where r is the
radius of the car’s wheels in feet (it must convert this number to miles). And
if the wheel has rolled only 1/4 of the way around, the odometer reports a
distance of (1/4) x 2xr feet, again with a conversion to miles.

But suppose you want to know how much wear the tire

oty a mncet n A tha Anmata
LIV 11 vyl 111IUIOL leau Tl GUGLILULU

O Y S
tires have made from the distance they traveled. So if the odometer says
that the car has traveled 200 feet (we have to convert from miles, again),
than 2000 ic D r t1 s the

VIl VY LD Am' LL ]. J. (9§ LW l. 1IVUILLIL V1l

wheels have made 200/2mr rotations.
And this 1s what we call the radian measure of this rotation.

W
=
(]
<
¢
=
)
(ol

r and Aovira At h
Ly LIV HIK UL ULIL

QA tha
« WU LLIN



114 Radian Mcusure

4 Radian measure and calculators

Most calculators, and all scientific calculators, know about radian measure.
You can switch your calculator between “degree mode” and “radian mode”
(and sometimes there are still other ways to measure angles). But each
calculator does this in a different way. Itis 1mportant that you know how

Aala cu stat

Al verlaiala A - tor is
to teil wnicn moae your caicuiator is

1

from one mode to another.

I. A student asked his calculator for the sin of 1. The answer was
0.8414709848079. Was the calculator in radian mode or in degree
mode?

2. For small angles, sinx is approximately equal to x, when x is given
in radian measure. Use your calculator to find out how big the differ-
ence is between x and sinx for angles of radian measure 0.2, 0.15,
0.05.

In each case, which is bigger, x or sin x?

3. A better approximation to sinx (when measured in radians) is given
by x — x*/6. Find the difference between this value and the actual
value of sin x for the three angles above.

4. In the old schools of artillery, the officers would use a version of the
approximation sin x =~ x However, they had to measure x in degrees,
so they used sinx = x/60. What is the error in this approXimation,
if x = 10°?

“

a) Without your calculator, make a guess for the value of sin0.1
(in radian measure). Then use a calculator to check your guess.

b) Now perform the same experiment for sin0.1 (in degree mea-
sure).
6. a) Find the sine of an angle whose degree measure is 1000.

b) Find the sine of an angle whose radian measure is 1000.

7. a) Find sin (sin 1000), where radian measure is used for the angle.

b) Find sin3.14, where radian measure is used for the angle.
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8. Without looking up this number on your calculator, prove that
cos 1.5707 is less than 0.0001.

Hint: Do you recognize the number 1.5707?

Let us summarize our knowledge of the sine function by drawing its graph.

The inteoer mnltinlec af -+ will rnvn ug a cnnvenient cralae far the o
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axis, since the values of sin x at these points are easy to calculate. For the
y-axis, we need only values from —1 to 1, since sinx can only take on
these values.

We can draw the graph by looking at a unit circle (drawn on the right
below), and recording the height of a point which makes an angle o with
the x-axis. Here is what it looks like for a typical acute angle «.

As o varies from O to 7 /2, the graph of y = sin x increases.

- )
QJ x T
~14+
Here is a typical scene from the second quadrant:

r P

PN T

.

sin x N \ _ sinx r x»
\ ° ) x w
\_/ —‘l 4

And in the third and fourth quadrants, the situation is like this:
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After o has rotated through 27 radians, the whole cycle repeats itself.
For negative values of «, the situation is the same. Here is the complete

curve:

Exercise

1. Use the graph above to answer the following questions. You can
check some of the answers using your caiculator.

a)
)
)

c)

=2

d)

Is sin 77 /5 positive or negative? Estimate its value.

Te cin /=’2-rr /"1y macitiva Aar nacatiua? Reotirmata ite valna

49 O111 \ I / I} PUDlLlVb i lbsull\’b Auotlllldiv 1LY vdliubw.

We know that sin/6 = 1/2. Check this on the graph. Where

else does the sine function achieve a value of 1/2?

For what values of x does sinx = sinw/12? Mark, on the x-
axis, as many of these values as you can find.

For what values of x does sinx = (.87 Estimate a value of x
for which this is true. Then locate, on the x-axis, as many other
values as you can find.
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6 Two small miracles

We pause here to describe two remarkable relationships, so remarkable that
they seem like miracles. An explanation (that is, a mathematical proof) of
these miracles is postponed for later.

Miracle 1: The area under the sine curve

Look at the first arch of the curve y = sinx. What can we tell about
the area under this arch? The area is certainly less than 7, since it fits into
a rectangle whose dimensions are 1 and 7:

f 1

y

Y

|
o1 T
2

And the area is greater than that of the isosceles triangle shown in the di-
agram, whose area is /2. So if we wanted to approximate the area under
this arch, we would say that it is between /2 and 7. We could go fur-
ther with the approximations, taking more and more triangles which would
“fill” the area below the curve. Something like this is in fact done, in cal-
culus.

The result is a small miracle: The area under one arch of the sine curve
is exactly 2.

Miracle 2: The tangent to the sine curve

Let us take a point P = (¢, sina) on the curve y = sinx. Let the per-
pendicular from P meet the x-axis at the point Q. Let us draw the tangent

W
Q
¢
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o
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I
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But, by a small miracle, we can also find the length of QR. It is just
| tan «|, the absolute value of tan c.

Appendix — Some advantages of radian measure

Notice that the radian measure of angles, like their degree measure, is
additive. That is, if two angles are placed so as to “add up” to a larger
angle, the sum of the angles corresponds to the sum of the arcs.*

Another good thing about radian measure is that it is dimensionless.
That 1s, it is independent of any unit of measurement. Length, for instance,
can be measured in centimeters, inches, or miles, and we get different num-
bers. The same is true of area, volume, and many other quantities. But ra-
dian measure, like the sine of an angle, is a ratio, and so does not depend on
the units used to measure the arc of the circle or its radius. This is another
reason why physicists, and other scientists too, like to use radians,

Since the radian measure and the sine of an angle are both dimension-
less, we can compare them. For an acute angle «, which is larger, sina or
the radian measure of «? :

Geometry can help us answer this, if the angle is small. In the diagram
below, we took a circle of unit radius, and drew a tiny angie AQ P. Then
we made another copy of this angle (back-to-back with the first copy) and
labeled it PO B. Then arc AP = arc PB.

“Whenever we decide how to measure something, we would like the measure to be
additive. Length is additive, as is area and volume. However, a trip to the grocery will
quickly confirm that the price of Coca-Cola is not additive. The price of two 6-ounce bottles
is likely to be more than the price of one 12-ounce bottle, because you are paying for
packaging, labeling, shipping, and so on.
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If the length of this arc is «, then the radian measure of /AOP = /POB =
2a/1 (since the circle has unit radius, and ZAOP = /PO B = «). From
right triangle AO M, we see that AM = sina, so AB = 2sinw. Since arc
A B is longer than line segment A B, we see that 2 sino < 2¢, orsina < a.

From this picture we also see that if the angle « is small enough, then
2« and 2 sin & are very close to each other.”

Once again, we can see the advantage of radian measure. If the angle
o were measured in degrees, the best statement we could make would be
that sinoe < a7 /180.

But with radian measure we can even prove a bit more. Later on we
will see that for a small angle o measured in radians, the ratio sin o/« is
very close to 1. For example, for « = 0.1, sin« is more than 99% of «
itself.

Radian measure also goes well with the trigonometric ratios. We have
already seen that sin x is approximately close to x for small angles. It is
even closer to x — x°/6, an excellent and simple approximation. We can
even show that the error is less than x°/120, which, for small angles, is a
very tiny number.

But this is true only if we use radian measure for x. In degr
have seen, this formula would be terrible.

It is true that the nicest angles have radian measures which involve
the number 7. And we admit that sometimes it is difficult to deal with =
because it is an irrational number, and our decimal notational system for
numbers doesn’t provide us with a good symbol for it®(this is why we use
a Greek letter). But it’s even less convenient for English-speaking people
to convert miles to kilometers, or pounds to kilograms. So please don’t let

this slight inconvenience stop you from using radian measurement.

SWhat does it mean for two numbers to be “close”? For example, 1 and 0.99 are cer-
tainly close: their difference is 0.01, a tiny number. But 1000 and 998 are also close.
Their difference is 2, which is a much larger number than 0.01. However, the ratio
998 : 1000 = 0.998 is very close to 1. So sometimes we should measure “closeness”
by seeing how close the ratio of two numbers is to 1. Thinking this way, we would not say
'that, 0.1 and 0.0001 are close. Although both these numbers are small, and their difference
is small, their ratio is 1000, which is not small. In the diagram it is true that if o is small,
not only is sin« also small, but the two numbers are close, since their ratio is close to 1.

©The number 7 is one of two irrational constants that come up quite naturally. The
other is e, which is approximately 2.71828, and is also irrational. The number e comes up
in calculus as naturally as the number & does in geometry. About 250 years ago, it was
discovered that these two numbers are related by the remarkable equation ¢/ = —1.
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IExercises

1. Use your calculator to fill in the following table (of course, the sec-
ond and third columns will be numerical approximations): '

o (radians) | « (degrees) | sinw
1 57.29578

0.5
0.2

0.1
0.01
0.02
0.001
0.002
0.005

2. Without using your calculator, give an estimate for the value of
sin 0.00123456 .

Is this estimate too large or too small? Check this using your calcu-
lator, after you’ve answered the question.

3. a) Use your calculator to fill in the following table:

o o —— | sinw

1
0.5
0.2
0.1

0.05
0.01
0.001

b) The table above shows that sin« is approximately equal to
o — o®/6, if o is a small angle measured in radians. Write
the corresponding approximation for sin D, where D is a small
angle measured in degrees. Your approximation should be an
expression in the variable D. Then check your expression for
D =1°
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4. The error in the above estimate is always less than «” /120. What is
the largest possible error if the angle is measured in degrees, instead
of radians?

5. Use your calculator to determine the radian measures of the angles
x for which x°/120 < 0.001.

6. We have discussed the formula

. x3
Sinx & x — —,
“

v

which is proven in calculus. Can you guess the next term of this
approximation?

If you can do this, you will have a formula which gives sinx for
small values of x to more decimal places than most calculators can
display!

7. In the year 2096, a space capsule landed on earth, with artifacts
from a distant alien civilization. Here are some diagrams found in

the space capsule:
C\ O

(= (pr (&
CaciC:

Experts believe that this chart shows how they measure angles. Tell
as much as you can about the system of angle measure in this civi-
lization. What do you think the symbol ¢ stands for?
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8. In which quadrant do each of the following angles lie?

1, 2, 3, 4, 5, 6, 1000 (all these in radians), 1000°.

9. Suppose you answered the question above for angles of radian mea-
sure 1, 2, 3, 4, ..., 100. What fraction of these angles do you sup-
pose would lie in quadrant 17 quadrant 2? quadrant 3?7 quadrant 47
Solution. You can guess that approximately 1/4 of the angles lie in
each quadrant — there is no reason for the angles to “favor’” one quad-
rant in particular. In fact, this guess is correct. It is a special case of
the important Ergodic Theorem of higher mathematics. If you took
angles of radian measure 1, 2, 3, ... up to 1000, your approximation
would be even closer to 1/4 for each quadrant. O



Chapter 6

1 More identities

We now come to an important and fundamental property of the sine and
cosine functions. If we know the values of sinx and cos«, and also the
values of sin 8 and cos 8, then we can calculate the values of sin (« + 8),
cos (o + B), sin (o — 8), and cos (« — B).

But perhaps this is easy. Perhaps sin (¢ + B) is simply equal to sin o +
sin 8. Let us test this guess by setting @ = 8 = 7 /2. Then sin (@ + B) =
sin (w/2 4+ m/2) =sinx = 0, whilesinw /2 +sinw/2 = 1 41 = 2. Since
these two values are not equal, our guess is wrong.

Exercises

1. Complete the following table:

o B |sino | smB | sina +sinB | sin{(x + B)
60° | 30°
/4 | w/4
— f — i
T/O | /D
2. Note that sin (a -+ B) 1s not equal to sin & + sin 8 for these values of
,\. n‘lll'l 0 “ 1rlh Avenwans cr\‘n lhnea +lan Tawanse alven S annl Anoaa)
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3. Check which of the following identities are correct, and which are
not, using the angles o = 60°, 8 = 30°:

a) sina 4+ sin 8 = sin (o + B).
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b) sin (o ~ B) = sina — sin 8.
¢) sina — sin® B = sin (a + B) sin (@ — B).
4. a) The diagram below shows a circle with diameter AC = 1.
/>B\ .
S

A3 1€
D

N

Find a line segment in the diagram equal in length to sin & and
one equal to sin 8.

b) The diagram below shows the same circle as above. Its diame-
ter is still 1, but AC is not a diameter. Angles o and § are the
same acute angles as before.

B

Find line segments in the diagram equal in length to sin o and
to sin .

c) In the figures for parts a) and b), draw in a line segment equal
in length to sin (o + B).

5. Recall that sin45° = % Az 0.707 and sin60° = ‘/75 ~ 0.866.
Note that both these values are greater than 1/2. How can you tell
immediately, without much calculation, that sin 45° + sin 60° cannot
equal sin 105°, although 45 + 60 = 105?
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2 The addition formulas

So far, most of what we have done is to give new names to familiar objects.
But now we will explore the following addition formulas for sines and

cosines:
sin{o + B) =sinwcos B+ cosw sin 8,
cos (o + B) = cosx cos B — sino SIn B.

BT T

In a sense, they are the key reason why the sine and cosine functions
find so many uses in physics, and in mathematics as well.!
There are also two related formulas for differences:

sin (@ — B) = sinx cos B — cosw sin B,
cos (@ — B) = coswcos B+ sinasin 8.

Exercises

1. Check the formulas given above by letting o« = 60°, 8 = 30°.

[\
®!
2

when o = 0 and 8 is any angle. Wha happens if ﬁ 0’?

Note: If you ever forget which formula is which, you can quickly
look at what happens if § = 0. The formula for sin (« + 0), for
example, should give you the value sin o.

3. Check the formulas for sin (o + 8) and cos (o -+ 8) when« + 8 =
/2.

Hint: Assume o and B are acute angles in the same triangle, and
compare sin« and cos 8.

4. Check that the addition formulas are true if« = 8 = 7w /4.

5. Check that sinz(a + B) + cos*(@ + B) = 1 using the formulas
above. That is, show that (sin cos 8 + cosa sin )% + (cos« cos 8
— sina sin 8)% = 1.

1But these uses for sine and cosine were not the earliest. The astronomer Ptolemy, in
the second century CE, used these addition formulas, although he didn’t have the names
sine and cosine that we use now. As an astronomer, he needed equivalent concepts to locate
the stars and planets, and to describe their periodic motions.
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6. Using the formulas given in the text above, prove that
sin (o + B) sin (& — B) = sin® & — sin® B. That is, show that

(sin & cos B+cosa sin B)(sin & cos f—cos & sin B) = sin® a—sin® B ]

3 Proofs of the addition formulas

hove have shown that the addition and subtraction formu

llal ea AR LR LS LANS AL mASEL A2ARR

reasonable, but if we are to do mathematics, we must have

v
=

WE propose ar
a proof.

We will first prove the addition formula for sin (o + 8) in the case
where «, B, and o + B are all acute angles. We will need two right triangles:
one containing an acute angle equal to «, and another containing an acute
angle equal to 8.

Pl

We must put these triangles together in some way, so that the resulting
diagram includes an angle equal to o+ 8 (we assumed that this angle is also
acute). There are only three ways to do this, so that they have a commeon

side:
/4 o \ A o ]
/ \ hele \ y/ad i ]

Fig. 2 Fig. 3

¢

Each of these pictures gives us a different beautiful proof of the formula
for sin (o + B). We explore here the first two. We postpone the third, which
is perhaps the most interesting, for another occasion (see the appendix of
this chapter).
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4 A first beautiful proof

We start with Fig. 1. Let us label the sides of the triangle as shown. Then
sina = a/c,sin B = e/d. We need to represent sin (« + £) in the diagram.

D
N\

C

Now we can write o
: o
sin (o + B) = —-

But DQ, which is related to sin (o + ), is not related to the ratios repre-
senting sino and sin B. To establish this relationship, we divide D Q into

two parts, with a perpendicular from point B:
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then ptq _p . q_p  a
sm(cx-{—,B)— F ——zi—-{'-zi-——;i--l'-‘—i'
Now we must relate p/d and a/d to sine and sin 8. We start with the
second fraction. The segment a is in triangle AC B, and the segment d is in
triangle ABD. We relate the fraction a/d to both triangles by introducing
c as an intermediary (since c is in both triangles):
a a ¢

E:—Cn-gzsinacosﬁ.

It is a bit more difficult to work with the fraction p/d. The segment d is
in triangle AB D (which includes angle 8), and the segment p is in triangle
D P B. Happily, this last triangle contains an angle equal to o; namely?
LPDB. Now we use segment e as an intermediary, and write

4 .
— == .- =cosasing.
Putting this all together, we find that

. ac PEe . .
sin(a +f8) =——=+ —— =sinowcos B +cosasinf .
cd ed
2If you don’t see that /P DB = /BAC = a right away, look at the diagram below. You
will see that both ZBAC and /P DB are complementary to the angles marked y, which
are equal. D
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Exercises

1. We can also use the same diagram (Fig. 4) to derive a formula for
cos (o + B), where «, B, and a + 8 are acute angles. Let AQ = g,
C Q = r. Fill in the gaps in the following proof:

cos{a + fB) = !
AD
_ AC—-0C
- AD
AC BP
~ AD AD

AC AB BP BD
AB AD BD AD
= cosocosfB —sinasingf.

