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Optimization Problem

• Optimization Problem:

min
x∈Rn

f (x)

where f (·) is class C1 or continuously differentiable that
consists of all differentiable functions whose derivative is
continuous or f () could be class C2
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Optimization Problem

• Optimization Problem:

min
x∈Rn

f (x)

• Examples: x = [x1, . . . , xn]T ∈ Rn,

min
x

xTAx

xTx
, A is simmetric

min
x

n∑
i=1

(xi − yi )
2 + λ

n−1∑
i=1

(xi+1 − xi )
2

min
x

N−1∑
i=1

100(xi+1 − x2
i )2 + (1− xi )

2
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Notation

1 = [1, 1, · · · , 1]T

0 = [0, 0, · · · , 0]T

I =


1 0 · · · 0
0 1 · · · 0

· · · · · · . . . · · ·
0 0 · · · 1


f (x) : Rn → Rm

f (x) = [f1(x), f2(x), · · · , fm(x)]T
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Definitions

• A real n × n matrix A is said to be positive definite if the
scalar x>Ax is positive for every non-zero column vector x

• A real n × n matrix A is said to be the negative definite,
positive semi-definite, and negative semi-definite matrices
are defined in the same way, except that the expression x>Ax
is required to be always negative, non-negative, and
non-positive, respectively.

• We can determine that a symmetric matrix is positive
definite by computing its eigenvalues and verifying that they
are all positive, or by performing a Cholesky factorization
(Cholesky factorization gives error for non-positive-definite
matrices)

Oscar Dalmau Optimization



Introduction
Level sets and gradient

Taylor Series
Homework

Some theorems

Lema: (Sign Preserving Property) Let f be continuous at a and
f (a) 6= 0. Then there is an interval (a− δ, a + δ) about a in which
f has the same sign as f (a).
Proof: Without loss of generality, assume that f (a) > 0. Using
the continuity of f . For all ε > 0 there exist δ > 0 such that

|x − a| < δ ⇒ |f (x)− f (a)| < ε

Then f (x) > f (a)− ε and taking 0 < ε < f (a) (for example,

ε = f (a)
2 ) one obtains

f (x) > f (a)− ε > 0

for |x − a| < δ, ie, x ∈ (a− δ, a + δ)

Oscar Dalmau Optimization



Introduction
Level sets and gradient

Taylor Series
Homework

Some theorems

Theorem: (Mean value theorem) Let f : [a, b]→ R be a
continuous function on the closed interval [a, b], and differentiable
on the open interval (a, b), where a < b. Then there exists some
c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)

b − a
.

The mean value theorem is a generalization of Rolle’s theorem,
which assumes f (a) = f (b), so that the right-hand side above is
zero.
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Norms

For a vector x ∈ Rn , we have the following norms:

‖x‖1
def
=

n∑
i=1

|xi | (1)

‖x‖2
def
=

√√√√ n∑
i=1

x2
i (2)

‖x‖∞
def
= max

i=1,2,...n
|xi | (3)

The norm ‖ · ‖2 is often called the Euclidean norm, ‖ · ‖1 is called
the `1-norm and ‖ · ‖∞ is called the `∞-norm.
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Norms

In general, a norm is any mapping ‖ · ‖ from Rn to the nonnegative
real numbers that satisfies the following properties:

‖x‖ = 0⇔ x = 0; x ∈ Rn

‖αx‖ = |α|‖x‖; x ∈ Rn; α ∈ R
‖x + y‖ ≤ ‖x‖+ ‖y‖; x, y ∈ Rn
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Cauchy-Schwarz inequality

A property that holds for the Euclidean norm is the
Cauchy-Schwarz inequality, which states that:

|xTy| ≤ ‖x‖‖y‖

and the equality holds if and only if one of these vectors is a
multiple of the other, ie, the vectors are parallels.
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Matrix norms

Let ‖ · ‖ be generic notation for the three norms listed above, we
define the corresponding matrix norm as:

