Guía de examen parcial 2

Fecha del examen: 10 abr, 2025

1. En cada inciso dibuje la región indicada en el plano y después encuentre el volumen del sólido generado al hacer girar la región alrededor de los ejes de x y y.

a) $0 \le x \le 3, \ 0 \le y \le x^3.$ b) $0 \le x \le 2, \ 0 \le y \le 4 - x^2.$ c) $0 \le x \le 2, \ 0 \le y \le 1 + x^2.$

2. Resuelve las siguientes ecuaciones diferenciales con valores iniciales:

a) y' + 2xy = y, y(0) = 5

b) $xy'-y=x\ln(x), y(1)=2$ c) $y'=3x^2e^y, y(0)=1$

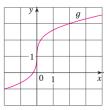
Sugerencia para b). Hacer el cambio de variable y = xz. Así que $xy' - y = x(z + xz') - xz = x^2z'$.

- 3. a) ¿Para qué valores de la constante α la función $y=e^{\alpha x}$ es una solución de la ecuación diferencial y'' + y' - 6y = 0?
 - b) Sean $y_1(x), y_2(x)$ dos soluciones de la ecuación diferencial del inciso anterior. Demuestra que para cualquier dos constantes c_1, c_2 la función $y(x) = c_1y_1(x) + c_2y_1(x)$ también es una solución.
 - c) Usa los dos incisos anteriores para encontrar una solución de la ecuación diferencial del 1er inciso con las condiciones iniciales y(0) = y'(0) = 1.
 - d)* (Opcional) Demuestre que para cualquier dos constantes a, b existe una única solución de la ecuación diferencial del 1er inciso con las condiciones iniciales y(0) = a, y'(0) = b, y encuentre esta solución.
- 4. El tamaño de una población, como una función del tiempo P(t), se modela mediante la ecuación diferencial

 $\frac{dP}{dt} = 100P\left(1 - \frac{P}{10}\right).$

- a) ¿Para qué valores de P la población es constante?
- b) ¿Para qué valores de P la población es decreciente?
- c) ¿Para qué valores de P la población es creciente?
- d) Encuentre las soluciones de la ecuación con valores iniciales P(0) = 5 y P(0) = 15, y dibuje sus gráficas sobre el mismo sistema de ejes.
- 5. a) Exprese $\cos(2\alpha)$, $\sin(2\alpha)$ en términos de $\cos \alpha$, $\sin \alpha$.
 - b) Encuentre (sin calculadora) el coseno y seno de 45 y 30 grados.
 - c) Use los dos incisos anteriores para encontrar (sin calculadora) el coseno y seno de 22.5 y 15 grados.
- 6. Sabiendo que sen $\alpha = 0.2$,
 - a) ¿Cuáles son los valores posibles de sen 2α , sen $(\alpha/2)$, cos α , cos (2α) , cos $(\alpha/2)$?
 - b) Si además sabemos que α es un ángulo agudo, ¿cómo cambian las respuestas del inciso anterior?

- 7. La gráfica de una función g(x) está dada a la derecha.
 - a) Encuentre el valor de g(2).
 - b) ¿Es g una función inyectiva (uno a uno)?
 - c) Estime el valor de la solución a la ecuación g(x) = 2.
 - d) Dibuje la gráfica de la función inversa g^{-1} .



8. Utilice transformaciones para dibujar las gráficas de

$$a) \quad y = 3\ln(x-2)$$

$$b) \quad y = 2 - \sqrt{x}$$

c)
$$y = 2 \operatorname{sen}(2x)$$

9. Encuentre el valor exacto de cada una de las siguientes expresiones, sin usar calculadora.

$$a)$$
 $2^{\log_2 3}$

b)
$$\frac{\ln 8}{\ln 2}$$

c)
$$\tan(\arccos 0.7)$$

$$d) \quad \log_{10} 4 \ + \ \log_{10} 25$$

$$e$$
) $e^{\ln(\sqrt{e})}$

$$f$$
) $arc cos(sen 0.7).$

10. Evalúe las siguientes integrales

a)
$$\int_0^T (x^4 - 8x + 7)dx$$
 b) $\int_0^1 (1 - x)^9 dx$

b)
$$\int_0^1 (1-x)^9 dx$$

c)
$$\int_0^1 (\sqrt[4]{u} + 1)^2 du$$

$$d) \quad \int_0^2 y^2 \sqrt{1+y^3} dy$$

$$e$$
) $\int_0^1 \sin(3\pi t) dt$

$$f) \quad \int_{-1}^{1} \frac{\sin x}{1+x^2} dx$$

$$g) \int_{-\pi/4}^{\pi/4} \frac{t^4 \tan t}{2 + \cos t} dt$$

$$h) \int \left(\frac{1-x}{x}\right)^2 dx$$

$$i) \quad \int \frac{x+2}{\sqrt{x^2+4x}} dx$$

$$j$$
) $\int \operatorname{sen}(\pi t) \cos(\pi t) dt$ k) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$

$$k) \quad \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

$$l$$
) $\int \tan x \ln(\cos x) dx$