Notes:

b)

ratin and RN faor the cecand Aocain each intermed
JOULIVY QI A7 A/ AV LAWY OUNWWUILANE, L Lsul.ll, Wl LA RAALASL RIANAGWE

two different roles, in two different triangles.
The segment O D appears with a minus sign. This is how the fi-

PRSI [ T DU, PRI S ISPt I AR I [RSRSRTT SR H
1dl 1011I1Ulad CIIUD up lldVlIlg d LCLHILL DSUDLACLOU LAl LE]

V)
()
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o
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2. Derive formulas for sin (@ — 8) and cos (&« — ), using the diagram
below, in terms of sine, sin 8, cos «, and cos B, assuming that «, 8,
and o — B are all positive acute angles.

B
pHLC
B
£ \B) 1O
A 0 D

Here are the formulas to derive:

sin (¢ — B) =sina cos B — cosa sin 8,
cos (o — B) =cosacos B +sinasin 8.
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5 A second beautiful proof

For our second proof, we use the following theorem from Chapter 3 (see
page 75).

Theorem The area of a triangle is equal to half the product of two sides
and the sine of the angle between them.

In our diagram (see page 126) we have two right triangles, one includ-
ing an acute angle « and the other including an acute angle 8. If we place

them so that fhpw have a common side. then we get a new triancle. with

whAL WS Lilia K4 Y W €4 W AWSRANRAALSA AWy Svr o LA ALRLL ANy

one angle equal to o + B:

In this new triangle, the common leg of the two right triangles is an altitude,
labeled % in the diagram. Each original hypotenuse is a side of the new
triangle, labeled ¢; and ¢, in the diagram.

The theorem above tells us that the area of the new triangle is

(1/2)cieasin (o + B) .

Let us also calculate the area of this triangle using methods of elementary
geometry. The comparison of these two results will give us our formula.
Let BD = b; and DC = b,. In right triangle A BD, we have

by .

— =sina,

€1
so by = c¢;sine. Similarly, in triangle ACD, by = ¢ sin . Also, (from
right triangle ABD), h = ¢ cos«, and (from right triangle ADC) h =
¢z COs B.
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Using these relationships, we can express the area of triangle A BC as:?

YAD-BC = th(bi +b;) = 1hb) + 3hb;

1

leacos Beysina + 3epcosacy sin B

Equating our two expressions for the area of triangle ABC, we have
1cicasin (@ + B) = Scieac0s Bsina + Sejcacosarsin .

Finally, dividing through by (1/2)c)c; gives us the desired result. Note that
o + B need not be acute for the proof to be correct (although o and 8 must
be acute).

Exercises

1. If o = 30° and B8 = 30°, what values do our formulas give us for
sin (o + B) and cos (o + B)? Do these values agree with the values
that you already know?

2. If sina = 3/5 and sin 8 = 5/13, what values do our formulas give
us for sin (o + B) and cos (o + B8)?

V6 + /2
4

A

3. Show that sin75° = and cos 75° =

V6 —+/2
i
4. Find expressions in radicals (similar to those in Problem 3) for sin 15°
and cos 15°. Explain the coincidences.
5. a) Suppose o and B are acute angles. Can cos (o + 8) be zero?

b) Suppose o and B are acute angles. Can sin (@ + 8) be zero?
Remember that neither O nor 7 /2 are considered acute.

c) We know that if o and B are acute angles, then sin ¢, sin 8,
cos o and cos B are all positive. For acute angles o and 8, must
sin (o + B) be positive? Must cos (o + 8) be positive?

6. Phoebe set out to prove the identity

sina — sin® B8 = sin (& + B) sin (o — B).

3Remember that the area of a triangle is half the product of any altitude and the side to
which it is drawn.
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co

10.

11.

12.
13.
14.

I5.

16.

17.

Addition ormulas

She reasoned as follows:

sina —sin® B - = (sin« + sin B)(sina — sin B)
= sin(« + B)sin{a — B).

What criticism do you have of her reasoning?

. Check the identity in Problem 6 using « = 30°, 8 = 60°, on your

calculator. You will find that, despite Phoebe’s specious reasoning,
the identity is true for these values. Is this a coincidence?

l'\ n 112 o BN ﬂ;nz
111 o111

2 O o1
P = 111 \u “T-
Prove that cos? 8 — cos?a = sin (& + B) sin (@ — B).

Without using your calculator, find the numerical value of
sin 18° cos 12° 4 cos 18° sin 12°.

a) Without using your calculator, try to find the numerical value
of sin 113° cos 307° + cos 113° sin 307°.
b) Now use your calculator to check the result.

T « 1ca tha additinn FArmiilae in masrt MaY) Danmanmhar that
\4} Ulu 'yUu uDU LLI auulllull .lUllll.ulaD ll..l. Pall., i@y Innuwdlivilivel Lllal.

we have proved the addition formulas only for positive acute
angles. Doesn’t it look like they work for larger angles as well?

Simplify the expression sin 2« cos o — cos 2¢ sin ov.
Simplify the expression sin (¢ + B) sin 8 + cos (¢ + B) cos B.

Simplify the expression
sin (o + B) — cosa sin 8
cos{e + B) +sinasin B

For any angle & < m /4, show that

/~

: T Vi,
sin (o 4 -Z) = —E—(sma 4 cosa).

For any acute angles « and 8 for which cos & cos 8 # 0, show that

cos (a + B)

=1—tanatan$.
coso cos B P

Use the law of cosines and the figure drawn for the second beautiful
proof to give a direct derivation of the formula for cos (« + 8).
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Appendix - Ptolemy’s theorem and its connection with the
addition formulas

In this appendix we explore the connection between the formula for
sin (o + B) and a remarkable geometric theorem of Ptolemy.

1. The angles of a quadrilateral inscribed in a circle

Ptolemy’s theorem concerns quadrilaterals that are inscribed in circles.
Suppose we have a quadrilateral ABC D, and we want to inscribe it in a

circle. This is not always possible. In fact, if there is such a circle, then

LA+ (B=(CH+(D=m.

D

~_ 7

Indeed, /A = lBCD and £C = lBAD so LA + LC = l(B/é‘\D -+
BTA\D) 2(27r) = 77, and similarly, LB “+ LD =m.

We can also show that this condition is sufficient: If the opposite angles
of a quadrilateral are supplementary, then the quadrilateral can be inscribed
in a circle.

To prove this, let us take some quadrilateral ABC D in which /B +
/D = 7, and draw a circle through A, B, and C (we know that any three
non-collinear points lie on a circle).

Then we can show that point D also lies on this circle. Indeed, (B =
1 AC (the arc not containing point B), so0 ABC =21 — AC = 21 — 2/B.
Pomt D is on th the circle if /D = 3 ABC (see page 65). But in fact this is
true, since 1ABC —7—(B=.D.

So we have the following results:

Theorem A quadrilateral can be inscribed in a circle if and only if its
opposite angles are supplementary.

Example 49 Suppose we want to inscribe a parallelogram in a circle. The
result above tell us that its opposite angles must be supplementary, so this
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parallelogram must be a rectangle. Then the intersection of its diagonals
will be the center of the circle, and half the diagonal will be its radius. O

2. The sides of a quadrilateral inscribed in a circle

The theorem of the last section characterizes inscribed quadrilaterals
in terms of their angles. Ptolemy’s theorem characterizes them in terms of
the length of their sides.

A quadrilateral has four vertices, and so pairs of vertices determine six
lengths. Four of these lengths are sides of the quadrilateral, and two of

[}
o e aormnals N e e 21

Y P | s M M P ™HAlamaer?e dla . 1M vien +thhnna ciw lawmotbhin
(3§ 1wh. W) ICMSUID alv UulagUlidls. L LTIy o LIGULLIL Wil Udb LWlivde 3lA lCllstllb
to tell us whether or not the quadrilateral can be inscribed in a circle.

Ptolemy’s Theorem A quadrilateral can be inscribed in a circle if and

only if the product of its diagonals equals the sum of the products of its
opposite sides.

That is, quadrilateral ABC D can be inscribed in a circle if and only if
AB xCD+ AD x BC = AC x BD.

Example 50 What does Ptolemy’s theorem tell us for a rectangle? We
know that a rectangle can be inscribed in a circle.

D A

c ¥ ~'B

If the rectangle is A BC D, then we have

AB X< CD L+

>

Dx BC=AC x BD or

AB? 4+ BC? = AC?.

That is, Ptolemy’s theorem here reduces to the theorem of Pythagoras.

We will not give a geometric proof of Ptolemy’s theorem here. Rather,
we will show that it is equivalent to the addition formula for sin(e 4 8).

Ptolemy’s theorem concerns the sides of a quadrilateral. Trigonometry,
of course, works with angles. So our first job is to reformulate Ptolemy’s
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theorem in terms of angies. Let us take a quadrilateral inscribed in a circle
of diameter 1.
B

We know (Chapter 0, page 62) that in such a circle, the length of a chord is
equal to the sine of its inscribed angle. If we look at the inscribed angles in
the diagram, we find pairs of equal angles. These are labeled with the same
Greek letter.
b o U Y o . SR N ) 5> T o BERUR. R o W S b, [ P R
1 we Itave 1oufl polns a, o, C, alld £/, HiCll we call ulvide tem mo
pairs in three different ways:

AB CD
AC BD
AD BD

Each pair of points determines a length. If we take the product of these
lengths, then Ptolemy’s theorem says that a circle exists passing through
the four points if and only if the sum of two of these products minus the
fhaled mmannTa Y Cinnilacler 6 wxrn bmicin oo tmrmiimde o mamamonesr i crill Al s
Uid cyudly V. JSlllllidily, 11 We 1lave 71 POLILS, a4 lictoososaly alld SUlliClclit
condition that they lie on a circle is that the condition of Ptolemy’s theorem
is fulfilled for every choice of four of the given points.

Ml neer svxrma meren 0benmam n it a?? sl Tasm sl o mvar et lndasnl e = P
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trigonometric expressions. We have

AB = sinw BC = siné

CD =sing DA =siny .

What about the diagonals? Diagonal B D is subtended by /BAD, and AC
by LABC, so we have

BD = sin(§ + B) = sin(y + a)

AC = sin{a +68) = sin(8 + y) .
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Now we can write Ptolemy’s theorem in trigonometric form:
ABxCD+ AD x BC=AC x BD
sinoe sin B + siny sind = sin{B + y) sin{fa + y) .

Let us put this another way. If we have four angles «, 8, ¥, & such that
~ b . b 2 tbhhnie axra e it A n sl AL Al mdace 1 b e
T O )Y T 0 — i, LUITLE WU Cdll UTVIUC a CHLIC Ul dlalllClel 1 IO ally Ol
length 2e, 28, 2y, 28 and use this circle to recreate the above figure. Since
the resulting quadrilateral is inscribed in a circle, we have:

Ptolemy’s Identity If ¢ 4+ 84y 48 = m, then sina sin 8 + sin y sind =
sin(er + y) sin(8 + y)-

This statement is equivalent to the part of Ptolemy’s theorem that says
that if a quadrilateral is inscribed in a circle, then the product of the diago-
nals equals the sum of the products of the opposite sides.

Ptolemy’s theorem is a bit more general than the usual addition formula
for sin{a+B), and looks a bit nicer, since it uses only sines, and not cosines.

What happens to our old formula for sin(e + 8)? It is a particular case
of Ptolemy’s identity. Indeed, suppose, in quadrilateral ABCD, o + § =
B+ y = m/2. Then sin(8 + y) = 1, and because « + § = 7/2, we have
sind = cose. And since 8 + y = m/2, we have sin 8 = cos y. For this
special case, Ptolemy’s identity reduces to

sin cosy 4 cosasiny = 1 -sin(a + y),

which is the usual addition formula. Thus Ptolemy’s theorem implies Ptol-
emy’s identity, which implies the addition formula for sines. D

4. The addition formulas imply Ptolemy’s theorem

Suppose we know the addition formulas for sin(c« + 8) and cos(o -+ B).
Let us show that we can use them to prove Ptolemy’s identity.

In Ptolemy’s identity, every term is the product of two sines. In order
to derive this identity from the addition formulas, we need to convert these
products into sums. The reader is invited to verify, using the formulas for
cos(x £ y), that

sina sin B = 5 [cos (@ — B) — cos (« + B)], (1)
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and to recall that
cos(m + o) = —cosex . (2)

We use these results to prove Ptolemy’s identity.
We want to show thatif « 4+ 8 + v + § = 7, then

sina sin 8 + siny siné = sin{B + y) sin{a + y).

The right side is a product of two sines. We use (1) to convert this to a sum
of cosines:

sin(8 + y) sin(a + y) = 3[cos((B + ¥) — (@ + )
—cos{(B+ ) + (@ + )]
= %[cos (B—a)—cos(a+ B +2)’)] .

We must do something about the expression « + 8 -+ 2y. We have o + 8 -+
2y =a+B+y+S+y—-8=nm+y-—45andby(2),cos(x + B +2y) =
cos(m +y —8) = —cos(y —8).Soifa+ B+ y +8 =m, we have

sin(o + B) sin(a + 8) = 3[cos(B — &) + cos(y — 8)].
Since the cosine is an even function, we can write this as
sin(e + B) sin( + 8) = 3[cos(a — B) + cos(y — §)].
Now let us look at the left side of Ptolemy’s identity. We have
sina sin B + siny sin§ = 3[cos(e — B) — cos(a + B)]
+ z[cos(y — 8) — cos(y + 8)].

Now if x4y = m, we know that cos y = — cos x. Here, (¢ 8)+(y +8) =
7, 80 cos(y + 8) = — cos(a + B), and we can write

sino sin B + sin y sin 8 = 3[cos(e — B) — cos(a + B)]
+ 1[cos(y = 8) + cos(a + B)]
= 3[cos(a — B) +cos(y - 8)].

But this is the same expression that we found equal to the left side. So
Ptolemy’s identity follows from the formulas for sine and cosine. |






Chapter 7

igonometric Identities
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1 Extending the identities

Let us look back at some of our trigonometric identities. We first noted that
sin® a +cos? o = 1 for any acute angle «. When we extended the definition
of sin & and cos « to angles greater than 90° and less than 0°, we noted that
the identity still held true.

We have shown (in Chapter 6) that

sin (o + B) = sin« cos B + cosa sin B

for @ and B positive acute angles. Is this identity still true for any angle at
all?

Using the definition from Chapter 4, we can see that this formula works,
for example, when o = 150° and 8 = 300°. And in fact, it will always
work for angles of any size. Why is this true?

2 The Principle of Analytic Continuation: Higher
mathematics to the rescue

Checking the formula for sin (o + 8) for general angles becomes very
tedious. You can try it for other angles, reducing each sine or cosine to
a function of a positive acute angle. But pack a lunch, because such a pro-
cedure takes a long time.

For this situation, a theorem from higher mathematics comes to our
rescue. Called the Principle of Analytic Continuation, it says, roughly, that
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most of our identities will be preserved under the new definitions of the
trigonometric functions.

More precisely, the Principle of Analytic Continuation says that any
identity involving rational trigonometric functions that is true for positive
acute angles is true for any angle at all.

Since a proof of this statement will involve results from a course in
calcuius and another in complex analysis, we will only state this principie
here. But to understand the statement above, we must explore some ter-
minology. A rational trigonometric function is a function you can get by
taking the sine and cosine of various angles, together with all the constant
functions, and adding, subtracting, multiplying, or dividing them.! Some
examples of rational trigonometric functions are:

2 si 3cos 2si 3cos
sino + 3cosa sin (@ + ), }na—{- ,8’
3s8ina — 2cos B

3sina — 2cosa

) ) cos x + /3 sinx
sinecos B+ cosasinf, , tana,

2
tan ¢ -+ tan B

Here are some examples which are not rational trigonometric func-

tions:
A/sinx , Vv 1—sin’x, Vsin?x — 3,
A/sin x

log (sinx), cos (sinx), T—coss”

Some of our examples should seem familiar to you. In fact, you can
check that most of our identities so far have involved rational trigonometric
functions.

The Principle of Analytic Continuation tells us that if two such trigono-
metric rational functions are equal for numbers in any one interval (all the
numbers between two real numbers) then they are equal for any numbers.

For example, in our list above of rational trigonometric functions, we
have the examples sin (o + B) and sin« cos 8 + cos & sin 8. Using geom-
etry, we have already proved (three times!) that these two functions are
equal for 0° < «, 8 < 45° (so that «, 8, and o + 8 are all acute angles).

The Principle of Analytic Continuation says that these two functions must

In the same way, if you start with integers, you can get all the rational numbers by
adding, subtracting, multiplying, and dividing.
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then be equal for any values of o and 8, and not just for the ones in the
interval between 0° and 45°.

Exercises

1. For each of the functions below, state whether or not it is a rational
function of sin«:

2

1 — sin
a) v2sino b) /2 sinw c)-—-——-—-l-j-r—-g

sin —
2
1 1 —cos
) ——71—  OVI-sina f)J————ZOO‘.

1+ —
Sin o

2. Write each of the following expressions as rational functions of sines
and cosines:

a) tano b) (1 +tana)(l — tana)
, tano +tan g N U
C) d) tan“ o -+ cot“o
l —tanatan g8
e) tan o cota f) 1 +tan’ .

3. For any angle & between 0 and 77/2, we know cosa = /1 — sin’ .
Does the Principle of Analytic Continuation guarantee that this state-
ment is true for any angle? For example, is this identity correct if
o =2 /3?