‖A‖ def
= supx6=0

‖Ax‖
‖x‖
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Matrix norms

Explicit formulas

‖A‖1 = max
j=1,2,...,m

n∑
i=1

|Aij |

‖A‖∞ = max
i=1,2,...,n

m∑
j=1

|Aij |

‖A‖2 = the largest eigen value of (ATA)1/2

The Frobenius norm is defined as follows

‖A‖F =

√√√√n,m∑
i ,j

A2
ij

Oscar Dalmau Optimization



Introduction
Level sets and gradient

Taylor Series
Homework

Condition number of a Matrx

The condition number of a nonsingular matrix is defined as

κ(A) = ‖A‖‖A−1‖,

where any matrix norm can be used in the definition. We can use a
subscript for the different norms, ie, κ1(·), κ2(·), and κ∞(·)
respectively. We use κ to denote κ2(·).
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Definitions

In many optimization methods the information of the first and/or
second derivative of f (·) is required

• Gradient: If f : Rn → R such that f ∈ C1, i.e., f has
continuous partial derivatives of first order, then the gradient
of f (·) is defined as

∇f (x) = [
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn
]T

def
= g(x)

Df (x) = ∇f (x)T
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Definitions

In many optimization methods the information of the first and/or
second derivative of f (·) is required

• Hessian: If f ∈ C2, i.e., f has continuous partial derivatives of
second order, then the Hessian of f (·) is defined as

∇2f (x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 def
= H(x)

H(x) is a symmetric square matrix, ie, ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

. For the

equality of mixed partial derivatives Theorem, due to the
mixed partial derivatives exist and are continuous.
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Definitions

In many optimization methods the information of the first and/or
second derivative of f (·) is required

• The function f (·), the gradient g(·) and the Hessian H(·) at
x = xk are denoted as fk , gk and Hk respectively in order to
simplify notation, i.e.,

fk
def
= f (xk)

gk
def
= g(xk)

Hk
def
= H(xk)
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Definitions

Directional derivative: Suppose f : Rn → R is defined on an
open ball about a point x0. Given a unit vector v, we call

Dvf (x0) = lim
h→0

f (x0 + hv)− f (x0)

h
,

provided the limit exists, the directional derivative of f in the
direction of v at x0. For example

∂f

∂xi
(x0) = Dei f (x0)

where ei = [0, 0, ..., 1, ..., 0]T .
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Differentiation Rules

• Chain rule: Let f : Rm → Rk , g : Rn → Rm be differentiable
functions at x ∈ Rn then

Dx(f ◦ g) = Df(g(x))Dg(x)

where Df(g(x)) ∈ Rk×m, Dg(x)Rm×n and Dx(f ◦ g) ∈ Rk×n

are matrices and (f ◦ g) : Rn → Rk .
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Differentiation Rules

• Example: f(x , y) = [x2 + y , x + y2]T , g(t) = [t2, t]T .
Compute Dt(f ◦ g).
Solution 1: Using the chain rule

Df(x , y) =

[
2x 1
1 2y

]
Dg(t) = [2t, 1]T

Df(g(t)) =

[
2t2 1
1 2t

]
Df(g(t))Dg(t) =

[
4t3 + 1

4t

]
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Differentiation Rules

• Example: f(x , y) = [x2 + y , x + y2]T , g(t) = [t2, t]T .
Compute Dt(f ◦ g).
Solution 2: Computing (f ◦ g)(t)

h(t) = (f ◦ g)(t) =

[
t4 + t

2t2

]
h′(t) =

[
4t3 + 1

4t

]
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• Chain rule (case 1): Let f : Rn → R, z : R→ Rn be
differentiable functions at t ∈ R then

Dt(f ◦ z) = Df (g(t))Dz(t)

Note that:

f ◦ g : R → R
Df (z(t)) = ∇f (z(t))T

Dz(t) = [z ′1(t), z ′2(t), · · · , z ′n(t)]T

Dt(f ◦ z) = ∇f (z(t))TDz(t) = 〈∇f (z(t)),Dz(t)〉 ∈ R
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• Chain rule (case 1 Example): f (x) = ‖x‖2, z(t) = x0 + tv.
Compute Dt(f ◦ z).
Solution:

Df (x) = ∇f (x)T = 2xT

Dz(t) = [z ′1(t), z ′2(t), · · · , z ′n(t)]T = v

Then Dt(f ◦ z) = 2z(t)Tv = 2(x0 + tv)Tv
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• Product rule: Let f : Rn → Rm, g : Rn → Rm be two
differentiable functions. Define the function h : Rn → R by
h(x) = f(x)Tg(x) then

Dxh(x) = f(x)TDg(x) + g(x)TDf(x)

where Dg(x) and Df(x) are matrices (the Jacobian matrix).
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• Product rule (Example): f(x) = x, g(x) = Ax. Compute
Dxh(x) with h(x) = f(x)Tg(x) = xTAx.
Solution:

Df(x) = I

Dg(x) = A

Then

Dxh(x) = f(x)TDg(x) + g(x)TDf(x)

= xTA + xTAT I = xT (A + AT )

and ∇h(x) = (A + AT )x.

