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Optimization Problem

min
x∈Ω

f (x)

where f (x) is a real-valued function

• The function f : Rn → R is called the objective function or
cost function.

• The vector x is an n-vector of independent variables:
x = [x1, x2, · · · , xn]T ∈ Rn.

• The variables x1, x2, · · · , xn are often referred to as decision
variables.

• The set Ω ⊂ Rn is called the constraint set or feasible set.
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Type of extrema

• Definition: Suppose that f : Rn → R is a real-valued function
defined on Ω ⊂ Rn. A point x∗ ∈ Ω is a local minimizer of f
over Ω if there exists ε > 0 such that f (x) ≥ f (x∗) for all
x ∈ Ω \ {x∗} and ‖x− x∗‖ < ε.

• Definition: Suppose that f : Rn → R is a real-valued function
defined on Ω ⊂ Rn. A point x∗ ∈ Ω is a global minimizer of f
over Ω if f (x) ≥ f (x∗) for all x ∈ Ω \ {x∗}.

• Replacing ≥ with > in the previous definitions we have a strict
local minimizer and a strict global minimizer, respectively
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Type of extrema

• If x∗ is a global minimizer of f over Ω, we write

f (x∗) = min
x∈Ω

f (x)

x∗ = arg min
x∈Ω

f (x).

• If x∗ is a global minimizer of f over Rn, i.e., unconstrained
problem, we write

f (x∗) = min
x

f (x)

x∗ = arg min
x

f (x).

• In general, global minimizers are difficult to find. So, in
practice, we often are satisfied with finding local minimizers.
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First order necessary conditions

Theorem: If x∗ is a local minimizer (or maximizer) and f is
continuously differentiable in an open neighborhood of x∗, then
∇f (x∗) = 0.
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First order necessary conditions

Theorem: If x∗ is a local minimizer (or maximizer) and f is
continuously differentiable in an open neighborhood of x∗, then
∇f (x∗) = 0. Proof (1): Suppose that ∇f (x∗) 6= 0. Therefore,

we can find a direction v = − ∇f (x∗)
‖∇f (x∗)‖ for which ∇f (x∗)Tv < 0.

Let h(θ) = ∇f (x∗ + θv)Tv. As h(0) < 0 there exits ε > 0 for
which h(θ) < 0 for all θ ∈ (0, ε). Using Taylor’s Theorem, there
exists τ ∈ (0, 1) such that for all ε̂ ∈ [0, ε)

f (x∗ + ε̂v) = f (x∗) + ε̂∇f (x∗ + τ ε̂v)Tv

Defining θ = τ ε̂ it holds that θ ∈ [0, ε̂) ⊂ [0, ε). Therefore
∇f (x∗ + τ ε̂v)Tv < 0 and as consequence f (x∗ + ε̂v) < f (x∗)
which contradict that x∗ is a minimizer.
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First order necessary conditions

Theorem: If x∗ is a local minimizer (or maximizer) and f is
continuously differentiable in an open neighborhood of x∗, then
∇f (x∗) = 0.

Proof (2):
Suppose that ∇f (x∗) 6= 0. Therefore, we can find a direction

h = −α ∇f (x∗)
‖∇f (x∗)‖ = −αv for which ∇f (x∗)Th < 0. Using Taylor’s

formula for x = x∗ + h

f (x) = f (x∗) + g(x∗)Th + o(‖h‖)

if α→ 0 then h→ 0 and g(x∗)Th + o(‖h‖) < 0 because o(‖h‖)
goes to zero faster than g(x∗)Th, in fact

limα→0
|g(x∗)T h|
‖h‖ = |g(x∗)T v|

‖v‖ . Therefore f (x) < f (x∗). This

contradicts the assumption that x∗ is a minimizer.
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First order necessary conditions

Theorem: If x∗ is a local minimizer (or maximizer) and f is
continuously differentiable in an open neighborhood of x∗, then
∇f (x∗) = 0.

• A point that satisfies that ∇f (x∗) = 0 is called a stationary
point.