4. For any angle o between 0 and /2, we know sin® o +cos? o = 1.
Does the Principle of Analytic Continuation guarantee that this state-
ment is true for any angle? For example, is this identity correct if
o =2m/3?

3 Back to our identities

You may imagine that a general statement such as the Principle of Ana-
lytic Continuation (and the full statement of this principle is even more
general!) must have its roots in rather deep properties of functions. And
in fact it does. This is why one needs to follow two advanced courses of
mathematics before understanding it fully.



142

Trigonometric Identities

So we can continue to work with our identities, with the assurance of
the mathematicians, who have proved the Principle of Analytic Continu-
ation, that our work is valid for angles of any measure, and not just for
positive acute angles.

Here, once again, are our formulas. We repeat them to emphasize their
added meaning. Because of the Principle of Analytic Continuation, they
are true for angles of any measure, and not just acute angies:

sin (¢ +B8) = sinacosB + cosasinp
sin(¢ — ) = sinwcospB — cosasinpf
cos(¢+B8) = coswcosfB —sinwsinp
cos{e —B) = cosacospB + sinasinp
Exercises
1. If @ and B are acute angles such that sin« = 3/5 and sin 8 = 5/13,

find the numerical value of sin (¢ + 8) amd cos (@ + 8). In what
quadrant does the angle o + 8 lie?

If o and B8 are acute angles such that sinoe = 4/5 and sin 8 = 12/13,
find the numerical value of sin (¢ + 8) and cos (¢ + 8). In what

anadrant doec the anole o« 4+ 8 1ia?
LRSI LLLIL WD L QUi R T B Hae .

. If o and B are angles such that sino = 3/5 and sin 8 = 5/13, find

sin (e + B). (Note that we don’t specify here that & and 8 are acute
angles.) How many possible answers are there?

Verify that sin (@ — 8) = sin« cos 8 — cos « sin 8 for:

2 T
a)a=—§~,ﬂ=§
o __37r
b)amz,ﬂ—"z’-
c)a:—g,ﬁ:g.
0 Z

. Show that cos? & + cos?(27/3 + &) + cos*(2m/3 — a) = 3/2.

Show that sin (x + y) + sin (x — y) = 2sinxcosy.

. Simplify cos (x + y) + cos (x — ).
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8.

Show that cos (x + y) cos (x — y) = cos? x cos? y — sin® x sin? y.

9. Show that sin (x 4+ y) sin (x — y) = sin® x cos? y — cos® x sin® y.

10. Using the previous two exercises, show that

I1.

2 2

cos (x + y)cos (x — y) —sin(x 4+ y)sin (x — y) = cos“x —sin“x .

Note that the left side depends on both x and y, but the right side
depends only on x.

Remark We can simplify the expression
cos(x + y)cos(x —y) —sin(x + y)sin(x — y)

in another way. Letus put A = x + y, B = x — y. Then we have
cos (x +y)cos(x —y) +sin(x + y)sin(x —y) = cos Acos B —
sin A sin B. But this is just cos (A + B). However, A + B = (x +
y) + (x — y) = 2x. Hence,

cos (x + y)cos (x — y) +sin(x 4+ y)sin (x — y) = cos 2x .
We, sée once more that the value of the expression
cos (x + y)cos(x —y) +sin(x + y)sin (x — y)

is independent of y.

We now have a slight misunderstanding. From Exercise 10 we see
that the expression we are interested in equals cos”x — sin” x. And
in the remark to that same exercise we see that it is equal to cos 2x.
Is this an error? Try to prove that it is not.

12. Show that cos (o + 8) cos B+sin (¢ + B) sin 8 does not depend on 8.

4 A formula for tan (o + B)

Let us now show that tan (¢ + 8) =

tan o 4 tan 8
1 —tanatan 8

. We use the addition

formulas to write:
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sin (& + B) . sina cos 8 + cos« sin B

tan (o + B) =

cos (¢ +B) coswcosp —sinasing’

We now can divide the numerator and denominator by cos « cos 8:

This leads to:

e Q
& v
coswcos B  sinosinf

cosxcos 8 cosacosfB

sine  sin B8

cosax  cosf
sinasin g -

cosa cos 8

tan (@ + B8) =

tan o + tan 8
]l —tano tan B

In a way, this is nicer than the formula for sin (« + 8) and cos (@ + 8),
since it uses only the tangents of « and 8. The formula for sin (« + 8), on
the other hand, uses cos & and cos 8 as well as sin« and sin 8.

Exercises

1. Check that our formula for tan (e + B) is correct for «

B =5m/3.

= Tn/6,

2. Find a formula for tan (&« — 8) in terms of tan & and tan B.

3. Show that

4. Show that

1+t
tan(zj-l—oz _ ‘-I-.anoe
\ 4 / 1 —tan«
tanfy—r-—a\; 1 — tan «
\4 /J 1l+tanw

5. Ifa + B = /4, prove that (1 +tana)(1 +tan 8) = 2.
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6. Find an expression for lan (@ + 8 + y) which involves only tana,
tan 8, and tan y.

7. Using the result of Problem 6, or otherwise, show that if « + 8 +
y = = (for example, if they are the three angles of a triangle), then
tana 4 tan 8 + tan ¥ = tano tan Stan y.

8. Show that tan o tan 2« tan 3o = tan 3o — tan 2o — tan o whenever
all these expressions are defined. For what values of o are some of
these expressions not defined?

S Double the angle

If we know sin « and cos «, we can find the value of sin 2« and cos 2.
We know that

sin (@ + B8) = sinacos 8 +cosa sin 8

cos(a + B) =cosacos B —sina sin 8.

Let o = B. Then we have: -

sin2¢ = sin(¢+a) = sinacosao + cosasino
= 2sinacosa,
cos2c¢ = cos(ad+a) = cosacoso — sina sina

cos?a — sin® .

The formula for cos 2« is particularly interesting. Since cos?a = 1 —

2 &, we can write cos2a = 1 — 2sin” a.

sin

Similarly, since sin”“ o = 1—cos” a, we can write cos 2o = 2cos“a—1.
The reader is invited to check these computations.

So we have four beautiful and useful formulas:

sin2a = 2sinacoso
cos2a = costa —sin‘a
cos2a¢ = 2costa—1
cos2a = 1—2sin’a
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Problem 1. If cos @ = +/3/2, find cos 2a.

Solution. We have

Solution. We have sin 2« = 2 sin « cos «, and before we go any further
we must compute sin . But sin ¢ is not uniquely determined. (After all,
we are not given the value of «, but only of cos «. More than one angle has
a cosine equal to +/3/2.)

To compute sin ¢, we recall that

sinog =1 ~coslax = 1 — (-—-

S0

Then ¥ i
1 3
sin 2o = 2sin o COS o == Z(ii)(—;) = i-—z——.

The reader should check that in fact there are values of « for which each
of our two answers is correct. If we are given the value of cos «, then the
value of cos 2« is determined, but the value of sin 2« is not. (And certainly
the value of « itself is not determined.) O

The “double angle” formulas are often used in the following form. If

wreitn v . V2 than 2 s I and s L
WG WwilLle o — LP L1ICLL ’.} _ /L, aliu WG uaVC

Q

sm,B-*Zsmgcos-g

2 B

» B 2
0S8 = cos> ~ — sin®> = = 2cos
cos 8 5 1 5

B B

—1l=1—~2sin>=



5. Double the angle 147

Exercises

1.

(_.JJ

10.

11.

a) If sina = 7/25 and cos « is positive, find sin 2¢ and cos 2.

b) If sina = 7/25 and cos « is negative, find sin 2« and cos 2«.

If sin o and cos a are both rational numbers, can sin 2« be irrational?
Can cos 2a? Check your answer with the examples given in the text,
and with Exercise 1 above

mstead of cos 2 But for the pamcular angl h e was using, the an-
swer turned out to be correct. What could these values of o have
been? That is, for what values of « is cos* o = cos 2a?

If sin @ 4+ cos o == 0.2, find the numerical value of sin 2«.

. If sina — cosa = —0.3, find the numerical value of sin 2c.
Show that cos 2« cos o 4 sin 2« sinw = cos «.
. Show that sin 2« cos o 4+ cos 2« sina = sin 4« cos o — cos 4o sin .

Prove that cos? o < cos 2a.
Express (sin (a/2) — cos (« /2))2 in terms of sin «r only.

Find the numerical value of sin 10° sin 50° sin 70°.

Hint: If the value of the given expression is M, find M cos 10°.

Find the numerical value of cos 20° cos 40° cos 80°.

T 1

. ] 4
. Show that sin — cos — = —

5 4
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6 'Triple the angle

Let us now find formulas for sin 3« and cos 3.
We can write

sin 3 = sin 2a + «)
S, [ DIy, SR S
= AL L UMW T LUDd LU0 Bl W
= 2sinecos’ e + (1 — 2sin @) sin«

= 2sina(l - sina) + (1 — 2sin*«) sinw

= 3sina ~ 4sin’«.

(The reader should check the details.)
In the same way, we can show that

cos3w = 4cos’ o —3cos .

Exercises
1. Complete the derivation of the formula for cos 3« given above
2. If sine = 3/5, what are the possible values of sin 3« ? Of cos 3 ?
3. If cosa = 4/5, what are the possible values of sin 3a? Of cos 3¢ ?
4. Derive formulas for cos 4« in terms of (a) cos « only; (b) sin « only.
5. Show that sin 3« cos &« — cos 3¢ sin o = sin 2c.
6. Show that .
sin3c¢  cos 3« )
sine  cosa
for any angle «.
7. a) Show that sin 3¢ = 4 sin & sin (60° + «) sin (60° — «).
b) Show that cos 3o = 4 cos a cos (60° + «) cos (60° — «).
8. Derive a formula for the ratio sin 4« / sin o in terms of cos «.
9. Show that sin 3« sin® & + cos 3« cos® & = cos> 2.
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7 Derivation of the formulas for sin«/2 and cos «/2

Let us now derive formulas for sin «/2 and cos «¢/2 in terms of trigonomet-

ric functions of «.
We being with the formula for cos « in terms of cos «/2 (see page 146):

cos o = 2 oS> (E\ - 1.
\2/

This can be written as 2 cos® (§) = 1 + cos @, which leads to

cos (9‘2-) = :I:W/l—:-}-——:(z-:-?-s—(i

To get a formula for sin /2, we proceed similarly:

o
=1-2 inz(—~) :
COS o S )

or 2 sin? (‘—;—) = 1 — cos «, which leads to

. T—cosc _
To show that tan (§) = :I:\/ TToosa’ we write

)4
2 cos(f‘zi) N \/T+—cos-a
2

1+t_:osoe

N\ 2

i /l—COSa.
1+ cosa

I
H._




150

Trigonometric Identities

In the next section, we will see two formulas for tan(«/2) that are more
convenient.

Exercises

1.

If cos & = 1, find all possible values of cos(et/2). You will find that
there are two possible values. Give an example of a value for o which
leads to each of these values.

Try out the formula given above for cos(«/2) if
a) a = 60°, b) « = 120°, c) o = 240°.

For which of these angles must we take the positive square root, and
for which angles must we take the negative?

. Fill in the following table. Note that for each of the given values of

o, COS O = %

o Quadrant «? | «/2 | Quadrant «/2? | cos a/2
780 [ T 1
1020°
1140°
1380°
—60°
-300°
—420°
—660°
—780°

Find radical expressions for sin 15° and cos 15°.

. Each of the “half-angle formulas” we have developed includes the

square root of a trigonometric expression. Why don’t we have to
worry about the possibility that we are taking the square root of a
negative number?

1+cosa

For positive acute angles, we can write cos 5 =,/ ————, with-

out the ambiguity of sign. If we could apply the Principle of Analytic
Continuation to this identity, we would conclude (erroneously) that
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this statement, without ambiguity of sign, was true for any angie.
What is it about this identity that prevents us from applying the Prin-
ciple of Analytic Continuation?

7. Suppose that the angles «, B, y are such that e« + 8 + y = . (For
example, «, 8, ¥ could be the three angles of a triangle.) Show that:

a) tan%-tan% +tan%tan1’2-+tan~’2’-tan% = 1.
Hint: Note that tan “—*2-'-9 = cot £, so that

o+ B Y
tan L = 1.
D)

tan

b) sine +sin B +siny = 4cos%cos§cos L.

8 Another formula for tan /2

o 1 —cosw
tan — =:I:1/——————.
2 1 +cosw

We can write this as

We showed that

oa [1 ~cosa L /{1-c0so¢\{1+cosa\
2 T Y 1 4cosa '“\/\1+cosd’} \1+cosa /
1 —cos®

il

+
V (1 4 cos)?

n sin® o
(1 4+ cos )2

sin &

1 +cosa

So we have another formula for tan(« /2), without radicals, but with an
ambiguous sign. But in fact there is a small miracle here: we don’t need
the ambiguous sign! This miracle can easily be understood by looking at
analytic continuation.
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If the angle is positive and acute, that is, between 0° and 90°, we must
select the positive sign. In other words, in this case we have

) (oz) sin ¢
an{ = ) = ————,
2 1 4+ cosa
(without the ambiguous sign). Unlike the formula we started with, this new

formula is a rational trigonometric expression, so the Principle of Analytic
Continuation guarantees that in fact the equation is true for any angle.

Exercises

1. In this exercise, we check the result of the section above directly. We
have shown that sin « is twice the product of two particular numbers
(they are sin /2 and cos «/2), and we know that tan« /2 is the quo-
tient of the same two numbers. But the product and the quotient of
any two numbers always have the same sign. So sinw and tan o/2
have the same sign. How does it now follow that

o f _ sin o
“\Z) T T ¥cose

without ambiguity of the sign?

2. Show that

o 1 —cosw
tan (——) e E
2 sin &

9 Products to sums

We can get some further useful results by working with the formulas for
sin (& + B) and cos (o + 8). For example, we can write

e £ 4 ANt A e} ~, 0
COS (X + P ) COs (x P) LZCOH O P .

This simple yet remarkable formula says that he um of the cosines of

two f*mo-lpc can be written as the nroduct of the cosines of two other an

o
Lo Ll UL WLV QO uv UL mes or two H ig

Perhaps this is clearer if we write it as follows:

cosa cos 8 = —cos (¢ + B) -I- = cos (@ — B)
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So the cosine function, in a rather complicated way, “converts” prod-
ucts to. sums. You may know that the logarithm function also “converts”
products to sums, although in a much simpler fashion. In fact, people used
to use cosine tables, like logarithm tables, to perform tedious multiplica-
tions by turning them into addition. If you study complex analysis you will
learn of the rather deep relationship between the trigonometric functions
and the exponential or logarithmic functions.

In the same way, we can write

sincxsinﬁ:%cos(a—-ﬁ)u%cos(a-i-ﬁ)

sihowcos 8 = %sin (a+ﬁ)+%8iﬂ(0€—ﬁ)

Exercises
1. Prove the last two identities referred to in the text.

2. Show that sin 75° sin 15° = 5.

S

Qlisness thhat oinm T&0 o 2+
]

Ay Fad :
NUW LLicdl dill [ 22

]

e 18
Lo 1

w

4. Find the numerical value of
a) cos75°cos15°, b) cos75%sin 15°.

5. Show that

for any angle «.

6. For any three angles «, 8, y, show that

einfor 4+ AYeimfo — AV dcsin (B L vYs1n (8 — V)
sin (@ + p)sin (& B)+smip +y)smip Y )
+sm(y +a)sin(y —a) =20
7 s asvvs thvwnn amealan A~ 02 ar oclsses, tland
/. ror any tnrec angies «, p, ¥, snow tnat

sina sin (8 — y) + sin B sin (y — «)
+siny sin(a — ) =0.



154 Trigonometric Identities

10 Sums to products

It is sometimes useful to convert sums of sines and cosines to products.
The following series of examples shows how this can be done.

Example 51 Factor sin (y + §) + sin (y — 8)

DULMHUH We DC&IH D_y UblII& the d(l(.ll[l()ll formuias

UI

sin(y +8) = sinycosd +sindcosy,

sin(y —8) = sinycosd —sindcosy.

- 212 &4 LW

Adding, we find that sin (y + 8) + sin (y — §) = 2sin y cos§, which rep-
resents a factored form of the given expression. 0

Example 52 A bottle and a cork together cost $1.10. The bottle costs $1
more than the cork. How much does the cork cost?

Solution. It is tempting to say immediately that the bottle costs $1 and
the cork costs 10 cents, but this is incorrect. With those prices, the bottle
would cost onlv 90 cents more than the cork.

VY RIS RS RIS ALY AW ARl SIS N AR e WIE

Algebra will quickly supply the correct answer. If the price of the bottle
is b, and the price of the cork is ¢, then we have

b+c 1.1

b—c

We may solve for b and ¢ by adding these two equations. We find that
2b = 2.1, so b = 1.05. Using this result, we know how to calculate the
value of ¢ from either equation. For example, using the first equation, we
obtainc = 1.1 — b = 1.1 — 1.05 = 0.05.

“Thus, the bottle costs $1.05 and the cork costs 5 cents. o

Example 53 If x + y = @ and x — y = b, express x and y separately in
terms of a and b.

Solution. Proceeding as in the problem with the bottle and the cork,
we add the two equations to obtain 2x = a + b, so x == -12-(a + b). Then,
instead of adding, we can subtract the equations, to obtain 2y = a@ — b, so
y = 3(a — b). In general, we have

Ifx+y=aandx —y=>b,thenx = 3(a+b)andy = {(a — b)
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Please remember this result. It will be useful in many applications of alge-
bra and trigonometry, and not just in problems about bottles (of undeter-
mined contents). )

Example 54 Write the expression sina + sin 8 as a product of sines and
cosines.