Note: If AT = A then ∇h(x) = 2Ax and ∇2h(x) = 2A.
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Level sets

The level set of a function f (x) : Rn → R at level l is the set of
points

S = {x : f (x) = l}

• If f : R2 → R then S is a curve

• If f : R3 → R then S is a surface
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Level sets

The level set of a function f (x) : Rn → R at level l is the set of
points

S = {x : f (x) = l}

• Let x0 a point in the level set S , i.e., f (x0) = l

• Let c(t) be a parametrization of a curve γ that lies on S , such
that

c(t) : R→ Rn

c(t0) = x0

Dc(t0) = v 6= 0

where v is the tangent vector to γ at x0
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Level sets and gradient

−3 −2 −1 0 1 2 3
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

∇f(x0)
v=Dc(t0)

x0 = c(t0)

f(x) = 1

c(t) =
√
2(cost, sint)

t0 =
π
4

x0 = (1, 1)
1
.0

2.0

Orthogonality of   the gradient to the level set.
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Theorem: The vector ∇f (x0) is orthogonal to the tangent vector
to an arbitrary smooth curve passing through x0 on the level set
determined by f (x) = f (x0).
Proof: (It is straightforward)
Applying the chain rule to the function h(t) = f (c(t))

h′(t0) = Df (c(t0))Dc(t0) = Df (x0)v = ∇f (x0)Tv

h(t) = f (c(t)) = constant

h′(t) = 0

then ∇f (x0)Tv = 0, ie, ∇f (x0)⊥v
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Comments

• It is said that ∇f (x0) is orthogonal or normal to the level set
S corresponding to x0

• The tangent plane to S at x0 the set of all points x satisfying

∇f (x0)T (x− x0) = 0

if ∇f (x0) 6= 0.

• ∇f (x0) is the direction of maximum rate of increase of f at
x0. Therefore, the direction of maximum rate of increase of a
real-valued differentiable function at a point is orthogonal to
the level set of the function at that point.
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Comments

Theorem: Suppose f : Rn → R is C1 on an open ball containing
the point x0. Then for any unit vector v, Dvf (x0) exists and
Dvf (x0) = Df (x0)v = ∇f (x0)Tv.
Proof: Note that

Dvf (x0) =

[
d

dα
f (z(α))

]
α=0

=

[
d

dα
f (x0 + α v)

]
α=0

with z(α) = x0 + α v. Using the Chain rule

Dvf (x0) = [Df (z(α))v]α=0 = Df (z(0))v = Df (x0)v
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Comments

Theorem: Suppose f : Rn → R is C1 on an open ball containing
the point x0. Then for any unit vector v, Dvf (x0) exists and
Dvf (x0) = Df (x0)v = ∇f (x0)Tv.
Note: Using the Cauchy-Schwarz inequality

|Dvf (x0)| = |∇f (x0)Tv| ≤ ‖∇f (x0)‖‖v‖
|Dvf (x0)| ≤ ‖∇f (x0)‖

if ∇f (x0) 6= 0 and taking v = ∇f (x0)
‖∇f (x0)‖

Dvf (x0) = ‖∇f (x0)‖
D−vf (x0) = −‖∇f (x0)‖
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Comments

Proposition: Suppose f : Rn → R is C1 on an open ball
containing the point x0. Then Dvf (x0) has a maximum value of
‖∇f (x0)‖ when v is the direction of ∇f (x0) and a minimum value
of −‖∇f (x0)‖ when v is the direction of −∇f (x0).
Proof:

Dvf (x0) = ∇f (x0)Tv

= ‖∇f (x0)‖‖v‖ cos∠(∇f (x0), v)

= ‖∇f (x0)‖ cos∠(∇f (x0), v)

The maximum and minimum of Dvf (x0) is obtained when
cos∠(∇f (x0), v) = 1 and cos∠(∇f (x0), v) = −1 respectively, i.e.,
when ∠(∇f (x0), v) = 0 and ∠(∇f (x0), v) = π
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Comments

Proposition: Suppose f : Rn → R is C1 on an open ball
containing the point x0. Then Dvf (x0) has a maximum value of
‖∇f (x0)‖ when v is the direction of ∇f (x0) and a minimum value
of −‖∇f (x0)‖ when v is the direction of −∇f (x0).