• According to the previous theorem, any local minimizer (or
maximizer) must be a stationary point.
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Second order necessary conditions

Theorem If x∗ is a local minimizer (maximizer) of f and ∇2f
exists and is continuous in an open neighborhood of x∗, then
∇f (x∗) = 0 and ∇2f (x∗) is positive semidefinite (negative
semidefinite).
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Second order necessary conditions

Theorem If x∗ is a local minimizer (maximizer) of f and ∇2f
exists and is continuous in an open neighborhood of x∗, then
∇f (x∗) = 0 and ∇2f (x∗) is positive semidefinite (negative
semidefinite).
Proof:

• From the previous theorem ∇f (x∗) = 0

• (By contradiction) assume that ∇2f is not positive
semidefinite.

• Then, we can choose a vector v such that vT∇2f (x∗)vT < 0,
and because ∇2f is continuous near x∗, there is a scalar ε > 0
such that vT∇2f (x∗ + ε̂v)vT < 0 for all ε̂ ∈ [0, ε).
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Second order necessary conditions

Theorem If x∗ is a local minimizer (maximizer) of f and ∇2f
exists and is continuous in an open neighborhood of x∗, then
∇f (x∗) = 0 and ∇2f (x∗) is positive semidefinite (negative
semidefinite).
Proof:

• Applying Taylor’s theorem around x∗, there exits τ ∈ (0, 1) for
all ε̂ ∈ [0, ε) for which

f (x∗ + ε̂v) = f (x∗) + ε̂∇f (x∗)Tv +
1

2
ε̂2vT∇2f (x∗ + τ ε̂v)v

using that ∇f (x∗)Tv = 0 and vT∇2f (x∗ + τ ε̂v)v < 0 we
obtain f (x∗ + ε̂v) < f (x∗) which is a contradiction!
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Second order sufficient conditions

Theorem: Suppose that ∇2f exists and is continuous in an open
neighborhood of x∗, and that ∇f (x∗) = 0 and ∇2f (x∗) is positive
definite (negative definite). Then x∗ is a strict local minimizer
(maximizer) of f .

Proof: There exists a ball Br (x∗) = {x| ‖x− x∗‖ < r} for which
q(θ) = hTD2f (z)h > 0 with ‖h‖ < r , z = x∗ + θh with θ ∈ (0, 1)
(note that z ∈ Br (x∗)) due to q(θ) is continuous and q(0) > 0.
Using the Taylor’s Theorem with x = x∗ + h ∈ Br (x∗),
i.e.,‖h‖ < r , and that ∇f (x∗) = 0, there exists θ ∈ (0, 1) such that

f (x) = f (x∗) +
1

2
hTD2f (x∗ + θh)h.

As z = x∗ + θh ∈ Br (x∗) then hTD2f (z)h > 0 and f (x) > f (x∗)
for all x ∈ Br (x∗) which gives the result.
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Classification of stationary point

• Definition: A point x∗ that satisfies g(x∗) = 0 is called a
stationary point.

• Definition: A point x∗ that is neither a maximizer nor a
minimizer is called a saddle point.
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Classification of stationary point

• At a point x = x∗ + αd in the neighborhood of a saddle point
x∗, the Taylor series gives

f (x) = f (x∗) +
1

2
α2dTH(x∗)d + o(α‖d‖)

since g(x∗) = 0. As x∗ is neither a maximizer nor a minimizer,
there must be directions d1, d2 ( or x1, x2 ) such that

f (

x1︷ ︸︸ ︷
x∗ + αd1) < f (x∗) ⇒ dT

1 H(x∗)d1 < 0

f (x∗ + αd2︸ ︷︷ ︸
x2

) > f (x∗) ⇒ dT
2 H(x∗)d2 > 0

Then, H(x∗) is indefinite
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Find and Classify Stationary points

We can find and classify stationary points as follows

• Find the points x∗ at which g(x∗) = 0.

• Obtain the Hessian H(x).