Solution. With the experience of the previous examples, this is not dif-
ficult to do. We may use Example 51 if we can find angles y and § such
that y 4+ 6 = o and y — § = B. Example 53 shows us how to do this. We
just need to choose

Substituting into the result of Example 51, we obtain the useful formula

a+‘8cosa_ﬁ 0
2 2

sina + sin 8 = 2 sin

We may also express the difference sin o — sin 8 as a product of sines
and cosines. We use the angles y and § found before, such that y + 8 = o
and y — 8 = B, and write

sine —sin B =sin(y +8) —sin(y —48) = 2cosy sind .

We now express this result in terms of the original variables o and g, and
find that

sina — sin 8 = 2 cos

In the same way, we can prove the formulas

cosa + cos 8 = 2cos

Exercises

1. Give a detailed derivation of each of the last two formulas mentioned
above.
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10.

11.

12.
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Show that cos 70° + sin40° == cos 10°.

. Find an acute angle « such that cos 55° 4 cos 65° = cos a.

Show that cos 20° 4 cos 100° + cos 140° = 0.

. Show that sin 78° 4 cos 132° = sin 18°.

Show that _
cos 15° +sin15° _

cos 15° — sin 15 V3.

. fa+ g+ y = m, show that

a) sin (o + B) = siny.
b) cos(a + B8) = —cosy.
¢) sin2a +sin28 + sin2y = 4sino sin B sin y.

. For any angle «, show that

sina + sin (@ + 27 /3) + sin (¢ + 47 /3) = 0.

For any angle «, show that

sina + 2 sin 3o + sin 5o = 4 cos® a sin 3¢ .

For any three angles «, 8, y, show that

sin (B — ) +sin(y—oz) N sin(a — 8)

. . - . . , = (.
sin 8 sin y sy sino sino sin 8

For any three angles «, 8, ¥, show that

sin (¢ — B) + sin (@ — y) +sin (8 — y)
(a;'g)sin(a;y)cos(ﬁ;y).

= 4cos

For any three angles «, 8, y, show that

sin (o + B +y) +sin (@ — B — y) +sin(@+ - )
+ sin (@ — B8+ y) = 4sina cos Bcos y .
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Appendix

I. 1. Expressions for sin 8, cos 8, and tan 8 in terms of tan 5/2.

We can use our results in trigonometry to obtain some results in number
theory. Let us begin by reviewing some results obtained earlier.

Example 55 Show that tan’ 8 + 1 = 1/cos? 8.

) ) 2
i sin“ 8 sin” 8 + cos” B 1
Solution. tan® B + 1 = 1= = .o
onon Pt cos? 8 + cos? B cos?
Example 56 Show that cos® 8 = L
xamp  14tan2 B’
Solution. This result follows from the previous one. O

Example 57 If tan 8 = a, express in terms of a the value of sin 28.

Solution. We have

sin 28 2sinfBcos B

= ZsinBcosﬁcos'B

cos 8
2sin B cos® B
cos f
= 2tanf cos’ B
2tan 8
l1+tan2 g8’

this last because of the result of Example 56. Then, since tan § = a, we

have that
2a

sin2f = Ta

0

In working Example 57, we have found a way to express sin28 as a
rational function of tan 8:
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Similarly, we can express cos 28 in terms of tan g:
cosi B _ sin” B )(0052 8)
cos2 B cos?B

= (1 — tan” B)(cos® B)

1 —tan® B
1 + tan? 8

We can also express tan 28 in terms of tan 8. The simplest way to do this
is to use the formula we have derived for tan (o + 8):

tano + tan 8
l —tanotan B

cos 28 = cos’ B — sin* B = (

tan (& + B) =

Letting @ = B, we find that

2 tan
tan 28 = b
1 —tan? B
If we let tan 8 == a, we can write
- 2a 5 1 —a? tan 2 2a
Sin28 = ——, c¢o0s28 = , tan28 =
p 1+ a2 p 1+ a? p — a2

which are all rational expressions in a.

Exercises
Using the above rational expressions, verify that:

1. sin®B +cos? B =1
2. tan28 =sin28/cos28.
I. 2. Uniformization of sin «, cos v, and tan o

'We can rewrite our new identities by letting « = 28:

) 2tan 3
sinot = ——=— ,
1 + tan? %
l—tanz%
COS& = T S
1 4 tan 5
2tan92’-
tano =

- 2a”
1 — tan >
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These formulas provide a uniformization of the trigonometric func-
tions. That is, they allow us to represent all these functions using ratio-
nal expressions of a single function, tan «/2. So, for instance, if we have
a trigonometric identity, or an equation involving trigonometric functions,
we can rewrite these functions as rational functions of this single variable.
Then the trigonometric equation or identity becomes an algebraic equation
or identity.

While this may be important theoretically, it rarely makes things easier
when we have an actual problem to solve. However, this uniformization
ylelds some very interesting results in a most unexpected area. We can use
it to find Pythagorean triples: solutions in natural numbers to the equation
a’ + b =2

We know that if the numbers a, b, and ¢ form a Pythagorean triple,
then there is a right triangle with legs a and b and hypotenuse c¢. Then each
acute angle of this triangle has a rational sine, cosine, and tangent. For
example, we are familiar with the fact that the numbers 3, 4, and 5 satisfy
the equation a® + b?> = ¢%. We can build a triangle with legs 3 and 4 and
hypotenuse 5. For the smaller acute angle o of this triangle, sina = 3/5,
cosa = 4/5, and tanx = 3/4.

We can use our uniformization to find other triangles with angles whose
sine, cosine, and tangent are rational by following this process backwards.
If we let tan /2 be some rational number, then our uniformization telis
us that sina, cosa, and tana will also be rational. We can then form a
right triangle with rational sides and, by scaling it up, we can form a right
triangle with integer sides. The sides of this triangle will be a Pythagorean
triple.

For example, let

o 2
tan — = — .,
2 3
Then we have
: 3 12
sina = = —
l+g 13
1-% 5
cosa = = —,
1+g 13
tan 12
e = — .
5
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2

160
In this case, a right triangle with an acute angle o can have sides 12/13,
with sides 12, 5, and 13. Because they are the sides of a right triangle, these

5/13, and 1. Multiplying each side by 13, we form a similar right triangle

three natural numbers satisfy the equation a® + b* = ¢

Let us do this in general. Suppose
tan> = 2
2 q
Then
P
q 2
sina = —2 5 = zf_qz
14+ P a7P
g2

CosSox = .
9+ p?

Then the triangle has rational sides 2pgq /(g% + p?), (g% — p?)/(g*+ p?), and
1, and the triangle with integer sides has sides 2pq, g*> — p?, and g° + p°.

Exercises
1. Iftan(e/2) = 3/2, find the values of sina, cos and tan e. Do these
values provide us with a Pythagorean triple? with an integer right

triangle?
2. What right triangle with integer sides results from letting tan(o/2) =

5/8 in our formulas above?
3. Verify that the numbers 2pq, g2 — p?, and g+ p? satisfy the Pythag-

orean relationship. Which side is the hypotenuse?

I1. Themes and variations
We return to a theme that we introduced in Chapter 1, and develop it more

fully.

Theme: The maximum value of sin x cos x

Variation 1: Find the largest possible value of the expression sin x cos x.
Certainly sin x cos x < 1, since both sin x and cos x are at most 1 (and

cannot be equal to 1 for the same angle). But is this the best estimate?
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Exercises

1. With your calculator, find the value of sinx cosx for the following
values of x:

20°, 10°, 5° 1°, 70°, 80°, 85°, 89°.

2. Without your calculator, find the value of sin x cos x for the follow-

ing values of x:
30°, 45°, 60°.

Variation 2: Perhaps you have noticed some patterns in the numerical
examples above. Let us see what is going on mathematically.

The product sin x cos x reminds us of the formula sin 2x = 2 sin x cos x.
In fact, sin x cos x = sin 2x / 2. But sin 2x, like the sine of any angle, is less

than 1. Hence,
sin 2x 1

< —.
2 2
As we have seen, the value 1/2 occurs, for example, if x = 45°, so this is
the maximum value of our expression.

SINXCOSX =

Exercises
1. Find all x for which

a) sinxcosx

il

I

& elG T

b) sinx cosx

C) Sinx Cosx =

2. Which of the following equations has no solutions at ail?
a) sinxcosx =0.4,

b) sinxcosx = 0.5,
c) sinxcosx = 0.6.

3. For what values of N does the equation
sinxcosx = N

have a solution? How would you solve it?
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Theme: The maximum value of sin x + cos x

Variation 1: For any x, sinx + cosx < 2, of course, since each addend
on the left is at most 1 (and the addends cannot equal 1 simultaneously).
Can the value be as much as %? Certainly: if x = 30°, then sinx = % and
cosx > 0, so sinx + cos x is certainly greater than %

Exercises
1. Check that if x = 30°, sinx + cos x is greater than 1.
2. Find at least one value of x for which sinx + cosx = L.

3. Find at least one value of x for which sin x 4+ cosx = \/f

Now let us do things mathematically. Notice that (sin x + cosx)? =
sin x + cos?x + 2sinxcosx = | + sin2x. Since the maximum value
of sin 2x is 1, the maximum value of (sinx + cosx)? = 2, and sinx +
cosx < /2.

Exercises

1. Cansinx 4+ cosx = 1.414?
2. Can sinx 4 cosx = 1.415?
3. For what values of x does sinx 4 cosx = \/i?

4. What is the smallest possible value of the expression sinx + cosx?
For what value of x is this minimum achieved?

Variation 2: Let us find the maximum value of sinx + cosx in a differ-
ent way, by comparing this with the formula sin (x 4+ a) = sinxcosa +
cos x sina. We can do this by using a trick. We will write

Why do we do this strange thing? The answer is that % is sin £ and also
cos Z. So we can write

sinx 4+ cosx = \/E(sinx cos% -+ cos x sin %) —= +/2sin (x + %)

Now the largest possible value for the sine of any angle is 1, so the largest
possible value for sin x + cos x is v/2.
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Exercises
1. For what values of x is the maximum of sin x 4 cos x achieved?

2. What is the minimum possible value of sinx -+ cos x? When is this
minimum achieved?

Variation 3: Now let us look at the expression 3 sin x + 4 cos x. What is its
maximum value? This time, it won’t help to square the quantity (try it!), so
we can’t use our first method.

We can compare the expression 3sinx + 4cosx to cosasinx -+
sin a cos x. But the numbers 3 and 4 are not the sine and cosine of the
same angle. However, the numbers 3 and 4 remind us of our “best friend”,
the 3-4-5 right triangle. In fact, the larger acute angle of this triangle has a
cosine of 3/5 and a sine of 4/5. So, if we call this angle o, we can write

5(% sin x + %cosx)

= 5(coswsinx 4 sinc cos x) = Ssin (o + x) .

3sinx +4cosx

The maximum value of this expression is 5.

Exercises
1. In the above argument, must o be positive and acute?

2. What is the minimum value of 3 sin x 4+ 4 cos x? For what values of
x does this occur?

3. What are the maximum and minimum values of 2 sin x + 7 cos x?

Hint: Take /53 = +/22 + 72, and investigate the corresponding
question for +/ 53(725_5 sin x + % cos X).

HIIL Ana

pproximation to 7
| ul

We can use the half-angle formulas to find a numerical approximation to
the number .

Let us begin by checking our formulas for cos x/2 and sin x/2 when
x = /2. We have

cOSs 71'/2 = COS
5 =

\/l—i»cos%m\/l-lr-o_ 1 _\/5
2 Y 2 a2

T
4
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which, as we already know, is correct (note that we choose the positive sign
for the radical).
Similarly, we have

: /2 mn’ 1—-0 1 «/i
SIn —— = 8§ - = 3
2 4 2 N

which we also expected.
Now let us get radical expressions for cos /8 and sinx /8:

[ /4 /1+COS~ l+‘/— /2 +
COS — —"COS———
8
1

2+ V2.

T2

. mw/4 /I—cos / /
Sll‘lg = sm———

1

2—- V2.

Note that the expressions we get contain “‘nested radicals.”

Exercises

1. Finish the derivations below of radical expressions for cos z and
sin 7=:
16

T /8 1 +4cos g 1\/ /
—_ ——— — T s s = e 2 2 2
COS = = C0S —3 ‘/ 3 7 +V2++2
8 1 —cosZ 1 /

16 2

2. Fill in the table with nested radical expressions for the values of the
indicated trigonometric functions. Two of the values have been filled
for you.
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o Cos o sin o

LA EWSINCIN.
= ng—v54wJ51:5

128

Now we know that cos O = 1, and it is also true that the cosine of a very
small angle (one whose measure is close to Q) is close to 1. The sequence

of angles
T s T T '
2 4 8§’ 16 7 o2n’

get closer and closer to 0 (approaches 0). So it is reasonable to expect that
the sequence

’ ’

T 4 T T T
COSE, COSZ, COS-é-, 0081—6, vee COSEH_’

approaches 1. In fact, this is the case. That is, the sequence:

1 1 1
0, Evi, 5¢2+v5, 5J2+¢2+v5, .

approaches 1. Mathematicians express this by writing

1
1m1§J2+J2+JE+~-+v§=1.

n—»oQ

n radicals

Now let us look at another sequence:

T .

’

si si

(ST =
ISTE!
EN =]

T H T
? LA | w 7
2"

ool B

We have seen (Chapter 5) that for very small angles «, the ratio sin or/ox
is very close to 1. So the sequence above should approach 1. One way of
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saying this is to assert that the value sin 3; approaches the value 7 (for
large values of n), or that the value of

n .3 %
2" sin —
2n
approaches 7, and mathematicians have in fact proved this.
That is, they have shown (using our nested radical expressions for
sin ;) that

[ —
lim 2"\/2 —y2+y2+- +V2=7.

n—>oo

i a

n radicals

Exercises
1. Using your calculator or a computer, check that the expressions
1V2,
1/~ . 73
s5VZ+ N2,

L24v24 2,
%\/2+\/2+\/2+\/i,

approach 1.

2. Using your calculator or a computer, check that the expressions

222 - 2,
?J2—¢2+v§,

24\/2—\/2+\/2+—«/_§,

N aae—
25\/2—\/2+\/2+\/2+\/§,

approach 7. You will have to think a bit about how to organize the
computation. (The value of 7 is approximately 3.141592653589793...)
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3. We know that

Show that:

d) cos96 \/ \/2+\/2+\/2—|—

By evaluating these expressions (with a calculator or computer), ob-
serve that they are approaching 1. Can you explain why?

4. We can find another approximation to 7 by finding nested radical
expressions for sin 7 /12, sin /24, sin 7w /48, sin 7 /96, etc. Using a

ek oane paae o e e P o

LdlLUldLUl I LUlllpl.llCl ll[ll.l UIC chuc:b o1 the UAPICbbiUIlb

a) 1251n 5 = 62

b) 24sin & = 12\/2 -

c) 48sin & =24\/2—\/2+\/2+\/§.
d) 96sin & =48\/2-\/2+\/2+\/2+\/§.

IV. Trigonometric series

In this section we use the identities we have learned to the find the sum of
series whose terms involve trigonometric expressions. This topic turns out
to be of great importance in later work.

We mtroduce some of the techniques used by first looking at some
purely algebraic problems.

Example 58 Find the sum x + x? 4 x3 4 x* 4 .-« 4 1%
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Solution.Let S = x 4+ x* + x> + x* + -+ - 4+ x'% and multiply S by x:
xS =x2—|—x3 —|-x4 + e +x101.

Things get very simple if we subtract

S—xS=81—x)=x—x>4x2— ... 4 x100_ y0

=x_____xlOl.

Most of the terms drop out, and we find that

x_xIOI

S = m|

1—x
Of course, if you already know the general formula for the sum of
a geometric progression, this result is not unexpected. But if you don’t
already know the general formula for the sum of a geometric progression,
you have essentially learned it above: the general case will work in just the
same way.

The kev to this trick is formin
J wWs LA [~ ¥} F ) y s

ais LAWER &N A ASANM g

which many pairs add up to zero.

Exercises

1. Find the sum

] 1 ]
+ 4 :
VI+V2 243 V99 + /100

Hint: Rationalize the denominators to get a telescoping sum.

2. Express in terms of » the sum 1 +

int: Write each odd integer as th

3. Find the product (1 + x)(1 + x*)(1 + x*) (1 + x¥)(1 + x6).

int: Call this product P, and multiply P by (1 — x).

4. Without using your calculator, find the numerical value of the prod-
uct cos 20° cos 40° cos 80°.

Hint: Call this product P, and multiply P by the sine of a certain
well-chosen angle.
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Y. Summing a trigonometric series

We would like to find the sum of the series
S =sinx 4+ sin2x +sin3x +--- 4+ sinnx.
We can form a telescoping sum, as in Example 58 above. The trick is
to multiply by 2 sin (x/2):
ZSinfS = 2 sin ad sin x -+ ZSin)—C sin2x 4 - -- —I-ZSinfc— sinnx .
2 2 2 2
Now we turn the products into sums. The reader can recall, or check, that

2sinAsin B = cos(A — B) —cos (A + B)
=cos(B— A) —cos(B 4 A).