1 The gradient vector points in the direction of the maximum
rate of increase of the function and the negative of the
gradient vector points in the direction of the maximum rate of
decrease of the function.

2 The length of the gradient vector tells us the rate of increase
in the direction of maximum increase and its negative tells us
the rate of decrease in the direction of maximum decrease.
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Theorem: Taylor’s Theorem. Assume that a function f : R→ R is
m + 1 times continuously differentiable (i.e., f ∈ Cm+1) at a ∈ R.
Denote h = x − a. Then,

f (x) = f (a) +
h

1!
f (1)(a) +

h2

2!
f (2)(a) + · · · h

m

m!
f (m)(a) + Rm+1,

(called Taylor’s formula) where f (i) is the i-th derivative of f , and

Rm+1 =
hm+1

(m + 1)!
f (m+1)(a + θh), θ ∈ (0, 1)
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Big O and Little o Notation

The remainder Rm+1 using Big O and little o notation.
Definition. We say f (x) = O(g(x)) as x → a if there exists a
constant C such that

|f (x)| ≤ C |g(x)|

in some neighborhood of a, that is, for x ∈ (a− δ, a + δ) \ {a} for
some δ > 0.
Definition. We say f (x) = o(g(x)) as x → a if

lim
x→a

f (x)

g(x)
= 0

Oscar Dalmau Optimization



Introduction
Level sets and gradient

Taylor Series
Homework

Big O and Little o Notation

• The previous notation is standard, but it is not good. The
statement f (x) = O(g(x)) has a meaning, but
O(g(x)) = f (x) is meaningless, i.e., the equal = sign is not
symmetric, then this is an abuse of notation.

• A better option would be f (x) ∈ O(g(x)) or f (x) is O(g(x))

• Generally, some results assume that a = 0 since changing
x − a to x is just a change of coordinates.

• The limit a is important, for example, 1
x = o(1) as a→∞,

but 1
x 6= o(1) as a→ 0
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Big O and Little o Notation. Examples

• Big O examples

x = O(x), as x →∞
x = O(x2), as x →∞

axn = O(xm), m ≥ n, as x →∞
axn 6= O(xm), m < n, as x →∞

• Little o examples

x2 = o(x), as x → 0

x 6= o(x2), as x → 0

x − sin x = o(x), as x → 0

x − sin x = o(x2), as x → 0
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Big O and Little o Notation. Properties

1 f (x) = O(f (x))

2 If f (x) = O(g(x)), then cf (x) = O(g(x)) for any constant c.

3 If f1(x) and f2(x) are both O(g(x)), then so is f1(x) + f2(x).

4 If f (x) = o(g(x)), then f (x) = O(g(x)).

5 If f (x) = O(g(x)), then O(f (x)) + O(g(x)) = O(g(x)).

6 If f (x) = O(g(x)), then o(f (x)) + o(g(x)) = o(g(x)).

7 If f1(x) = O(g(x)) but f2(x) = o(g(x)),then
f1(x) + f2(x) = O(g(x))

8 If f (x) = O(g(x)), and g(x) = o(h(x)), then f (x) = o(h(x)).

9 Let c 6= 0, then cO(g(x)) = O(g(x)) and
co(g(x)) = o(g(x)).
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Big O and Little o Notation. Properties

1 O(f (x))O(g(x)) = O(f (x)g(x))

2 o(f (x))O(g(x)) = o(f (x)g(x))

3 if limx→0
h(x)
g(x) = L then h(x) = O(g(x)). (We can use the

definition of limit). then for any ε > 0 there exists δ > 0, such

that for 0 < |x | < δ it holds | f (x)
g(x) − L| < ε. Using the

inequality |a| ≤ |a− b|+ |b|

| f (x)

g(x)
| ≤ | f (x)

g(x)
− L|+ |L| < ε+ |L| def= M

|f (x)| < M|g(x)|,

therefore f (x) ∈ O(g(x))!
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Taylor’s formula with Big o and little o notation

Rm+1 =
hm+1

(m + 1)!
f (m+1)(a + θh), θ ∈ (0, 1)