• Determine the character of H(x∗) for each point x∗.
• If H(x∗) is positive (negative) definite then x∗ is a minimizer

(maximizer).
• If H(x∗) is indefinite, x∗ is a saddle point.
• If H(x∗) is positive (negative) semidefinite, x∗ can be a

minimizer (maximizer). In this case, further work is necessary
to classify the stationary point. A possible approach would be
to deduce the third partial derivatives of f (x∗) and then
calculate the corresponding term in the Taylor series. If this
term is zero, then the next term needs to be calculated and so
on (see next slide for 1D case).
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Find and Classify Stationary points 1D

Assume that f (1)(x0) = f (2)(x0) = · · · = f (n−1)(x0) = 0 and
f (n)(x0) 6= 0, ie, f (n)(x0) > 0 or f (n)(x0) < 0.

1 Using Taylor’s theorem f (x) = f (x0) + f (n)(x0+th)
n! (x − x0)n,

h = x − x0, for some t ∈ (0, 1). Therefore, one just needs to

consider the sign of q = f (n)(x0+th)
n! (x − x0)n
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Find and Classify Stationary points 1D

Assume that f (1)(x0) = f (2)(x0) = · · · = f (n−1)(x0) = 0 and
f (n)(x0) 6= 0, ie, f (n)(x0) > 0 or f (n)(x0) < 0.

1 Using Taylor’s theorem f (x) = f (x0) + f (n)(x0+th)
n! (x − x0)n,

h = x − x0, for some t ∈ (0, 1). Therefore, one just needs to

consider the sign of q = f (n)(x0+th)
n! (x − x0)n

• If the sign of f (n)(x0+th)
n! (x − x0)n is positive for all

x ∈ (x0 − δ, x0 + δ) then f (x) > f (x0), and x0 is a local
minimum

• If the sign of f (n)(x0+th)
n! (x − x0)n is negative for all

x ∈ (x0 − δ, x0 + δ) then f (x) < f (x0), and x0 is a local
maximum

• If the sign of f (n)(x0+th)
n! (x − x0)n is positive and negative for

x ∈ (x0 − δ, x0 + δ) then f (x) ≶ f (x0), and x0 is an inflection
point
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Find and Classify Stationary points 1D

1 Using Taylor’s theorem f (x) = f (x0) + f (n)(x0+th)
n! (x − x0)n for

some t ∈ (0, 1).

Which is the sign of q = f (n)(x0+th)
n! (x − x0)n?
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Find and Classify Stationary points 1D

1 Using Taylor’s theorem f (x) = f (x0) + f (n)(x0+th)
n! (x − x0)n for

some t ∈ (0, 1).

Which is the sign of q = f (n)(x0+th)
n! (x − x0)n?

• If n is even then the sign of q depends only of the factor
f (n)(x0 + th). Taking into account the theorem of the sign
preserving, if f (n)(x0) > 0 then q > 0 in a neighborhood of x0

and x0 is a local minimum, on the contrary, if f (n)(x0) < 0 then
q < 0 in a neighborhood of x0 and x0 is a local maximum.

• If n is odd, q could be positive or negative independently of
the sign of f (n)(x0). The sign of q changes when x > x0 or
x < x0. Then x0 is an inflection point.
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x is a stationary point and H(x∗) = 0

• In the special case where H(x∗) = 0, x can be a minimizer or
maximizer since the necessary conditions are satisfied in both
cases.

• If H(x∗) is semidefinite, more information is required for the
complete characterization of a stationary point and further
work is necessary in this case.

Oscar Dalmau Fundamentals of Unconstrained Optimization



Introduction
Type of extrema

Necessary and Sufficient Conditions
Examples

x is a stationary point and H(x∗) = 0

• A possible approach could be to compute the third partial
derivatives of f (x) and then calculate the corresponding term
in the Taylor series, D3f (x∗)/3!. If the this term is zero, then
the next term D4f (x∗)/4! needs to be computed and so on...

f (x + h) = f (x) + g(x)Th +
1

2
hTH(x)h +

1

3!
D3f (x) + · · ·

Dr f (x) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ir=1

hi1hi2 · · · hir
∂r f (x)

∂xi1∂xi2 · · · ∂xir

• P(h) = Dr f (x) : Rr → R is a polynomial of grade r in the
variable h (see, Multilinear form)
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Example when H(x∗) = 0

f (x) =
1

6

[
(x1 − 2)3 + (x2 − 3)3

]
∇f (x) =

1

2

[
(x1 − 2)2, (x2 − 3)2

]T
= 0, ⇒ x∗ = [2, 3]T

H(x) =

[
x1 − 2 0

0 x2 − 3

]
, ⇒ H(x∗) = 0

∂2f (x)
∂x2

1
= x1 − 2, ∂2f (x)

∂x2
2

= x2 − 3, ∂2f (x)
∂x1∂x2

= ∂2f (x)
∂x2∂x1

= 0.