So we can write
2sin =S = 2sin = sinx +2sin£sin2x W +28in)—csinnx
2 2 2 9
= (cos Lx — cos 2x) + - - + (cos (n — 1)x — cos (n + 1)x)

1 1
3X —cos (n -+ 3)x,

= COS
and so,
1 1
_ COS 57X — COS (n 4 -2-)x

2 sin %
Sometimes this formula is more useful if we convert the sum in the

numerator to a product. We find that

__sin 2l sin (%x)

: X
sin 5

This technique is quite general, and can be used to sum the sines or
cosines of angles which are in arithmetic progression. We can find a gen-
eral formula for the sum

S =smx +sin (x + &) 4+ sin (x + 2¢) + - - - + sin (x + no)

by multiplying this sum by 2 sinw/2 and “telescoping” the result. We find

that 1
i 1t
s5in 5

o sin (x + Fo)

1 o
sin 5
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Similarly, we can find a general formula for the sum
S=cosx +cos(x+a)tcos(x +2x)+---+cos(x + na),
again by multiplying by 2 sin «/2, and using the identity
2cos Asin B =sin(A+ B) —sin(A — B).

We find that

sin n+1

C — 2

o cos (x + 3a)

Lo
Sln‘2"

In the following exercises, we recommend using the hints provided,
then checking the results by applying the formulas directly.

Exercises

1. Find fhe sum

sinx 4 sin3x 4+ sin5x + - - - 4 sin 99x .

Hint: Multiply this sum by 2 sin x.

b

Find the sum

A x4

: X T ) 2 . 99
smx—l—sm(x—i—-z)+sm(x—|—-:l—)+---—|—sm(x-|———z——).

Hint: Multiply this sum by 2 stn (7t /8).
3. Find the sum

cos2x 4+ cosdx +cosbx 4+ --- 4+ cos2nx.

4. Find the sum

T 27 3 nir
cos —+cos— +cos— +--- 4+ cos—.
k k k k



Appendix to Trigonometric Identities 171

5. The diagram below shows a regular 24-sided polygon inscribed in
a circle. A diameter of the circle is drawn, and perpendiculars are
dropped from all the vertices of the polygon that lie on one side of
this diameter. Find the sum of the lengths of these perpendiculars.

il







Graphs of Trigonometric
Functions

One of the most important uses of trigonometry is in describing periodic
processes. We find many such processes in nature: the swing of a pendu-
lum, the tidal movement of the ocean, the variation in the length of the day

thranaohnit tha vaar and manvyu anthare
LlllUusllUuL L1Iw J\-’ul allu 111(.!.11] VLIV O,

All of these periodic motions can be described by one important family
of functions, which all physicists use. These are the functions of the form

y =asink(x — B8),

where the constants a and k are positive, and 8 is arbitrary. In this chapter,
we will describe their graphs, which we will call sinusoidal curves. Since
they are so important, we will discuss them step-by-step, analyzing in turn
each of the parameters a, k, and 8.

1 Graphing the basic sine curve
y=asink(x — ) fora=1,k=1,=0

In Chapter 5 we drew the graph of y = sinx:

A
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That is, we start withthe case a = 1, k = 1, B = 0. Recall that we can
take the sine of any real number (the domain of the function y = sin x is
all real numbers), but that the values we get are all between —1 and 1 (the
range of the function is the interval —1 <y < 1).

Let us review how we obtained this graph. On the left below is a circle
with unit radius. Point P is rotating around it in a counterclockwise direc-
tion, starting at the point iabeled A. If x is the length of the arc AP, then
A

A y

x sSin X

in x|

\j

sin x is the vertical displacement of P. On the right, we have marked off
the length x of arc AP.The height of the curve above the x-axis is sin x.

As the angle x goes from O to 77/2, sin x grows from O to 1 (the picture
for x = /2 is shown below).

N Ay
P, 1
ah Zh
Sin x
NN R
-1 +

In fact, this is all we need to graph y = sinx. As x goes from 7/2 to m,
the values of sin x repeat themselves “backwards”:

\ 4y
14

P
sinxﬁc |3 sinx| N\, X

(N
O\ \A= X T
N

-

Y
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And as x goes from m to 27, the values are the negatives of the values in
the first two quadrants:

A A y
X 1+
ﬁs /\\j . x
sin x 2 0, TCW
./ _l £

M~
>
Y

%/ sin x n\ \W’n -
P 1L

2 - The period of the function y = sinx

As x grows larger than 2, the values of sinx repeat on intervals of length
2m. For this reason, we say that the function y = sinx is periodic, with
period 2. Geometrically, this means that if we shift the whole graph 27
units to the right or to the left, we will still have the same graph. Alge-
braically, this means that

sin (x 4+ 2m) = sinx
for any number x.

Definition: A function f has a period p if f(x) = f(x + p) for all values
of x for which f(x) and f(x + p) are defined.

The function y = sinx has a period of 2n. You can check that it also
has periods of 4x, 6, —2m, and in general, 2w n for any integer n. This
is no accident: if f(x) is a periodic function with period p, then f(x)
is periodic with period np for any integer n. This is why we make the
following definition:
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Definition: The period of a periodic function f(x) is the smallest positive
real number p such that f(x 4+ p) = f(x) for all values of x for which
f(x) and f(x + p) are defined.

Using this definition, we say that the period of y = sinx is 27.
Let us also draw the graph of the function y = cos x. Following the

cama mathndc a fAind that tha oranh 1¢ ac chawn halaw.
sale meinoas, we ina that the gldpil 1S as Sacwn oCi0w.

4y

T

The period of the function y = cos x is also 2. We will see later that this
curve can be described by an equation of the form y = a sink(x — 8).

3 Periods of other sinusoidal curves
y=asink(x—p8) fora=1,8=0,k>0

Example 59 Find the period of the function y = sin 3x.

Solution: One period of this function is 27 /3, since sin3(x 4 27/3) =
sin(3x + 2m) = sin3x. It is not difficult to see that this is the small-
est positive period (for example, by looking at the values of x for which
sin3x = 0).

Example 60 Draw the graph of the function y = sin 3x.

Solution: The function y = sin x takes on certain values as x goes from
0 to 27. The function y = sin 3x takes on these same values, but as x goes

from O to 2 /3. Hence one period of the graph looks like this:

y

>3 4
wla +
I

]
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Having drawn one period, of course, it is easy to draw as much of the whole
graph as we like (or have room for):

Y

AV AV VAV VARV,

The graph is the same as that of y = sin X, but compressed by a factor of 3
in the x- direction. In general, we have the following result:

For k > 1, the graph of y = sinkx is obtained from the graph
y = sin x by compressing it in the x-direction by a factor of k.

What if 0 < k < 1? Let us draw the graph of y = sinx/5. Since the
period of y = sinx/5 is 107, our function takes on the same values as the
function y = sin x, but stretched out over a longer period.

1
]+

-n ~1 on

Again, we have a general result:

For 0 < k < 1, the graph of y = sinkx is obtained from the
graph y = sinx by stretching it in the x-direction by a factor

of k.

Analogous results hold for graphs of the functions y = coskx, k > 0.

Our basic family of functions is y = a sin k(x — ). What 1s the signif-
icance of the constant & here? We have seen that 2/ k is the period of the
function. So in an interval of 2z, the function repeats its period k times.
For this reason, the constant & is called the frequency of the function.

Exercises

Find the period and frequency of the following functions:

l. y=sin5x 2. y=sinx/4 3. y=-cosd4x/5 4. y=cos5x/4.
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Graph each of the following curves. Indicate the period of each. Check
your work with a graphing calculator, if you wish.

5. y =sin3x 6. y=sinx/3 7. y=sin3x/2 8. y=sin2x/3
9. y=cos2x/3 10. y =cos3x/2

T
4

1 ~ o PRI
11. ne grapii sinown

-

NV VN

(a) Draw the graph of the function y = f(3x).

(b) Draw the graph of the function y = f(x/3).

4 The amplitude of a sinusoidal curve
y=asink(x—8); a>0,=0,k>0

Example 61 Draw the graph of the function y = 3 sin x.

Solution: The values of this function are three times the correspond-

ing values of the function y = sin x. Hence the graph will have the same
period, but each y-value will be multiplied by 3:

Vv a

y=3sinx

1/ \

¥
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We see that the graph of y = 3sinx is obtained from the graph of
y = sinx by stretching in the y-direction. Similarly, it is not hard to see
that the graph of y = (1/2) sinx 1s obtained from the graph of y = sinx
by a compression in the y-direction.

We have the following general result:

Fora > 1, the graph r)fv - a81n x I1s ohtained from the granh

SR A henhadlF SR 2 o

y = sinx by stretching in the y-direction. For0 < a < 1, the
graph of y = asinx is obtained from the graph y = sinx by

(‘nr_nnrf-ccl_no in the y -direction.

if &5 AL W rARS L

Analogous results hold for graphs of functions in which the period is not 1,
and for equations of the form y = acosx. The constant a is called the
amplitude of the function y = asink(x — B).

Exercises

Graph the following functions. Give the period and amplitude of each. As
usual, you are invited to check your work, after doing it manually, with a
graphing calculator.

7. Suppose y = f(x) is the function whose graph is given in Exercise 11
on page 178.

(a) Draw the graph of the function y = 3 f (x).
(b) Draw the graph of the function y = (1/3) f(x).

S Shifting the sine
y =asink(x — B8); a=1,k=1, 8 arbitrary
We start with two examples, one in which 8 is positive and another in
which B is negative.
Example 62 Draw the graph of the function y = sin(x — 7/5).
Solution: We will graph this function by relating the new graph to the
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graph of y == sin x. The positions of three particular points' on the original
graph will help us understand how to do this:

f
X | sinx | __y
: ¥ / X
M | -
7| 1 " .
T 0 ~14+ “ \_

What are the analogous points on the graph of y = sin (x — %)? It is
not convenient to use x = 0, because then y = sin (——i;‘—), whose value is
difficult to work with. Similarly, if we use x = %, we will need the value

y=sin(5 — %) =sin 3;—’6, which is still less convenient.

Butif weletx = £, 5 + %, 7 + %, things will work out better:
X x-—% |sin(x — %)
z 0 0
" T b4
7+t35] 3 1
7+ %- i g 0

That is, our choice of *“analogous” points in our new function are those
where the y-values are the same as those of the original function, not where
the x-values are the same. The graph of y = sin (x — %) looks just like the
graph of y = sinx, but shifted to the right by % units:

~1-

But we must check this graph for more than three points. Are the other
points on the graph shifted the same way? Let us take any point (xg, sin xg)
on the graph y = sin x. If we shift it to the right by %, we are merely adding
this number to the point’s x-coordinate, while leaving its y-coordinate the
same. The new point we obtain is (xy + -’55 sin xg), and this 1s in fact on the
graph of the function y = sin (x — %).

LOf course, with a calculator or a table of sines, you can get many more values. Or,
if you have a good memory, you can remember the values of the sines of other particular
angles. But these three points will serve us well for quite a while.
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There is nothing special about the number %, except that it is positive.
In general, the following statement is useful:

If B > 0, the graph of y = sin(x — B) is obtained from the
graph of y = sinx by a shift of 8 units to the right.

What if B8 is negative?

Example 63 Draw the graph of the function y = sin(x + %).

Solution: In this example, 8 = —%. Again, we will relate this graph to
the graph of y = sinx. Using the method of the previous example, we seek
values of x such that

sin (x + %) =0, sin(x + %) =1, sin(x + 175-) — 0 (for a second time).

It is not difficult to see that these values are x = u%, % - 1;—, T — %

respectively. Using these values, we find that the graph of y = sin (x + %)
is obtained by shifting the graph of y = sinx by % units to the left:

*\I
7

In general:

The graph of the function y = sin(x — B8) is obtained from the
graph of y = sinx by a shift of 8 units. The shift is towards
the left if B 1s negative, and towards the right if B is positive.

The number 8 is called the phase angle or phase shift of the curve.
sults hold for the oranh of y = cos(x — B).
Exercises
Sketch the graphs of the following functions:
1. y=sin(x ~ %) 2. y=sin(x +%) 3. y=2sin(x - %)

4, y= §sm(x+5’2~) 5. y=cos(x—7) 6. y=3cos(x + %)
7. y =sin(x — 2m)
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8—11: Write equations of the form y = sin(x —a) for each of the curves
shown below:

yi yt
I+ 14+

A /

7z [ 4 >

L n i T
/ 2 \ :
‘-\_.-/r_,_l _l p
(a) (b)
Vi

(d)

6 Shifting and stretching
Graphing y = asink(x — )

We run into a small difficulty if we combine a shift of the curve with a

o

Example 64 Graph the function y = sin(2x + 7/3).
Solution: Let us write this equation in our standard form:

sin(2x + m/3) = sin2(x 4+ 7/6)
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We see that the graph is that of y = sin 2x, shifted 77 /6 units to the left.

At first glance, one might have thought that the shift is 7 /3 units to the
left. But this is incorrect. In the original equation, /3 is added to 2x, not
to x. The error is avoided if we rewrite the equation in standard form.

Exercises

Graph the following functions:
l. y= sin%(x -%) 2. y= sin(%x —~ %) 3. y=cos2(x+ %)

4-5: Write equations of the form y = sin k(x — 8) for the following graphs:

7 Some special shifts: Half-periods

We will see, in this section, that we have not lost generality by restricting
a and £ to be positive, or by neglecting the cosine function.

It is useful to write our general equation as y = a sink(x + y), where
y = —pB. Then, for positive values of y, we are shifting to the left. For
the special value ¢ = 27, we already know what happens to the graph
y = sinx. Since 27 is a period of the function, the graph will coincide
with itself after such a shift.

In fact, we can state the following alternative definition of a period of
a function:

A function y = f(x) has period p if the graph of the function
coincides with itself after a shift to the left of p units.
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Our original definition said that a function f(x) is periodic with period p
if f(x) = f(x + p) for all values of x for which these expressions are
defined. Our new definition is equivalent to the earlier one, since the graph
of y = f(x), when shifted to the left by p units, is just the graph y =
f(x + p). These graphs are the the same if and only if f(x) = f(x + p).

Let us see what happens when we shift the graph y = sin x to the left
by nm /2, where n is an integer.

For n = 1, we have the graph y = sin(x + 7 /2), a shift to the left of
the graph y = sinx:

But sin(x + 7/2) = cosx. The reader is invited to check this, either by
using the addition formulas or by looking at the definitions, quadrant by
quadrant. That is:

The graph of the function y = cos x can be obtained from the
graph y = sin x by a shift to the left of 7 /2.

We don’t need to make a separate study of the curves y = acosk(x + ).
Letting y = x+B+m/2, we can write any suchcurve as y = asink(x+y).
For n = 2, we are graphing y = sin(x + 7):

[

y

14
f " /\ x
—n T 21\

-1}

But sin(x + 7r) = — sinx. So we have:

The graph of the function y = — sinx can be obtained from
the graph y = sin x by a shift to the left of .

In fact, we do not need to make a separate study of the curves y =
a sin k(x 4 y) for negative values of a. We need only adjust the value of y,
and we can describe each such curve with an equation in which a > 0.
The following general definition is convenient:
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The number p is called a half-period of the function f if
f(x + p) = —f(x), for all values of x for which f(x) and
f(x + p) are defined.

We have shown that 7 is a half-period of the function y = sin x.
Now let k = 3. We obtain the following graph:

X

14

v
P

Y r 4 Y

I NG

1
It is not difficult to check that

sin(x + 3w /2) = —cosx .

If k = 4, we will shift by 4(;x/2) = 2, which we already know is a
full period, and we will have come back to our original sine graph.

What if k¥ = 57 Since 5 = 1 + 4, we have sin(x + 57/2) = sin(x +
w/2+4x/2) = sin(x 4+ 7 /2), because 2p 1s a period of the sine function.
So k = 5 has the same effect as k = 1, and the cycle continues.

In general, we can make the following statements:

Ifk = 4n for some integer n, then sin(x + km /2) = sinx.

Ifk = 4n + 1 for some integer n, then sin(x +km /2) = cos x.
Ifk = 4n+2 for some integern, thensin(x +kn /2) = — sin x.
Ifk = 4n+3 for some integer n, then sin(x+km /2) = — cos x.

To summarize, we have now examined the whole family of sinusoidal
curves y = asink(x — B).

The constant a is called the amplitude of the curve. It tells us how far
from O the values of the function can get. Without loss of generality, we
may take a to be positive.

The constant £ is called the frequency of the curve. It tells us how many
periods are repeated in an interval of 27r. The period of the curve is 27 /k.
Without loss of generality, we can take & to be positive.

The constant £ is called the phase or phase shift of the curve. It tells
us how much the curve has been shifted right or left. If we allow g to be
arbitrary, we need not consider negative values of a or k, and we need not

study separately curves expressed using the cosine function.
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Exercises

1-10: These exercises are multiple choice. Choose the answer

(A)
(B)
(&)
(D)

1.
4.
7.

if the given expression is equal to sin x,
if the given expression is equal to cos x,
if the given expression is equal to — sinx, or

if the given expression is equal to — cos x.

sin(x + 2m) 2. sin(x + 3w) 3. sin{x 4 97 /2)
sin(x — 7 /2) 5. sin(x — 37 /2) 6. sin(x + 197/2)
—sin(x — 197/2) 8. sin(x 4+ 1577/2) 9. sin(x — 1577 /2)

11. Prove that  is a half-period of the function y = cosx. Is 7 a half-
period of the function y = tanx? of y = cotx?

12. Prove that if ¢ is a half-period of some function f, then 2¢ is a period

of f.

13. Show that for all values of x, cos(x 4 kx /2) =

a)
b)

—sinx, if £ = 4n + 1 for some integer n,

—cos x, if k = 4n + 2 for some integer n,

¢) sinx, if kK = 4n + 3 for some integer n,

d) cosx, if x = 4n for some integer n.