Therefore,

Rm+1 = o(hm), as h→ 0

Rm+1 = O(hm+1), as h→ 0

Then,if f (x) ∈ Cm+1, we may write Taylor’s formula as

f (x) = f (a) +
h

1!
f (1)(a) +

h2

2!
f (2)(a) + · · ·+ hm

m!
f (m)(a) + o(hm),

f (x) = f (a) +
h

1!
f (1)(a) +

h2

2!
f (2)(a) + · · ·+ hm

m!
f (m)(a) + O(hm+1)
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If we assume that f (x) : Rn → R ∈ C3 , we have the formula for
the remainder term R3

f (x) = f (x0) +
1

1!
Df (x0)(x− x0) +

1

2!
(x− x0)TD2f (x0)(x− x0)

+o(‖x− x0‖2)

f (x) = f (x0) +
1

1!
Df (x0)(x− x0) +

1

2!
(x− x0)TD2f (x0)(x− x0)

+O(‖x− x0‖3)
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Taylor Theorem

Suppose that f (x) : Rn → R ∈ C2. Then we have that

f (x) = f (x0) + Df (x0 + θh)h

f (x) = f (x0) + Df (x0)h +
1

2
hTD2f (x0 + θh)h

for some θ ∈ (0, 1) and h = x− x0.
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Taylor Theorem

Let g : R→ R ∈ C1. By Taylor’s theorem in 1D (or mean value
theorem)

g(t) = g(0) + g ′(θt)t

with θ ∈ (0, 1). Let define g(t) = f (z(t)) with z(t) = x0 + t h
‖h‖

and h = x− x0. Therefore, for t = ‖h‖

g(‖h‖) = g(0) + g ′(θ‖h‖)‖h‖
g(‖h‖) = f (z(‖h‖)) = f (x)

g(0) = f (z(0)) = f (x0)
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Taylor Theorem

On the other hand

g ′(t) = Df (z(t))Dz(t) = Df (z(t))
h

‖h‖

g ′(θ‖h‖) = Df (z(θ‖h‖))
h

‖h‖
= Df (x0 + θh)

h

‖h‖

From g(‖h‖) = g(0) + g ′(θ‖h‖)‖h‖, and substituting g(‖h‖),
g(0) and g ′(θ‖h‖) one obtains that

f (x) = f (x0) + Df (x0 + θh)‖h‖
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Taylor Theorem

The proof of the second part is similar. Let g : R→ R ∈ C1. By
Taylor’s theorem in 1D

g(t) = g(0) + g ′(0)t +
t2

2
g ′′(θt)

with θ ∈ (0, 1). Let define g(t) = f (z(t)) with z(t) = x0 + t h
‖h‖

and h = x− x0. Therefore, for t = ‖h‖

g(‖h‖) = g(0) + g ′(0)‖h‖+
‖h‖2

2
g ′′(θ‖h‖)

g(‖h‖) = f (z(‖h‖)) = f (x)

g(0) = f (z(0)) = f (x0)

g ′(0) = Df (z(0))
h

‖h‖
= Df (x0)

h

‖h‖
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On the other hand

g ′(t) =
hT

‖h‖
Df T (z(t)) =

hT

‖h‖
∇f (z(t))

g ′′(t) =
hT

‖h‖
D2f (z(t))Dz(t) =

hT

‖h‖
D2f (z(t))

h

‖h‖

g ′′(θ‖h‖) =
1

‖h‖2
hTD2f (x0 + θh)h

now using g(‖h‖) = g(0) + g ′(0)‖h‖+ ‖h‖2

2 g ′′(θ‖h‖) and
substituting one obtains the result.
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1 Consider the function f (x) = (aTx)(bTx), where a, b, and x
are n-dimensional vectors.

• Find ∇f (x).
• Find the Hessian ∇2f (x).

2 Suppose that f (x) = o(g(x)). Show that for any given ε > 0,
there exists δ > 0 such that if ‖x‖ < δ, then
‖f (x)‖ < ε|g(x)|, i.e, f (x) = O(g(x)) for ‖x‖ < δ.

3 Show that if functions f : Rn → R and g : Rn → R satisfy
f (x) = −g(x) + o(g(x)) and g(x) > 0 for all x 6= 0, then for
all x 6= 0 sufficiently small, we have f (x) < 0.