The third derivatives of f are all zero at x∗ except
∂3f (x∗)
∂x3

1
= ∂3f (x∗)

∂x3
2

= 1.
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Example when H(x∗) = 0

The third derivatives of f are all zero at x∗ except
∂3f (x∗)
∂x3

1
= ∂3f (x∗)

∂x3
2

= 1 then

D3f (x∗) =
2∑

i1,i2,i3=1

hi1hi2hi3
∂3f (x∗)

∂xi1∂xi2∂xi3

= h3
1

∂3f

∂x3
1

+ h2
1h2

∂3f

∂x2
1∂x2

+ h1h
2
2

∂3f

∂x1∂x2
2

+ h3
2

∂3f

∂x3
2

= h3
1

∂3f

∂x3
1

+ h3
2

∂3f

∂x3
2

= h3
1 + h3

2

that is positive if h1, h2 > 0 and negative if h1, h2 < 0. Then x∗ is
a saddle point due to f (x∗ + h) > f (x∗) if h1, h2 > 0 and
f (x∗ + h) < f (x∗) if h1, h2 < 0.
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x∗ is a stationary point and H(x∗) 6= 0

• In this case, and from the previous discussion, the problem of
classifying stationary points of the function f (x) becomes the
problem of characterizing the Hessian H(x) at x = x∗, i.e.,
one needs to determine if H(x∗) is positive, negative, positive
semidefinite or negative semidefinite.
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x∗ is a stationary point and H(x∗) 6= 0

Theorem Characterization of symmetric matrices: A real
symmetric n× n matrix H is positive definite, positive semidefinite,
etc., if for every nonsingular matrix B of the same order, the n × n
matrix Ĥ given by Ĥ = BTHB is positive definite, positive
semidefinite, etc.

Proof: Let x 6= 0

xT Ĥx = xTBTHBx = yTHy,

where y = Bx 6= 0 since B is no singular. Then
xT Ĥx = yTHy > 0 or ≥ 0, · · · and therefore Ĥ is positive
definite, positive semidefinite, etc.
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Theorem Characterization of symmetric matrices via
diagonalization

1 If the n × n matrix B is nonsingular and Ĥ = BTHB is a
diagonal matrix with diagonal elements ĥ1, ĥ2, · · · , ĥn then H
is positive definite, positive semidefinite, negative semidefinite,
negative definite, if ĥi > 0,≥ 0,≤ 0, < 0 for i = 1, 2, · · · , n.
Otherwise, if some ĥi are positive and some are negative, H is
indefinite.

2 The converse of the previous part is also true, that is, if H is
positive definite, positive semidefinite, etc., then ĥi > 0,≥ 0,
etc., and if H is indefinite, then some ĥi are positive and some
are negative.
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Theorem Characterization of symmetric matrices via
diagonalization
Proof (Part 1):

xT Ĥx = ĥ1x
2
1 + ĥ2x

2
2 + · · ·+ ĥnx

2
n

if ĥi > 0,≥ 0,≤ 0, < 0 for i = 1, 2, · · · , n then
xT Ĥx > 0,≥ 0,≤ 0, < 0. Therefore Ĥ is positive definite, positive
semidefinite, negative semidefinite, negative definite. If some ĥi are
positive and some are negative, one can find a vector x that yields
a positive or negative xT Ĥx and then Ĥ is indefinite.
Using the previous theorem (slide 24) one concludes that
H = B−T ĤB−1 is also positive definite, positive semidefinite,
negative semidefinite or indefinite.
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Theorem Characterization of symmetric matrices via
diagonalization
Proof (Part 2):
Suppose that H is positive definite, positive semidefinite, etc.
Since Ĥ = BTHB, it follows from the previous theorem (slide 24)
that Ĥ is positive definite, positive semidefinite, etc. If x is a
vector of the canonical base, i.e. x = ej