14. Write each of the following in the form y = asink(x — 8), where a
and k are nonnegative:

a) y= —2sinx

b) vy = —2sin(x — 7 /3)
c) y=—2sin(x +m/4)
d) y =3cosx

e) y=3cos(x —m/6)

f) y = —3cos(x +7/8)
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15. Draw the graph of the function y = cos(x — @ /5)

16. Suppose we start with the graph of the function y = cosx. By how
much must we shift this graph to the right in order to obtain the graph of
y = sinx? By how much must we shift to the left to obtain the graph of
y =sinx?

17. Show that if £ is odd, tan{x + k7r/2) = —cotx. How can w
the expression tan(x + ki /2) if k is even?

8 Graphing the tangent and cotangent functions

The function y = tan x is different from the functions y = sinx and y =
cos x in two significant ways. First, the domain of definition of the sine
and cosine functions is all real numbers. However, tan x is not defined for
x = nm /2, where n is an odd integer.

Second, the sine and cosine functions are bounded: the values they take
on are always between —1 and 1 (inclusive). But the function y = tanx
takes on all real numbers as values.

These differences are easily seen in the graph of the function y = tan x:

I y |

]
)
wfa

Note that the graph approaches the line x = /2, but never reaches it.
This line is called a vertical asymptote of the curve y = tan x. This graph
y = tanx has a vertical asymptote at every line y = nx/2, for n an odd
integer.
To draw the graph of y == cot x, we note that
COS X sin (x — 7 /2)

cotx == == = —tan(x —/2).
* sin x cos(x —m/2) an (x —m/2)
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Therefore, the graph of y = cotx also takes on all real numbers as val-
ues. It is not defined for x = nw, where » is any integer, and has vertical
asymptotes at y = n:

Exercises

1. Draw the graphs of

a) y=tan(x —n7/6) b) y=3tanx ¢} y=cot(x -+ w/4).

2. Suppose we graphed the equation y = tan x. Is it possible to describe
this graph with an equation of the form y = cot (x + ¢), for some
number ¢? Why or why not?

9 An important question about sums of sinusoidal functions

We hope that from this material you have seen the importance, and the
beauty, of the family of sinusoidal curves that we have been studying.
Physicists call this family the curves of harmonic oscillation.

Let us now consider the following question. Suppose we have two
sinusoidal curves (harmonic oscillations):

y1 = arsink;(x — §;)
Y= SiIlkz(x — ﬂz) .

Will the sum of these two also be a sinusoidal curve (harmonic oscillation)?
That is, will

y=aysink;(x — B1) + azsink>(x — B>)
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be a sinusoidal curve? The answer is somewhat surprising. If k; = %, the
answer is yes, but if k1 # k, the answer is no.

That is, the sum of two harmonic oscillations is again a harmonic
oscillation if and only if the original frequencies are the same. The results
of the next few sections will allow us to explore this sttuation.

Terneenicno
LLACIUIDED

Each of these exercises concerns the following three functions:

Y1 =2sinx
yy = sin{x — 7 /4)
y3 = 3sin2x

1. Use your calculator to draw the graph of (a) y; + y2; (b) y1 + y3;
(€) y2 + ¥3-

2. Which of the graphs in Exercise 1 appear to be sinusoidal functions?

10 Linear combinations of sines and cosines

Definition: If we have two functions f(x) and g(x), and two constants a
and b, then the expression af (x) + bg(x) is called a linear combination of
the functions f(x) and g(x).

Let us look at the graph of a linear combination of sinusoidal curves.

Example 65 Graph the function y = JT§ sin x + 1 cos x.

Solution. Since @ = cos% and % = sin %, we use the formula
sin( + B) = sinacos B + cosasin 8. Letting o = x and B = %, this
formula tells us that the given function can be written as y = sin(x + %).
Now we can graph it as we did in Section 5:
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This solution may seem artificial, but is in fact a general method. It
works because there is an angle ¢ such that cos ¢ = 1/2 and sin¢p = «/3—/2,
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and this happened because the values A = 1/2 and B = +/3/2 satisfy the
equation A% + B? = 1. (The reader is invited to do this computation.)
But what if A% + B? is not equal to 1?

Example 66 Draw the graph of the function f(x) = 3sinx + 4 cos x.
Solution. Our “best friends” (of Chapter 1) are hiding in this expres-
sion: where we have 3 and 4, we try to look for the number 5. Indeed,
f(x)/5=2sinx+% cosx,and (-53-)2-{- (%)2 = 1, so we can use the method
of Example 3. We know that there is an angle ¢ such that cos¢ = 3/5 and

sing = 4/5, and so
fx)
5

or f(x) = Ssin(x + ¢), for a certain angle ¢. The graph is a sine curve,
shifted to the left ¢ units, and with amplitude 5:

= COS ¢ SINX + sin @ cosx = sin(x + ¢)
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The same technique will work for linear combinations of y = sinkx
and y = cos kx, as long as the frequency of the two functions is the same.
This is important enough to state as a theorem:

Theorem A linear combination of y = sinkx and y = coskx can be

exnreccad ae v — g oin Bl vy L nY Fre cnitah
CXPIEssSeq as y = a siii KX + ¢, 101 Siiitdo

Proof. A linear combination of y = sinkx and y = coskx has the
form y = Asinkx + B cos kx. We can rewrite it as
y=vAZ f BZ(

sinkx + coS kx) )

A B
/AZ + B2 VAZ + B2

Then

() * () =
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so there exists an angle o such that

A . B
cosQ@ = ————and sine = ———— (1)

VA? + B2 '/AZ—I—BZ.

Now we can write

Asinkx + B coskx =/ A% + B%(cosa sin kx + sina cos kx)

= v A? 4+ B?sin(kx + o)

= A2 + B2sink(x +a/k) .
Taking a = +~/A? + B? and ¢ = a/k, we have the required form. |

We have proved that Asinkx + B coskx can be written in the form
asink(x + y), where a = ~/A? 4+ B? and ¢ = «a/k (for o defined by
equations (1) above).

The converse statement is also correct:

Theorem The function a sin k(x + ¢) can be written as a linear combina-
tion of the functions sin kx and cos kx.

Proof. We have asink(x + ¢) = a(sinkxcoske + coskx sin k).
Taking A = acosky and B = asinkg, we see that asink(x + @) =
Asinkx + Bcoskx. a

We can now write a sinusoidal curve in either of two standard forms:
y=asink(x — B)ory = Asinkx + Bcoskx.

Example 67 Write the function y = 2 sin(x + 7 /3) as a linear combina-
tion of the function y = sinx and y = cos x.

Solution. We have 2 sin(x 4 /3) = 2(sinx cosw /3 +cos x sinx /3) =
2(1/2)sinx + 2ﬁ/2 cos x = sin x + /3 cos x.

Exercises

= 2ginx 4+ 2cogx in the form

AY —
P ¥ 3 Q.9 1 o v [ A § 11z ¥ —_—

asink(x — B). What is its amplitude?

[l
£
~d

2. What is the maximum value achieved by the function y =
2sinx + 3 cos x?
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3-6: Write each function in the form y = asink(x — 8). What is the
maximum value of each function?

3. y=sinx +cosx
4. y=sinx —cosx
5. y=4sinx +3cosx
6. y = sin2x + 3cos2x

7, 8: Write each function in the form A sin x + B cos x:

7. y =sin(x — w/4)
8. y = 4sin(x + 7 /6)

11 Linear combinations of sinusoidal curves with
the same frequency

Now we are ready to address the important question of Section 9.

4 n
Theorem The sum of two sinusoidal curves with the same T

A RA TR ¥ L L2 I' w5 l‘l“U\lA“ul LA L

again a sinusoidal curve with this same frequency.

Proof. Let us take the two sinusoidal curves

ai sink(x — ﬂl) and
az sin k(x — ﬁg) .

Using the addition formula, we can write:

a sink(x — B1) = Ay sinkx + Bjcoskx
az sink(x — B2) = Axsinkx 4+ By coskx

(A; + Ay)sinkx + (B; + By)coskx .

But we know, from the theorem of Section 9, that this sum is also a sinu-
soidal curve. Our theorem is proved. O

We invite the reader to fill in the details, by giving the expressions for
A1., Az, Bl, and Bz.
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Note that the two functions we are adding may have different ampli-
tudes. The result depends only on their having the same period. This result
is very important in working with electricity. Alternating electric current is
described by a sinusoidal curve, and this theorem says that if we add two
currents with the same periods, the resulting current will have this period
as well. So if we are drawing electric power from different sources, we
need not worry how to mix them (whether their phase shifts are aligned),
as long as their periods are the same.

The next result is important in more advanced work:

Theorem If a linear combination of the functions y = sinkx and vy =
cos kx is shifted by an angle 8, then the result can be expressed as a linear
combination of the same two functions.

Proof. Let us take the linear combination
asinkx + bcoskx
and shift it by an angle 8. The result is
asink(x — 8) +bcosk(x — B).

We know that cos k(x — 8) can be written as sin k(x —y), for some angle y.
Thus we can write our shifted linear combination as

asink(x — B) +bsink(x —y) .

But this is a sum of sinusoidal curves with the same frequency k, so the
previous theorem tells us that it can be written as a single sinusoidal curve
with frequency k (even though the shifts are different!). And we know,
from Section 9, that such a sum can be written as a linear combination of
sinkx and cos kx.

Example 68 Suppose we take the graph of a linear combination of y =
sinx and y = cos x:

y =2sinx +4cosx
and shift it 77 /6 units to the left. We get:
y = 2sin(x + 7 /6) + 4 cos(x + 7 /6)
= 2(sinx cosm /6 + cos x sinx/6) + 4(cos x cos 7 /6 — sin x sin 7r/6)
= 2(v/3/2sinx + 2(1/2) cos x + 4(+/3/2) cos x — 4(1/2) sin x
-—-*(«/—w 2)sinx + (2«/37-1- 1)cosx
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which is again a linear combination of y = sinx and y = cos x.

This technique works whenever we apply a shift to a linear combination
of y = sinkx and y = cos kx. The proof follows the reasoning of the above
example.

A final comment: We have not considered linear combinations of sines
and cosines with different frequencies. This is a more difficult situation, and
leads to some very advanced mathematical topics, such as Fourier Series
and almost periodic functions. We will return to this question a bit later.

Exercises

1. Express each function in the form y = A sinkx + Bcoskx

(a) y = 2sm(x +m/6) + cos(x + 7/6)
(b) y=2sin2(x +7/4) —cos2(x + 7 /4)

2. Look at the exercises for Section 9 on page 189.

(a) Write y; + y» as a linear combination of sinx and cos x.

(b) What goes wrong when you try to write y; + y3 as a linear
combination of sinx and cos x?

12 Linear combinations of functions with different frequencies

So far, we have some important results about linear combinations of sines
and cosines with the same frequency. We would like to investigate the sum
of two functions like y = sink;x and y = sink,, where k; # k,. We start
the discussion with some examples which may not at first appear related.

Exampie 69 Graph the function y = x + sin x.

Solution. Each y-value on this graph is the sum of two other y-values:
the value y = sinx and the value y = x. So we can take each point on
the curve y = sinx and “lift it up” by adding the value y = x to the value
y == §in X.
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This is particularly easy to see for those points where sinx = 0. For
these points, the value of x + sinx is just x:

4

y
3|+
27+
+
X
s 27 3n .

In between these points, the line y = x is lifted up slightly, or brought
down slightly, by positive or negative values of sinx. We can think of the
sine curve as “riding” on the line y = x.

Solution. This seems much more complicated, but in fact can be solved
using the same method as th
0

e previous examples. We graph the two curves
y = sinx and y = 1/10sin20x independently, then add their y-values at
each point:
A
y
1-
NI AN A NV AN o NV A A WA AN AN AN A N o WV A N o N A N
(VAR VA VAR VAR VAR VAR v NAAVARVARVARVARVARVAR VALY
\ 2 2
W }

Again, we can think of one curve “riding” on the other. This time the curve
y = 1/10sin20x “rides” on the curve y == sin x, or perturbs it a bit at each
point.

Note that our new curve is not a sinusoidal curve. We cannot express it
either in the form y = a sink(x —8) orin the form y = A sinkx+bcos kx.
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Exercises
Construct graphs of the following functions.

l. y=—~x+sinx

3 v — xz A1 rac v int: Te the functinn ndd? Te it auan®?
- ] WA A A LAILL A LLIA A ULANLAN/LL WINANE A AL VLR
4. y= x3 +sinx

4y — w2 LT 7100 ot v
J = X" T (1L/1U}5INX
6. y=cosx + (1/10) sin 20x

~

y = 2sinx + (1/10) sin 20x

13 Finding the period of a sum of sinusoidal curves
with different periods

We know that the function y = sin 10x + sin 15x is not a sinusoidal curve.
Let us show that 1t is still periodic. Indeed, if we shift the curve by 2w,
we have y = sin10(x + 2m) + sin 15(x + 27) = sin(10x + 20xw) +
si(15x + 307r) = sin 10x + sin 15x.

But what is its smallest positive period? We can answer this by looking
separately at all the periods of the two functions we are adding. Any period
of y = sin 10x must have the form m(27/10), for some integer m. Any
period of y = sin 15x must have the form n (27 /15), for some integer n.
To be a period of both functions, a number must be of both these forms.
That is, we must have integers m and n such that 2mmx /10 = 2nm /15, or
3m = 2n. If we take m = 2, n = 3, our problem is solved. The number
2w /5 = 2(27/10) = 3(2m/15) is a period for both functions. And since
we took the smallest positive values of m and n, this is the smallest positive
penod for the function y = sin 10x + sin 15x.

The argument above is drawn from number theory, where it is con-
nected with the least common multiple of two numbers. This concept is

anAd .o Namn ety netblriandion 2o dren A o o banod i cn an .-.«.A...,.-«.ns..“.

cx H ~ ~ o S S &
ustAl 111 Cledliciitdly dilulinnetie, 1l ikl Hg l.llC ].Dd.bl. CUILHIVEL JTH UL dlud

for two fractions. The general statement, proved in number theory, is this:

The function y = sinkyx + sink,x is periodic if and only if
the quotient k, / ky is rational.

But a function like y = sin x + sin +/2x has no period at all.
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Exercises
Find the (smallest positive) period for each of the following functions.
1. y = sin2x + sin3x
2. y == sin3x + sin 6x
3. y = sin4x + sin 6x
4, y = sin V2x + sin 34/2x

14 A discovery of Monsieur Fourier

Example 71 Graph the function y = sinx + (1/3) sin3x.

Solution. This example is similar to Example 70. The values of sin x
are “perturbed” by those of 1 sin 3x:

1
a
ST
a
T

Solution.

Y

1
=
WY
=




198 Graphs of Trigonometric Functions

Let us compare the graphs of the three functions:
y =sinx
y = sinx + 5 sin3x

— 1 1
y = sinx + 3sin3x + ¢ sin5x .

The formulas for these functions show a pattern. Can you guess what
the next formula in the pattern would be? Can you guess what its graph
would look like? Check your guess with a graphing calculator or software
utility.

It is not difficult to guess that the graphs of these functions will look
more and more like the following:

¥

1

a
ol

a

Mathematicians say that this sequence of functions converges to a limit,
and that this limit is the function whose graph is given above. In fact, this is
a special case of the very important mathematical theory of Fourier series.
The French physicist Fourier discovered that almost any periodic function,
including some with very complicated or bizarre graphs, can be represented
as the limit of a sum of sines and cosines (the above example doesn’t hap-
pen to contain cosines). He also showed how to calculate this sum (using
techniques drawn from calculus).

Fourier’s discovery allows mathematicians to describe very simply any
periodic function, and physicists can use these descriptions to model ac-
tions that repeat. For example, sounds are caused by periodic vibrations
of particles of air. Heartbeats are periodic motions of a muscle in the body.
These phenomena, and more, can be explored using the mathematical tools
of Fourier analysis.
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Exercises

Please use a graphing calculator or graphing software package for these
exercises.

1. Graph the function y = sinx — % sin2x + % sin 3x.

2. Graph the function y = sinx — %sin 2x + %sin 3x — %sin 4x +
3 sin 5x.
3. Consider the sequence of functions:
y =sinx
y = sinx — % sin 2x
y = sinx — 3 sin 2x + 1 sin3x

— sinx — & sj L — Ll
y =sinx — 580 2x + 38In3x — 7 sindx

y=sinx—%sin2x +%sin3x-— ;}sin4x —l-%sinSx

Draw the graph of the function that you think is the limit of this
sequence of functions.

4. Consider the sequence of functions:
y = COSX
y = Ccosx + -é- cos 3x
y = cos x + 5 €08 3x + 3z COS 5x
y = cosx + § €08 3x + 3¢ 08 5x + 55 cos 7x

Draw the graph of the function that you think is the limit of this se-
quence of functions. Do you recognize the pattern in the amplitudes?

Appendix

1. Periodic phenomena

Many phenomena in nature exhibit periodic behavior: the motions repeat
themselves after a certain amount of time has passed. The sine function, it
turns out, is the key to describing such phenomena mathematically.

The following exercises concern certain periodic motions. Their math-
ematical representations remind us of the sine curve, but are not exactly the
same. In more advanced work trigonometric functions can indeed be used
to describe these motions.
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Exercises

1. The diagram represents a line segment 1 foot in length.

D>1i
Wil
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then back again, at a speed of one foot per minute. Draw a graph

a
showing the distance from point A to the ant’s position at a given

time #. For example, when ¢ = 0.5, the ant is halfway between A
and B, and headed towards B.
2. The diagram shows part of a number line, from A = —1to P = 0,
to B = +1.
-1 0.5 0 0.5 1
. .‘ I i .
A P B

An ant is walking along the number line, starting from point P. The
ant walks to point B, then to A, then back to B, and so on. The ant
walks at a speed of one foot per minute. Draw a graph showing the
position of the ant on the number line at time ¢. For example, when
t = 0.5, the ant is at 0.5, and when ¢ = 2.5, the ant is at —0.5.