4 Let f1(x1, x2) = x2
1 − x2

2 , f2(x1, x2) = 2x1x2. Represent the
level sets associated with f1(x1, x2) = 12 and f2(x1, x2) = 16
on the same figure. Indicate on the figure the points
x = [x1, x2]T for which
f (x) = [f1(x1, x2), f2(x1, x2)]T = [12, 16]T .
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1 Show that

f (x + h)− f (x)

h
= f ′(x) + O(h), as h→ 0

f (x + h)− f (x − h)

2h
= f ′(x) + O(h2), as h→ 0

f (x + h)− 2f (x) + f (x − h)

h2
= f ′′(x) + O(h2), as h→ 0
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1 Show that

lim
h→0

f (x + h)− f (x)− hf ′(x)

h
= 0

therefore f (x + h)− f (x)− hf ′(x) ∈ o(h) by definition, now
using the following property, “ If f (x) ∈ o(g(x)) then
f (x) ∈ O(g(x))” we conclude that
f (x + h)− f (x)− hf ′(x) ∈ O(h) But this is not the right
answer!!.
Another alternative!!

lim
h→0

f (x + h)− f (x)− hf ′(x)

h2
= lim

h→0

f ′(x + h)− f ′(x)

2h

= lim
h→0

f ′′(x + h)

2

=
f ′′(x)

2
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then for any ε > 0 there exists δ > 0, such that for |x | < δ

| f (x + h)− f (x)− hf ′(x)

h2
− f ′′(x)

2
| < ε

using the inequality |a| ≤ |a− b|+ |b|

| f (x + h)− f (x)− hf ′(x)

h2
| ≤ | f (x + h)− f (x)− hf ′(x)

h2
− f ′′(x)

2
|

+| f
′′(x)

2
| < ε+ | f

′′(x)

2
| def= M

| f (x + h)− f (x)− hf ′(x)

h
| < Mh

then f (x+h)−f (x)−hf ′(x)
h ∈ O(h), ie, f (x+h)−f (x)

h = f ′(x) + O(h)
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Show that

lim
h→0

f (x + h)− f (x − h)

2h
= f ′(x) + O(h2), as h→ 0

Similar to the previous case we can use the L’ Hospital rule, to get

lim
h→0

f (x + h)− f (x − h)− 2hf ′(x)

2h3
=

f ′′′(x)

6
,

then f (x+h)−f (x−h)−2hf ′(x)
2h3 ∈ O(1) therefore

f (x+h)−f (x−h)−2hf ′(x)
2h ∈ O(h2). In other words, we know that if

limx→0
h(x)
g(x) = L then h(x) = O(g(x)). Then, we just need to take

g(h) = h2 and h(p) = f (x+h)−f (x−h)−2hf ′(x)
2h
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Taylor Theorem

Let g : R→ R ∈ C1. By Taylor’s theorem in 1D (or mean value
theorem)

g(1) = g(0) + g ′(θ)

with θ ∈ (0, 1). Let define g(t) = f (z(t)) with z(t) = x0 + th and
h = x− x0. Therefore,

g(1) = f (z(1)) = f (x)

g(0) = f (z(0)) = f (x0)

g ′(θ) = Df (z(θ))h = ∇f (x0 + θh)Th

f (x) = f (x0) +∇f (x0 + θh)Th
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The proof of the second part is similar. Let g : R→ R ∈ C1. By
Taylor’s theorem in 1D

g(1) = g(0) + g ′(0) +
1

2
g ′′(θ)

with θ ∈ (0, 1). Let define g(t) = f (z(t)) with z(t) = x0 + th and
h = x− x0. Therefore, for t = ‖h‖

g(1) = f (z(1)) = f (x)

g(0) = f (z(0)) = f (x0)

g ′(0) = Df (z(0))h = ∇f (x0)Th
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On the other hand

g ′(θ) = Df (z(θ))h = ∇f (z(θ))Th

g ′′(θ) = hTD2f (z(t))Dz(t) = hTD2f (z(θ))h

= hTD2f (x0 + θh)h

now using g(1) = g(0) + g ′(0) + 1
2g
′′(θ) and substituting one

obtains the result.

f (x) = f (x0) +∇f (x0)Th +
1

2
hTD2f (x0 + θh)h
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Basis Functions

ϕi (xj) = δij , δij =

{
1, i = j ,
0, i 6= j ,

(4)
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