xT Ĥx = eTj Ĥej = ĥi > 0,≥ 0,≤, <

for i = 1, 2, · · · , n.
On the other hand, if H is indefinite then by theorem in slide 24, Ĥ
is indefinite and therefore some ĥi must be positive and some must
be negative. (on the contrary H would be positive definite, positive
semidefinite, etc.)
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Theorem Eigen decomposition of symmetric matrices

1 If H is a real symmetric matrix, then there exists a real unitary
(or orthogonal) matrix U such that

Λ = UTHU

is a diagonal matrix whose diagonal elements are the
eigenvalues of H.

2 The eigenvalues of H are real.
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Comments..

Theorem Eigen decomposition of symmetric matrices

1 If H is a real symmetric matrix, then there exists a real unitary
(or orthogonal) matrix U such that

Λ = UTHU

is a diagonal matrix whose diagonal elements are the
eigenvalues of H.

Comments: According to the Schur decomposition, any real
matrix A can be written as A = UDUT , where A,U,D contain
only real numbers, D is a block upper triangular matrix and U is
an orthogonal matrix. Using the Schur decomposition
H = UDUT , then UTHU = D, as H is symmetric then UTHU is
also symmetric, therefore D is a symmetric triangular matrix this
implies that D is necessarily diagonal.
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Comments...

Theorem Eigen decomposition of symmetric matrices

1 The eigenvalues of H are real.

Comments: If Hx = λx then Hx̄ = λ̄x̄. The symbol¯represents
the complex conjugate.
λxT x̄ = xTHx̄ = λ̄xT x̄ then λ = λ̄. This implies that λ is real.
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Definition

Principal minor

A minor of A of order k is principal if it is obtained by deleting
n − k rows and the n − k columns with the same numbers.

For example, in a principal minor where you have deleted row 1
and 3, you should also delete column 1 and 3.
There are

(n
k

)
principal minors of order k.

Oscar Dalmau Fundamentals of Unconstrained Optimization



Introduction
Type of extrema

Necessary and Sufficient Conditions
Examples

Definition

Leading principal minor

The leading principal minor of A of order k is the minor of order
k obtained by deleting the last n − k rows and columns.

Let

A =

(
a b
b c

)
be a symmetric 2× 2 matrix. Then the leading principal minors are
D1 = a and D2 = ac − b2. If we want to find all the principal
minors, these are given by ∆1 = a and ∆1 = c (of order one) and
∆2 = ac − b2 (of order two).
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Properties of matrices

Theorem

(a) If H is positive semidefinite or positive definite, then
det (H) ≥ 0 or > 0

(b) If H is positive definite if and only if all its leading
principal minors are positive, i.e., det (Hi ) for
i = 1, 2, · · · , n. (Sylvester’s criterion)

(c) H is positive semidefinite if and only if all its
principal minors are nonneg ative, i.e.,

det (H
(l)
i ) ≥ 0 for all possible selections of

{l1, l2, · · · , li} for i = 1, 2, · · · , n.
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Properties of matrices

(d) H is negative definite if and only if all the leading
principal minors of −H are positive, i.e.,
det (−Hi ) > 0 for i = 1, 2, · · · , n.

(e) H is negative semidefinite if and only if all the
principal minors of −H are nonnegative, i.e.,

det (−H
(l)
i ) ≥ 0 for all possible selections of

{l1, l2, · · · , li} for i = 1, 2, · · · , n.

(f) H is indefinite if neither (c) nor (e) holds.
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Summary

• If the Hessian is positive definite ( positive eigenvalues ) at x∗,
then x∗ is a local minimum.

• If the Hessian is negative definite (negative eigenvalues) at x∗,
then x∗ is a local maximum.

• If the Hessian has both positive and negative eigenvalues then
x∗ is a saddle point.

