Exercises for Section 7.2

Evaluate each of the integrals in Exercises 1-6 by making the indicated substitution, and check your answers by differentiating.

1. $\int 2 x\left(x^{2}+4\right)^{3 / 2} d x ; u=x^{2}+4$.
2. $\int(x+1)\left(x^{2}+2 x-4\right)^{-4} d x ; u=x^{2}+2 x-4$.
3. $\int \frac{2 y^{7}+1}{\left(y^{8}+4 y-1\right)^{2}} d y ; x=y^{8}+4 y-1$.
4. $\int \frac{x}{1+x^{4}} d x ; u=x^{2}$.
5. $\int \frac{\sec ^{2} \theta}{\tan ^{3} \theta} d \theta ; u=\tan \theta$.
6. $\int \tan x d x ; u=\cos x$.

Evaluate each of the integrals in Exercises 7-22 by the method of substitution, and check your answer by differentiating.
7. $\int(x+1) \cos \left(x^{2}+2 x\right) d x$
8. $\int u \sin \left(u^{2}\right) d u$
9. $\int \frac{x^{3}}{\sqrt{x^{4}+2}} d x$
10. $\int \frac{x}{\left(x^{2}+3\right)^{2}} d x$
11. $\int \frac{t^{1 / 3}}{\left(t^{4 / 3}+1\right)^{3 / 2}} d t$
12. $\int \frac{x^{1 / 2}}{\left(x^{3 / 2}+2\right)^{2}} d x$
13. $\int 2 r \sin \left(r^{2}\right) \cos ^{3}\left(r^{2}\right) d r$
14. $\int e^{\sin x} \cos x d x$
15. $\int \frac{x^{3}}{1+x^{8}} d x$
16. $\int \frac{d x}{\sqrt{1-4 x^{2}}}$
17. $\int \sin (\theta+4) d \theta$
18. $\int \frac{1}{x^{2}} \sin \frac{1}{x} d x$
19. $\int\left(5 x^{4}+1\right)\left(x^{5}+x\right)^{100} d x$
20. $\int(1+\cos s) \sqrt{s+\sin s} d s$
21. $\int\left(\frac{t+1}{\sqrt{t^{2}+2 t+3}}\right) d t$
22. $\int \frac{d x}{x^{2}+4}$

Evaluate the indefinite integrals in Exercises 23-36.
23. $\int t \sqrt{t^{2}+1} d t$.
24. $\int t \sqrt{t+1} d t$.
25. $\int \cos ^{3} \theta d \theta$. [Hint: Use $\cos ^{2} \theta+\sin ^{2} \theta=1$.]
26. $\int \cot x d x$.
27. $\int \frac{d x}{x \ln x}$.
28. $\int \frac{d x}{\ln \left(x^{x}\right)}$.
29. $\int \sqrt{4-x^{2}} d x$. [Hint: Let $x=2 \sin u$.]
30. $\int \sin ^{2} x d x$. (Use $\cos 2 x=1-2 \sin ^{2} x$.)
31. $\int \frac{\cos \theta}{1+\sin \theta} d \theta$.
32. $\int \sec ^{2} x\left(e^{\tan x}+1\right) d x$.
33. $\int \frac{\sin (\ln t)}{t} d t$.
34. $\int \frac{e^{2 s}}{1+e^{2 s}} d s$.
35. $\int \frac{\sqrt[3]{3+1 / x}}{x^{2}} d x$.
36. $\int \frac{1}{x^{3}}\left(1-\frac{1}{x^{2}}\right)^{1 / 3} d x$.
37. Compute $\int \sin x \cos x d x$ by each of the following three methods: (a) Substitute $u=\sin x$, (b) substitute $u=\cos x$, (c) use the identity $\sin 2 x=$ $2 \sin x \cos x$. Show that the three answers you get are really the same.
38. Compute $\int e^{a x} d x$, where a is constant, by each of the following substitutions: (a) $u=a x$; (b) $u=e^{x}$. Show that you get the same answer either way.
$\star 39$. For which values of m and n can $\int \sin ^{m} x \cos ^{n} x d x$ be evaluated by using a substitution $u=\sin x$ or $u=\cos x$ and the identity $\cos ^{2} x+\sin ^{2} x=1$?
*40. For which values of r can $\int \tan ^{r} x d x$ be evaluated by the substitution suggested in Exercise 39?

