Exercises for Section 7.2

Evaluate each of the integrals in Exercises 1-6 by making the indicated substitution, and check your answers by differentiating.

1.
$$\int 2x(x^{2} + 4)^{3/2} dx; \ u = x^{2} + 4.$$

2.
$$\int (x + 1)(x^{2} + 2x - 4)^{-4} dx; \ u = x^{2} + 2x - 4.$$

3.
$$\int \frac{2y^{7} + 1}{(y^{8} + 4y - 1)^{2}} dy; \ x = y^{8} + 4y - 1.$$

4.
$$\int \frac{x}{1 + x^{4}} dx; \ u = x^{2}.$$

5.
$$\int \frac{\sec^{2}\theta}{\tan^{3}\theta} d\theta; \ u = \tan \theta.$$

6.
$$\int \tan x \, dx; \ u = \cos x.$$

Evaluate each of the integrals in Exercises 7-22 by the method of substitution, and check your answer by differentiating. 7. $\int (x+1)\cos(x^2+2x) dx$

7.
$$\int (x + 1)\cos(x^{2} + 2x) dx$$

8.
$$\int u \sin(u^{2}) du$$

9.
$$\int \frac{x^{3}}{\sqrt{x^{4} + 2}} dx$$

10.
$$\int \frac{x}{(x^{2} + 3)^{2}} dx$$

11.
$$\int \frac{t^{1/3}}{(t^{4/3} + 1)^{3/2}} dt$$

12.
$$\int \frac{x^{1/2}}{(x^{3/2} + 2)^{2}} dx$$

13.
$$\int 2r \sin(r^{2})\cos^{3}(r^{2}) dr$$

14.
$$\int e^{\sin x} \cos x \, dx$$

15.
$$\int \frac{x^{3}}{1 + x^{8}} dx$$

16.
$$\int \frac{dx}{\sqrt{1 - 4x^{2}}}$$

17.
$$\int \sin(\theta + 4) \, d\theta$$

18.
$$\int \frac{1}{x^{2}} \sin \frac{1}{x} \, dx$$

19.
$$\int (5x^{4} + 1)(x^{5} + x)^{100} \, dx$$

19.
$$\int (3x + 1)(x + x) \, dx$$

20.
$$\int (1 + \cos s) \sqrt{s} + \sin s \, ds$$

21.
$$\int \left(\frac{t+1}{\sqrt{t^2+2t+3}} \right) dt$$

22.
$$\int \frac{dx}{x^2+4}$$

Evaluate the indefinite integrals in Exercises 23-36.

23.
$$\int t\sqrt{t^2 + 1} dt.$$

24.
$$\int t\sqrt{t + 1} dt.$$

25.
$$\int \cos^3\theta d\theta. [Hint: Use \cos^2\theta + \sin^2\theta = 1.]$$

26.
$$\int \cot x dx.$$

27.
$$\int \frac{dx}{x \ln x}.$$

28.
$$\int \frac{dx}{\ln(x^x)}.$$

29.
$$\int \sqrt{4 - x^2} dx. [Hint: Let x = 2 \sin u.]$$

30.
$$\int \sin^2 x dx. (Use \cos 2x = 1 - 2 \sin^2 x.)$$

31.
$$\int \frac{\cos \theta}{1 + \sin \theta} d\theta.$$

32.
$$\int \sec^2 x (e^{\tan x} + 1) dx.$$

33.
$$\int \frac{\sin(\ln t)}{t} dt.$$

34.
$$\int \frac{e^{2s}}{1+e^{2s}} ds.$$

35.
$$\int \frac{\sqrt[3]{3+1/x}}{x^2} dx.$$

36.
$$\int \frac{1}{x^3} \left(1 - \frac{1}{x^2}\right)^{1/3} dx.$$

- 37. Compute $\int \sin x \cos x \, dx$ by each of the following three methods: (a) Substitute $u = \sin x$, (b) substitute $u = \cos x$, (c) use the identity $\sin 2x = 2 \sin x \cos x$. Show that the three answers you get are really the same.
- 38. Compute $\int e^{ax} dx$, where a is constant, by each of the following substitutions: (a) u = ax; (b) $u = e^x$. Show that you get the same answer either way.
- *39. For which values of m and n can $\int \sin^m x \cos^n x \, dx$ be evaluated by using a substitution $u = \sin x$ or $u = \cos x$ and the identity $\cos^2 x + \sin^2 x = 1$?
- *40. For which values of $r \operatorname{can} \int \operatorname{tan}^r x \, dx$ be evaluated by the substitution suggested in Exercise 39?

Copyright 1985 Springer-Verlag. All rights reserved.