• Otherwise the test is inconclusive.

• At a local minimum (local maximum), the Hessian is positive
semidefinite (negative semidefinite).

• For positive semidefinite and negative semidefinite Hessians
the test is inconclusive.
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Approximation problem

Example 1. Suppose, that through an experiment the value of a
function g is observed at m points, x1, x2, · · · , xm, which mean
that values g(x1), g(x2), · · · , g(xm) are known. We want to
approximate the function by a polynomial

h(x) = a0 + a1x + a2x
2 + · · ·+ anx

n

with n < m.
The error at each observation point is

εk = g(xk)− h(xk), k = 1, 2, · · · ,m

Then we obtain the following optimization problem

min
m∑

k=1

(εk)2
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Approximation problem

Let xk = [1, xk , x
2
k , · · · , xnk ]T , g = [g(x1), g(x2), · · · , g(xm)]T and

X = [x1, x2, · · · , xm]T

f (a) =
m∑

k=1

(εk)2 =
m∑

k=1

[g(xk)− h(xk)]2

=
m∑

k=1

[g(xk)− a0 + a1xk + a2x
2
k + · · ·+ anx

n
k ]2

=
m∑

k=1

[g(xk)− xTk a]2 = ‖g − Xa‖2
2

= aTQa− 2bTa + c

with Q = XTX, b = XTg and c = ‖g‖2
2
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Approximation problem

Then

min
a

f (a) = aTQa− 2bTa + c

with qk = [1, xk , x
2
k , · · · , xnk ]T , g = [g(x1), g(x2), · · · , g(xm)]T ,

X = [x1, x2, · · · , xm]T , Q = XTX, b = XTg and c = ‖g‖2
2

∇af (a) = 2Qa− 2b = 0

a = Q−1b
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Approximation problem

Example 2
Given a continuous f (x) in [a, b]. Find the approximation
polynomial of degree n

p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n

such that minimizes ∫ b

a
[f (x)− p(x)]2dx
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Maximum likelihood

Suppose there is a sample x1, x2, · · · , xn of n independent and
identically distributed observations, coming from a distribution
with an unknown probability density function f (·). If f (·) belongs
to a certain family of distributions {f (·|θ), θ ∈ Θ} (where θ is a
vector of parameters for this family), called the parametric model,
so that f0 = f (|θ0). The value θ0 is unknown and is referred to as
the true value of the parameter vector. It is desirable to find an
estimator θ̂ which would be as close to the true value θ0 as
possible. For example

f (x |µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2

where θ = [µ, σ]T
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Maximum likelihood Method

In the method of maximum likelihood, one first specifies the joint
density function for all observations. For an independent and
identically distributed sample, this joint density function is

f (x1, x2, . . . , xn | θ) = f (x1 | θ)f (x2|θ) · · · f (xn | θ)

The observed values x1, x2, · · · , xn are known whereas θ is the
variable of the function. This function is called the likelihood:

L(x; θ) = f (x | θ) =
n∏

i=1

f (xi | θ)

The problem es to maxime the log-likelihood, i.e.,
`(x; θ) = logL(x; θ). This method of estimation defines a
maximum-likelihood estimator.
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Maximum likelihood Method: Example

For the normal distribution N (µ, σ2) which has probability density
function

f (x | µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
,

the corresponding probability density function for a sample of n
independent identically distributed normal random variables (the
likelihood) is

f (x1, . . . , xn | µ, σ2) =
n∏

i=1

f (xi | µ, σ2)

=

(
1

2πσ2

)n/2

exp

(
−
∑n

i=1(xi − µ)2

2σ2

)
,
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Maximum likelihood Method: Example

The log likelihood can be written as follows:

log(L(µ, σ)) = (−n/2) log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

Computing the derivatives of this log likelihood as follows.

0 =
∂

∂µ
log(L(µ, σ)) = 0− −2n(x̄ − µ)

2σ2
. (1)

This is solved by µ̂ = x̄ =
∑n

i=1
xi
n .

Similarly for σ and one obtains σ̂2 = 1
n

∑n
i=1(xi − µ)2.
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