3. The diagram shows a square wall of a room. Each side of the square
is & feet long.

P

An ant is walking along the perimeter of the wall, at a speed of one
foot per minute, starting at the point £ shown and moving counter-
clockwise. Draw a graph showing the height of the ant above the
floor (call it &) at any given time ¢. For example, where t = 4 the
ant’s height is 4 feet, and where ¢ = 12 the ant’s height is 8 feet.
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4. The Bay of Fundy lies between the Canadian provinces of Nova Sco-
tia and New Brunswick. The people who live on its shores experi-
‘ence some of the world’s highest tides, which can reach a height of
40 feet. This creates a landscape that shifts twice every day. Beaches
become bays, small streams turn into raging rivers, and peninsulas
are suddenly islands as the tides rise and fall.

For anyone who lives near the ocean, it is important to know when
high and low tide will occur. But for the Bay of Fundy, it is critical
also to know how fast the tide is rising or falling. The inhabitants of
this area use the so-called rule of twelfths to estimate this. They take
the interval between low and high tide to be 6 hours (it is actually a
bit more). Then they approximate that:

-1—1-2- of the tide will come in during the first hour
TZE of the tide will come in during the second hour
-1-3-2- of the tide will come in during the third hour
-13’5 of the tide will come in during the fourth hour
& of the tide will come in during the fifth hour
71—2- of the tide will come in during the sixth hour

Assume that the height of a day’s tide is 36 feet, and draw a graph
of the height of the water at a given point along the Bay of Fundy,
using these estimates.

When is the tide running fastest? Slowest?

II. How to explain the shifting of the graph to your
younger brother or sister

When we were little, we used to go every few months to the doctor. The
doctor would measure our height, and make a graph showing how tall we
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were at every visit. Here is the graph for my height :>

] | | | ! »-
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Two years later, when you were born, our parents asked the doctor if
she could predict your growth year-by-year. Well, she couldn’t exactly do
this, but she said: “If the new baby follows the same growth curve as your
older child, then he will be as tall as the older one was three years earlier.”
So the doctor was predicting a growth curve for you which looks like this:

ft

\
L\m

P

3 t | | T
1984 1985 1986 1987 1988 1989

You will be 3 feet tall exactly two years after 1 was 3 feet tall, and 4
feet tall also exactly two years after I was, and so on. Your graph is the
same as mine, but shifted to the right by two years. If you want to know the
prediction for your height, just look at what my height was two years ago.
So if my graph is described by the equation height = f(year), then your
graph is described by the equation height = f(year — 2).

Of course, it hasn’t quite turned out this way. My growth curve was not
exactly the same as yours. So the doctor’s prediction was not accurate. But
for some families, it is accurate.

20f course, when I was very little, I couldn’t stand up, so they measured my “length.”
When [ learned to stand, this became my height.
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In just the same way, if you are dealing with the graph y = sin(x — a),
rather than y = sinx, you must “wait” for x to get bigger by o before the
height of the new graph is the same as that of the old graph. So the new
graph is shifted « units to the right.

II1. Sinusoidal curves with rational periods

We have taken, as our basic sine curve, the function y = sinx. The period
of this function is 27, which is an irrational number, The other functions
we’ve investigated also have irrational periods. Can a sine curve have a
rational period?

Consider the function y = sin2mx. Using our formula, its period is
2r/2n = 1. We can check this directly:

sin(27 (x + 1)) = sin2x +27) = sin27x .

The exercises below require the construction of sinusoidal curves with
other rational periods.

Exercises

1. Show that the function y = sinmwx has the value O when x = 1,
x=2,x=3,andx = 4.

2. Show that the function y = sin4m x has a period of 3.
3. Write the equation of a sine curve with period 3.
4. Write the equation of a sine curve with period 2.

5. If n is a positive integer, write a function of the form y = sin kx with
period 7.

IV. From graphs to equations

A tale is told of the Russian tsar Alexei Mikhaelovitch, the second of the
Romanov line (1629-76; reigned 1645-76). His court astronomer came to
him one day in December, and told him, “Your majesty, from this day forth
the number of hours of daylight will be increasing.”

The tsar was pleased. “You have done well, court astronomer. Please
accept this gift for your services.” And, motioning to a courtier, he pre-
sented the astronomer with a valuable gemstone.
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The astronomer enjoyed his gift and practiced his arts, until one day
in June, when he again reported to the tsar. “Your highness, from this day
forth the number of hours of daylight will be be decreasing.”

The tsar scowled. “What? More darkness in my realm?” And he or-
dered the hapless astronomer beaten.

Of course, the variation in the amount of daylight was not the fault
of this astronomer, or any other astronomer. It is due to the circumstance
that the earth’s axis is tilted with respect to the plane in which it orbits the
sun. Because of this phenomenon, the days grow longer from December to
June, then shorter from June to December.

What is interesting to us is the rate at which the number of hours of
daylight changes. It turns out that if we graph the number of hours of day-
light in each day, we get a sinusoidal curve:

15 7

hours of daylight
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Since this curve 1s high above the x-axis, we have shown it with the
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U

y-axis “broken,” so that you can see the interesting part of the graph. If
you don’t like this, try redrawing the curve without a “broken” y-axis. You
will find that most of your diagram is empty.

We will learn more about this curve in the following exercises.
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Exercises

]

. By estimating the distances on the graph above, find an equation of

the form y = a sin k(x — &) which approximates the function whose
graph is shown.

The curves below give the hours of daylight at certain latitudes
15 1
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Notice that the maximum number of hours of daylight occur at the
same time of year from graphs (a), (b), and (c), but at different times
for graph (d). If graph (a) corresponds to a location in the north-
ern hemisphere, in which hemisphere are the locations of the other
graphs?



200 Graphs of Trigonometric Functions

3. Notice that the “average’” number of daylight hours is the same for
each graph. This “average” is given by the y-coordinates along the
line around which the curve oscillates: On certain days of the year, at
each location, the actual number of hours of daylight is the same as
the average number. How does the time of year at which this average
is actually achieved vary from location to location?



Trigonometric Equations

1 Functions and Inverse Functions

Let us recall the definition of a function. If we have two sets A and B, a
function from set A to set B is a correspondence between elements of A
and elements of B such that

1. Each element of A corresponds to some element of B, and

2. No element of A corresponds to more than one element of B.

If the element x in set A corresponds to the element y in B, we write
y = f(x), where f is the symbol for the function itself.

Example 73 Let us take A as the set of all real numbers, and B as another
copy of the set of real numbers. If x is an element of A, then we can make
it correspond to an element y in B by taking y = x. Every element x in A
corresponds to some element y in B, (since any number can be squared),
and no element x in A corresponds to more than one element y in B (since
we get a unique answer when we square a number).

Our definition of a function is not very democratic. For every element
of A, we must produce exactly one element of B. But if we have an element
of B, we cannot tell if there is an element in A to which it corresponds. An
element of B may correspond to no element of A, to one element of A, or
to more than one element of A.!

Hn older texts, this undemocratic situation was described by calling x the independent
variable and y the dependent variable.
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Example 74 In Example 73, if we were given a number x in A, we are
obliged to supply an answer to the question: what number y in B corre-
sponds to A? For example, if x = 3, then we can answer that y = 9, and if
x = —3, we can answer y = 9 again. This is allowed, under our definition
of a function. The only restriction is that our answer must be a number in
set B.

But if we choose an element y in set B, we are not obliged to answer
the question: what number in A corresponds to it? Certainly, if we chose
y = 9, we could answer x = 3. But we could just as well answer x = —3,
and so our answer would not be unique. Worse, if we chose y = —1, we
have no answer at all. There is no real number whose square is —1.

That is, if y is a function of x, it may not be the case that x is also a
function of y. However, in some cases, we can improve the situation.

Example 75 Take the set A to be the set of nonnegative real numbers,
and for B take another copy of the same set. As before, the correspondence
y = x? is a function: if x is a number in A, then x% is a number in B,
since the square of a real number cannot be negative. But now, if we take
a number y in B, we can always answer the question: What number x in
A corresponds to y? For example, if y = 9, we can answer that x = 3.
We are not embarrassed by the possibility of a second answer, since —3 is
not in our (new) set A. Nor are we embarrassed by the lack of any answer.
Negative numbers, which are not squares of real numbers, do not exist in
our new set B.

In general, we can take a function y = f(x), try to start with a value
of y, and get the corresponding value of x. If this is possible — if x is a
function of y as well — then this new function is called the inverse function
for f(x).

Thus the function y = x?, where x > 0 and y > 0, does have an
inverse, given by the formula x = ,/y. This is the reason for 1n51st1ng, in

alamentarv aloahra hnnkce that the cymhnl /; rofere tn the nannooa
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real number whose square is y.
When does a function have an inverse function? This is an important

1
aguestion. We will not oive a ageneral ancwer here Wea will
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serve that if A and B are intervals on the real line, then y = f(x), defined
on these intervals, has an inverse if and only if it is monotone (steadily in-
creasing or steadily decreasing). The first two graphs below show functions
that are monotone, and have inverses. The last three graphs show functions
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that have no inverse on the sets A and B.
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2 Arcsin: The inverse function to sin

Example 76 The equation y = sin x defines a function from the set A of
real numbers to the set B of real numbers. Does it have an inverse function?

Again, the answer is no, and for the same two reasons as in Example 75.
For some values of y in B, such as y = 5, there are no values of x such that
sinx = y. For other values of y, such as y = 1/2, there are many values
of x:sinmw/6 = 1/2,sin57/6 = 1/2, sin 137 /6 = 1/2, and so on.

In Example 75, we were able to overcome these difficulties, by restrict-
ing the sets A and B that the function is defined on. Can we do this here?
Let us look at the graph of y = sinx.

A
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Let us start by including the number O in our set A. We must choose
for set A a domain on which the function y = sin x is monotone, and it’s
easiest to take the for set A theset —n/2 < x < /2:
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Now we can choose for set A our interval —m/2 < x < /2, and for
set B the interval —1 < y < 1, and for every y in set B, there exists exactly
one x in A such that sinx = y.
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The inverse function to y = sinx, defined in this way, is important
enough to merit its own name. It is called the arcsine function?, and if y =
sin x (with x and y in the two sets described above), we write x = arcsin y.

However, sometimes we will discuss the arcsine function in its own
right. Then we will write y = arcsinx, where —1 < x < 1,and —n /2 <
y < m/2. We have already had a chance encounter with this function on
the calculator. Now we will get to know it much better.

Example 77 Find arcsin 1/2.

Solution: Again, if y = arcsin1/2, then siny = 1/2. There are many
such angles, but we have agreed to choose the unique y such that -7 /2 <
y < m /2. This value is 7 /6, so arcsin 1/2 = 7w /6.

Example 78 Find arcsin —+/3/2.
Solution: If y = arcsin V372, thensiny = —/3/2 and —7/2 < y <
n/2.Hence y = —m /3.

Example 79 Find arcsin(sin 77 /5).

Solution: We let y = arcsin(sin it /5), and rewrite this statement as sin x
= sin(r/5). We know that there are many solutions to this equation: x =
/5, 47 /5, and so on. But since we require that —w/2 < y < 7/2, so
arcsin(sinr/5) is just 7 /5.

Example 80 Find arcsin(sin 37/5).

Solution: As usual, we write x = arcsin(sin 37 /5), so that sinx =
sin 377 /5. But this time we cannot choose x = 3x/5, since this value is not
in the required interval. However, there is a value of x in the interval that
satisfies this equation. It is x = 2% /5, and this is our required value.
Example 81 Draw the graph of the function y = sin(arcsin x).

Solution: We first decide what the domain of definition of this function
is. Since we are taking arcsinx, we must have —1 < x < 1. And since
y is the sine of some angle, —1 < y < 1 as well. On these intervals,
sin(arcsin x) is simply x, so the graph is as follows:

y

T

-1 1x

-1+

IWe can explain the odd notation y = arcsinx by remembering that it stands for the
sentence “y is the arc (or angle) whose sine is x”.
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Example 82 Draw the graph of the function y = arcsin(sin x).

Solution: We will soon see that this is not the same as the previous
example(!). Again, we begin by deciding on the domain of the function. We
can take the sine of any real number x. Since the resulting value is in the
interval from —1 to 1, we can then take the arcsine of this value. Hence the
function y = arcsin(sin x) is defined for any real number x. The possible
values for y are those of the arcsine function, so —7/2 <y < 7 /2.

Let us next look at the function for values of x between —7 /2 and 7 /2.
On this interval, we find that y = x, so the graph looks like this:
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1
2
1 [l P
) I b
_x L
2 2
-l
2
But x can take on any real value, so we are not finish Let us look at

e
the function for values of x between 7r/2 and 37 /2. In this interval, sin x
decreases from 1 to —1, so the values of y = arcsin(sinx) will decredse
from m/2 to —m /2. The reader is invited to check that the g
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And now we note that the function y = arcsin(sinx) is periodic, with
period 2mr: arcsin(sin[x+27m]) = arcsin(sin x). The full graph is as follows:
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As we mentioned, the arcsine function appears on your calculator, and
you will find that the calculator knows how to compute arcsinx for any
number x. The button which does this is marked either { arcsin | or | sin—! |.
(We are unhappy with the second notation, and will use only the first.”)

In just the same way, we can define an inverse of the function y = tan x.
We choose an interval near O for which the function is monotone. It will be
convenient once again to choose the interval —n/2 < x < 7/2. Then the
inverse function, which we will call arctan x, will take on all real values.

This is really a very nice function, since it is defined for any real num-
ber x. Its y-values, however, are restricted to the interval —7/2 < x < 7 /2.
Indeed, the function y = arctan x supplies us with a one-to-one correspon-
dence between all the real numbers and the numbers on that interval.*

We can also define an inverse of the function y = cos x. But we cannot
choose the same interval we chose for the sine and tangent, since the cosine
is not monotone on —m/2 < x < m/2. Instead we choose the interval
0 < x < m, on which the function y = cosx is monotone and decreasing.
We write the new function y = arccos x.

Example 83 Find sin{arccos(5/13)).

Solution: Let o = arccos5/13. Then cosa = 5/13,0 < & < m, and
we seek sin . This is a problem we’ve seen before. We find that sino =
12/13.

Example 84 Find cos(arcsin(—3/5)).

Solution: Let « = arcsin(—3/5). Then sina = (=3/5), ~7/2 < a <
/2, and we seek cos . This time, o is in quadrant [V, so cosa = 4/5, a
positive number.

In summary,

y =arcsinx means x =sinyand —n/2 <x <mw/2
y=arccosx means x =cosyand0 <x <=

y = arctanx means x = tany and — /2 <x < m/2.

3The notation sin~! 1 /3 looks too much like the notation sin® 1 /3, which of course
means (sin 1/3)(sin 1/3). By analogy, the symbol sin™! 1 /3 “should” mean 1/sin(1/3) =
csc 1 /3. But it means something completely different. While it remains standard in some
texts, and on some calculators, we will not use it.

40One way to understand this is to say that there are “just as many numbers” on the
whole line as there are on the interval —7/2 < x < m/2. When mathematicians started
talking like this, some people thought this statement strange, since the interval has finite
length while the line is infinite in length. What they meant, however, was simply that the"

notion of “length” is not based on the “number” of points in the segment being measured.
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Exercises

1.

10.

11.

Find the value of:
(a) arcsin 0.5 (b) arccos 0.5 (c) arctan 1

(d) arcsin(—-?) (e) arccos(-—‘éi) (H arctan(—\@)
(g) arcsin 2
Find the numerical value of the following expressions:

(a) sin(arcsin 0.5)  (b) cos(arccos 43y (c) tan(arctan(—1)

N’

(d) arcsin(sin ) (e) arccos(cos 1E)

. Show that sin(arccos b) = ++/1 — b%. What determines whether we

should choose the positive sign or the negative sign?

Express tan(arcsin b) in terms of b. Will we need an ambiguous sign,
as we did in Problem 3?

. Express cos(arctan b) in terms of b.

Show that arccos(sine) = 7/2 —«, for0 < o < 7/2. What can you
say for values of « outside this set?

. Find each of the following values:

3m
11

(f) arcsin(sin %)

(a) arcsin(sin {5)  (b) arcsin(sin g% (c) arcsin(sin

S
11

Hint: For most students, Part (f) is much more difficult than the
others.

(d) arcsin(sin 9,-’{- (e) arcsin(sin

. Draw the graph of the function y = cos(arccos x).

Draw the graph of the function y = arccos(cos x).

Find the numerical value of sin(arcsin 3/5 + arcsin 5/13). (Hint: Let
o = arcsin 3/5, B == arcsin 5/13, and use the formula for sin(x+28).)

Recall that tan(« + ) = (tano + tan 8)/(1 — tan« tan B). Using

this formula, prove that arctan a + arctan b = arctan ££2.,
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12. The diagram below shows three equal squares, with angles o, 8, ¥
as marked. Prove that o + 8 = y.

=

o \B VY

Hint: Note that « = arctan1/3, 8§ = arctan1/2, and y = arctan 1.
Then use the formula from Problem 8.

13. Extra credit: Can you prove the result in Problem 9 without using
trigonometry?

3 Graphing inverse functions

How is the graph of a function related to the graph of its inverse function?

Example 85 Let y = x2, for x > 0 and y > 0. As we have seen, it is
monotone increasing. Here is its graph:

y
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We can read the values of the function from the graph. For example,
the diagram shows that f(2) = 4, since the x-value 2 corresponds to the
y-value 4 on the graph.

The inverse function, as we have seen, is g(y) = ./y. This graph also
contains all the information we need to find values of the inverse function.
We just choose our first number on the y-axis, and use the graph to get
the corresponding number on the x-axis. For example, if we want g(4), we
find the number 4 on the y-axis, and use the graph to find the corresponding
number (which is 2) on the x-axis.

However, many people are more comfortable using the letter x to de-
note the number in set A for which the function is making an assignment,
and the letter y for the number in set B to which x is assigned. There are
two ways to accommodate this need. We can simply relabel the axes of the
original graph:
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But many people prefer the x-axis to appear horizontal, and the y-axis to
appear vertical, on the page. We can accommodate them by reflecting the
graph around a diagonal line:

|
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This graph contains the same information as the others, but in a more con-
ventional form.

Here are graphs of the sine function, and its inverse, the arcsine func-
tton. The graph of the inverse function is given in the conventional position.
Note that the domains are restricted as we discussed above.
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And here are graphs of y = arccos x and y = arctan x:
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The graph of y = arctan x shows clearly how the function maps the entire
real line onto a finite interval.

4 Trigonometric equations

We must often solve trigonometric equations: equations in which trigono-
metric functions of the unknown quantity appear. We can often use the
following method to solve these:

1. Reduce them to the form sina = a, cosx = a, ortanx = q;
2. Locate the solutions to these simple equations between 0 and 27;

3. Use the periods of the functions sin x, cos x, and tan x to find all the
solutions.
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We start with a simple example.

Example 86 Solve the equation sinx = 1/2.

This means that we must find all the values of x for which sinx = 1/2.
We will describe two ways of finding these values. Our first method
uses a circle, and our second uses a graph of the function y = sin x.

Solution I: We first use a unit circle, centered at the origin. As a first
step, we find two particular answers. We recall that sinw/6 = 1/2. Let
us illustrate this on our circle. We draw an angle of /6, and find the line
segment which is equal to 1/2:

1/2
/6 ,

This is our first answer.
But if we draw a horizontal line across the circle, we find another angle
whose sine is 1/2:

— ] — o p— —

172 { ¢ sn/6

So we have the answers x == /6 and x = 57 /6. These are all the possible
answers 1n the interval 0 < x < 2.

To find more answers, note that we can make as many complete ro-
tations about the circle as we like (either clockwise or counterclockwise),
and we will get back to the same point.

From our first answer, we get the new values 7 /6 & 2w, w/6 + 4,
/6 & 67, and so on. We can write these as r/6 + 2mrn for any integer n.

From our second answer, we get the new values 57/64+2m, 57/6 44,
5m /667, and so on. We can write these as 57 /6427 n for any integer n.
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So we have two sequences of answers:

/64 2xn for any integer n, and
57/6 4+ 2mwn for any integer n.

These two sequences contain all the solutions to our equation.

We can exp"f‘" all these solutions more c:m:gauuy We started with the
basic answers x = /6 and 57 /6. We can write 57/6 as w —~ /6. Then
the second set of nswers will be w# — /6 4+ 27n. Then we can write the
two sequences of solutions as

2nm + /6 for any integer n, and
(2n + 1) — = /6 for any integer n.

Now we note that the expression 2n represents any even integer multiple
of 7, and we must add 7 /6 to this to get an answer to our equation, while
(2n 4+ 1) represents any odd integer multiple of 7, and we must subtract
/6 to get an answer. So we can write our solutions elegantly as:

k + (=D)*(x/6) for any integer k.

The reader can verify that for £ = 2n (that is, for an even integer k), we ob-
tain the first sequence of solutions, and for k = 2n 4 1 (for odd integers &),
we obtain the second sequence.

Solution 2: We can use the graph y = sinx to solve our eguation.
Along with the graph of the function y = sinx, we draw the line y = 1/2:

Ay

1+

L AN m _________ -

2 } } >
p "2' Tt\ /zlnziél‘ Sk Aﬂ:ﬁ X
1 \_/ \/ _6

=7n/6 + 2n = /6 + 4R

This line intersects the graph at a point whose x-coordinate is 7 /6. This is
our first initial solution. Since the graph of y = sinx has period 27, we
will find more solutions, whose x-coordinates are 7 /6 =+ 2w, /6 & 4,
/6 & 6, and 50 on.

The line y = 1/2 also intersects the graph at the point whose x-coordi-
nate is 57r/6. This is our second initial solution. Again, periodicity gives us
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more solutions, whose x-coordinates are 57 /6427, 57 /64w, S /616m7,
and so on.
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=57/6 + 2%

In general, if we need to solve a simple trigonometric equa-
tion, we can first find all the solutions between 0 and 27, then
use periodicity to get all the other solutions

Exercises
1. Using the graph above, find all the points x on the x-axis such that
sinx > 1/2. '
2. Solve the equation sinx = —1/2.
3. Solve the equation cosx = +/2/2.
4. Solve the equation tanx = 1.

5. Solve the equation sinx = — 1.

5 A more general trigonometric equation

Take some acute angle «. We wish to solve the equation sin x = sin «. One
solution is immediate: x = «. ‘
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Periodicity then gives us the sequence of solutions « + 2n, for any
integer n.
We also have a second immediate solution: x = 7 — a.

Ay

o N

B ;
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This solution gives us a second sequence of solutions, which we can write
as m — a + 2nm, for any integer n.
So the solutions are given by

a+2nr and 7w —a+2nw
for any integer n. As before, we can state this result more elegantly as
kr + (Do .

Exercises

1. Solve the equation sinx = sinx/5.
2. Solve the equation sinx = sinw/2.

3. Using the graph of the function y = cos x, show that the solutions
to the equation cos x = cos ¢« (for some acute angle o) are given by
2nn + o and 27n — «, for any integer n.

4. Solve the equation cos x = cos /5.

5. Using the graph of the function y = tanx, show that the solutions
to the equation tanx = tan « (for some acute angle «) are given by
o + mn, for any integer n.

6. Solve the equation tan x = tan /5.

7. Suppose « is some fixed angle. Express in terms of « all the solutions
to the equation sin x = — sin «. (Hint: One approach is to recall that
— sin o = sin{—a).)
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8. Suppose « is some fixed angle. Express in terms of « all the solutions
to the equation cos x = — cos «.

9. Check that the formula x = (—1)"« 47 n represents all the solutions
to the equation sin x = sin«, as n takes on all integer values.

RN . PP o Y S P Y S
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Example 87 Solve the equation cos? x = 3/4
nliitinn 1 Thic eanatinn 1¢c aanivalant tn the twa enntatinne
DUCLEON Lo LIS CUHUAUUIL 10 CHULVAICIIL (U UG 1w Cuauiils

COS X = —-2—and COSX = —

The first equation has two solutions between 0 and 2. They are x = /6
and x = 117/6:

Then periodicity gives us two sequences of solutions for our first equation:
x =m/6+42rn and x = 117 /6 + 27 n, for any integer n.

Now we turn to our second equation. The equation cosx = —+/3/2
has two solutions between 0 and 27, namely, 57 /6 and 77 /6.

\ | / .
_‘/_3__{ NRM 2 X
22 R Nl L2

__l I

This gives two more sequences of solutions: x = 57/6 4+ 27n and x =
77 /6 + 27 n, for any integer n.
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Altogether, there are four sequences of solutions:

x =mn/6+2mn forany integer n

x =5m/6+ 2mrn for any integer n

x =Trn/6+ 2rn for any integer n, and
x = 11w /6 4+ 27n for any integer n.

The reader is invited to try to find one elegant formula that will give all
these solutions.

Solution 2: [Outline] We can write cos2x = 2cos*x — 1 = 2(3/4) —
1 = 1/2. Then we solve for 2x (for example, by looking at the graph of
y = cos 2x) to find the four sequences of values for 2x. Finally, we divide
each value we find by 2, to solve for x.

Example 88 Solve the equation sinx = cos x.

Solution 1: We can recall that cos x = sin(/2 — x), and rewrite the
equation in terms of the sine function:

sinx = sin(7/2 — x) .

But, as we saw earlier, the equation sinx = sina has two sequences of
solutions:

(1) x = « + 27 n for any integer n, or
(i) x = (m — «) + 27 n for any integer n.

We apply this result with @ = 7 /2 — x. From sequence (1) we get x =
/4 4+ mn. From sequence (i1) we get the equation x = 7 /2 + x + 2mn,
which has no solutions at all.
Thus the solutions to the equation sin x = cos x are given by the se-
quence
x =n/4+ nmn forany integer n.

Solution 2: If we divide both sides of the equation by cos x, we obtain
a new equation involving only the tangent function: tanx = 1.

The only solution between 0 and 7 is x = 7 /4. Since the period of the
tangent function is 7, this initial solution give all the others, which can be
written as 7 /4 + 7 n, for any integer n.
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A fine point: If we divide by cos x, we must check that this expression
cannot be equal to 0. In fact, if cosx = 0, we cannot have cos x = sinx,
because the two functions are never 0 for the same value of x.

Example 89 Solve the equation sin x = cos 2x.
Again, we offer two solutjons.

Solution 1. We rewrite the equation in terms of the sine function, and
proceed as in the second solution to Example87. We have sinx =
sin(r/2 — 2x).

We can now distinguish two cases, as we did in Solution 1 to Example
Example 88. If x = (7w /2 — 2x) + 2nn, then x = 7/6 4+ 27nn/3, which
gives one sequence of solutions.

In the second case, we have x = (7 — (71/2 — 2x)) + 27n. This leads
tox = —m/2 — 2mn. This is a second sequence of solutions.

Solution 2: We know that cos 2x = 1 — 2sin® x (see Chapter 7). So we
can rewrite the given equation as

sinx =1—2sin’x or 2sinfx+sinx—1=0.

Let us try to solve for sin x by factoring (if this doesn’t work, we can
always use the quadratic formula). We have (2sinx — D)(sinx + 1) = 0,
sosinx = 1/2orsinx = —1.

We can solve these equations separately, using the methods we have
already demonstrated.

Forsinx = 1/2, we find x = /6 4+ 27n or x = 57 /6 + 2mn, for any
integer n.

For sinx = —1, we have x = 37 /2 + 2mn, for any integer n.

There are three sequences of solutions.

Example 90 Solve the equation tan” x = 3.

uivalent to the two e

Solution: The equation is e

tanx = +/3 and tanx = —/3 .

An initial answer to the first equation is x = 7/3, and periodicity gives
the answers /3 + mn, for any integer n.

The second equation has an initial solution x = —s /3, and periodicity
gives the answers —r /3 4 mn, for any integer n. These two sequences give
the complete solution.
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In conclusion, we note that we have already shown (Ch. 7, Appendix
L.2; p. 159), that any trigonometric identity can be reduced to an algebraic
identity. The same is true for trigonometric equations. However, the alge-
brajc equation that results is often more difficult than the same equation in
trigonometric form.

Exercises

1-12. Find the solution sets for the following equations:

1.sin2x =1 2.sinx/2 =1/2
3. cosx = sin2x 4.sinx = sin3x
5.cosx = sin4x 6.265sin’ x + cos? x = 10
7.cos?x —cosx =sin®x  8.3tan?x = 12
9. cos2x = 2sin®x 10. tan? x = cotx
5

11.

s— = Ttanx 43 12. /3tan?x + 1 = (1 + v/3) tan x
cos? x

13. Let us look back at Example 89. Solution 1 gave the general solution as

b

— r /A
=7a/0

+27n/3 or

x = —m/2—2mn for any integer n.

x=mn/6+27n orf
x=57/6+2rn or

x =3n/2+mwn forany integer n.

Show that these two sets of solutions are actually identical.

Appendix - The Miracles Revealed
In Chapter 5 we discussed two small miracles:

The Miracle of the Tangent

If we draw a tangent to the curve y = sinx at the point x = «, then
the distance between d, the point of intersection of this tangent with the
x-axis, and the point («, 0) is | tan|.
The Miracle of the Arch

The area under one arch of the curve y = sinx is 2.
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We now return to these results and furnish their proofs. Each draws on
techniques that are standard in the study of the calculus. In particular, each
uses the fact that the quotient sin 2/ A approaches 1 as & gets close to O,
We showed why this is true on Chapter 5, p. 118. A more rigotous proof
would involve the notion of limit, which is the fundamental notion of the
calculus. In this section, we give a sketch of a proof for each miracle that
parallels the more formal approach used in a course on calculus.

Proof of The Miracle of the Tangent

The diagram shows a point P (o, sina) on the curve y = sin x. It inter-
sects the x-axis at point R. We will show that QR = | tan |, by writing an
equation for line P R, then finding the coordinates of point R.

P=(0, sin o)

M N .
L g ™~ RO

We can write the equation of a line using the coordinates of a point on the
line and the line’s slope. The point will be P, with coordinates (¢, sin o).

To get the slope of line PR, we use a technique from the calculus.
Instead of looking at tangent PR, we look at a secant to the curve y =
sin x, which intersects the curve near point P. We take two points, A and
B, one just to the left of P and one just to the right, at a small distance &
along the x-axis:

P=(q, sin o)

T T R
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The coordinates of point A are (¢ — h, sin(a — h)), and the coordinates of
B are (o + h, sin(« + h)). From these two points we can compute the slope
of secant AB:

sin{o + k) — sin(o — h)

2h
__sinacosh +cosasinh — (sinwcosh — cos « sin k)
B 2h
_ 2cosasinh (sinh)
= = = Cos« )

Now we take smaller and smaller (positive) values of h, so that points A
and B get closer together, and secant A B begins to resemble tangent P R.
The expression sin h/ h gets closer and closer to 1 as & approaches 0. And
of course cos @ does not change as h approaches 0. So the slope of secant
AB, which is looking more and more like tangent PR, gets closer and
closer to the value cos «. It is reasonable, then, to expect that the slope of
PR is exactly cos «. (In calculus, this technique of finding the slope of a
tangent to a curve will receive a full justification. It is related to the notion

of the derivative of a function

AN LEF FL A L aveaalenilcae

Now we can find the equation of line PR, through point P(«, sin @)

and with slope cos «:
y — sina
———— =COsc .
X —o
We need the x-coordinate of point R. Its y-coordinate is 0, so its x-coordi-
nate is obtained by letting y = 0 in the equation above. We find that

sin o

X = — = o —tanc .

cos o
Then the length of QR is just | — (¢ — tan «)| = | tan ¢|.

Exercises

1. The diagrams above show a case where ¢ > /2. Take a numeri-
cal value of « slightly larger than = /2 (for example, ¢« = 1.6), and
follow the argument above. (Note that for such values value of «,
tana < 0.)

2. Take a value of o between 0 and /2, and follow the argument again.

Note that for such values of «, tana > 0. Where does point R fall in
these cases?
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3. When does point R fall on the origin?

4. Where does point R fall when « is very close to 7 /27 How does your
answer depend on whether « is greater or less than 7 /2?7

Proof of the Miracle of the Arch

This miracle concerns the area under one arch of the curve y = sinx,
which we claim is exactly 2. On p. 117 we showed that this area A satisfies
the inequalities 7/2 < A < m. We did this by drawing figures bounded
by straight lines that approximated the area A. We can improve on this
approximation by taking regions closer and closer to the region whose area
we want to measure. We will construct these regions out of rectangles.

We take the interval from 0 to & along the x-axis, and divide it into
many equal pieces. If there are n of these pieces, then the points of divi-
sion are xo = 0, xy = w/n, xo = 27x/n, ... x,—; = (n — )w/n, and
xn = nx/n = m. For each point x;, we draw a rectangle by erecting a per-
pendicular to the x-axis with one endpoint at x; and the other on the curve
y = sin x (the diagram shows the case n = 8):

f

y
1+

 J

X1 Xy X3 X4 X5 Xg X7 T

Note that the rectangles are inscribed in the arch for 0 < x; < 7/2, and
they are circumscribed for 7 /2 < x < m. Also, the widths of the rectangles
are all = / n. Let us set h = m/n. Then as h approaches 0, the rectangles

get thinner and more numerous,

S Ivlllll {aians ERANSE G ERwRRRANS

area A.
Finally, note that the rectangles associated with xo = 0 and x,

are “deoenerate”: their area 15 0 (no matter what value we choose for n
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will be convenient for us to ignore the rectangle associated with xg, but to
include the one associated with x,,. Then we can write the sum of the areas

and the sum of their areas nrmrnnr‘hpc th
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of these rectangles as

hsinxy -+ hsin xy 4+ hsinx3 -+ - - - + h sin x,,

. . 2r . 3m . nmw

= h{sin — 4 sin — 4 sin — + - - -+ sin —

n n n n
sin 2L Z gip 22 sin2tlz T sin 2+l Z
—h 2.1‘17r 2n = J .Znn sin — = A .nJTZ
sin Z- sin = 2 sin -
2n 2 n

If n 15 verv laroe

the area A. But as n gets very large, the fraction (n + 1)/n approaches the
value 1. Hence our expression for A gets close to
L sint/2  h
sinw/2n  sinh/2 "’

Now if we let k = h/2 this expression is equal to 2k/sink = 2(k/ sink).
As h gets close to 0, so does k, and so the expression approaches 1. Its
reciprocal, which is k/ sink, also approaches 1. This means that the sum
that approximates A gets close to 2 - 1 = 2, a miraculous result.

In calculus, this technique for finding the area under a curve is related
to the integral of a function.

Exercises

1. Using a calculator, find the approximations to A given by takingn =
4and n = 8.

2. What do you think the area under the curve y = sinx is from x = 0
tox =m/2?

L2

Try using the method t 1 u
y = sinx from x = 0 to x = /2. Is the result what you might have
expected?
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