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Motivation: curve geometry over arbitrary fields

In classical AG, we study algebraic curves over C (i.e., compact
Riemann surfaces) via their holomorphic maps to Pr .

Degree-d holomorphic maps C → Pr are prescribed by linear series:
pairs (L,V ) where L is a degree-d line bundle and V ⊂ H0(C , L) is
an (r + 1)-dimensional subspace of holomorphic sections.
Notation: g r

d .

The fundamental local invariant of a g r
d is its inflection in a point

p ∈ C , which is the total deviation of the p-vanishing orders of the
g r
d from the generic sequence (0, 1, . . . , r).

Q: What is the total inflection of a g r
d over an arbitrary field F?
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Inflection as an Euler class

When F = C, we can compute inflection using jet bundles:

The inflection divisor of (L,V ) is the non-surjectivity locus of

V ⊗O → J r+1(L) (1)

where J r+1(L) is the rank-(r + 1) bundle over C with fibers
H0(L/L(−(r + 1)p)).

So the class of the inflection divisor is

c1(det J r+1(L)) = c1(L⊗(r+1)⊗K
⊗(r+1

2 )
C ) = (r +1)d +

(r+1
2

)
(2g−2)

(Plücker’s formula).

Upshot: “inflection is an Euler class” of a line bundle over C .
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Inflection over arbitrary fields

Q: Can we write down analogues of Plücker’s formula over
non-algebraically closed fields F?

A: Using A1-homotopy theory, we can, because inflection is an
Euler class (caveat: Hom(TC , det J r+1(L)) should also be a tensor
square).

The formulas will be valued in the Grothendieck–Witt group
GW(F ), which is the (additive) groupification of the monoid of
quadratic forms over F .

GW(F ) is generated by classes 〈a〉 associated to the bilinear form
(x , y)→ axy , a ∈ F modulo relations. The hyperbolic class
H := 〈1〉+ 〈−1〉 is distinguished.

Instructive examples: GW(C) = Z (only invariant is the rank);
GW(R) = Z× Z (rank and signature); GW(Fq) = Z× Z/2Z
(rank and discriminant, modulo squares).
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A test case for Grothendieck–Witt-valued inflection

In this talk, we will focus on GW-valued arithmetic inflection of
arbitrary multiples of the g1

2 on a hyperelliptic curve.

Here C is hyperelliptic if and only if C admits a (ramified) 2-to-1
map π : C → P1. If so, the cover is unique, and given by the g1

2 .

We can realize C as a plane curve with equation y2 = f (x), where
deg(f ) = 2g + 1 iff π is ramified over ∞ ∈ P1. Assume this.

Let ∞C = π−1(∞). We will study the inflection of complete linear
series on C associated to even multiples 2`∞C . These satisfy the
technical caveat (relative orientability).

Goals: 1) A global arithmetic Euler class; and 2) explicit formulas
for local Euler indices, which codify subtle field-specific info.
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A global arithmetic Euler class

Theorem 1 (C-Darago-Han): Let F be a field with char(F ) 6= 2,
let L = O(2`∞C ), where ` ≥ 1 is a positive integer. Associated to
the complete linear series |L| on C there is a well-defined
arithmetic inflection class [Inf]A1 in GW(F ) given by

[Inf]A1 =
γC
2
H

where γC = g(2`− g + 1)2 is the C-inflectionary Plücker degree.

Remarks: The proof is an easy application of a more general
result for Euler classes of odd-rank bundles due to Fasel and
Levine. The content is that the inflection class is a multiple of H.

Example: When F = R, the sum of signs of (derivatives of) local
Wronskians in inflection points is zero.
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Local arithmetic Euler indices via local Wronskians

The behavior of local arithmetic Euler indices indp(s) near
inflection points p ∈ C is more interesting.

To calculate these, we first produce a local Wronskian determinant
for (1) in a neighborhood of the inflection point p.

For A1-homotopy theory, we use Nisnevich charts, i.e., open étale
charts in which residue fields of fibers and targets are isomorphic.
Concretely, étale charts arise from projections to the coordinate
axes, while Nisnevich charts arise from generic projections.

We then apply a linear algebraic result of Scheja and Storch to
extract indp(s) from the Nisnevich local Wronskian.

The output of this procedure is a trace of a class in GW(k(p)),
where k(p) is the splitting field of p and the trace is induced by
the field trace of k(p) over F .
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Local Wronskians for the hyperelliptic ramification locus

For local calculations, we distinguish between cases according to
whether or not ` ≤ g ; and if ` > g , whether or not the inflection
point p belongs to the ramification locus Rπ of π : C → P1. For
simplicity, assume hereafter that p 6=∞C .

Theorem 2 (C-Darago-Han): Assume that ` ≤ g , in which case
the complete linear series |O(2`∞X )| has basis
λ = (1, x , x2, . . . , x`). The local Wronskian determinant w(λ) in a
point p ∈ Rπ is

w(λ) =

(
Dx

dz

)(`+1
2 )

where z is a Nisnevich coordinate.

NB: This refines the statement that the inflection multiplicity in a
point p ∈ Rπ is

(
`+1
2

)
.
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Local Wronskians for the hyperelliptic ramification locus

Theorem 3 (C-Darago-Han): Assume ` > g , in which case
|O(2`∞X )| has basis
λ := (1, y , . . . , x`−g−1, x`−g−1y ; x`−g , x`−g+1, . . . , x`). With
respect to the local étale coordinate y , the lowest-order term of
Wronskian W (λ) is given by that of

detM(`, g) ·
(
D1
y x
)(g+1

2 )
(D2

y x)`(`−g)

whenever detM(`, g) is nonzero in F , where D i
y = D ix

dy i and

M(`, g) denotes the (g + 1)× (g + 1) matrix with entries
Mij =

(
`−g+j
2j−i

)
, 0 ≤ i , j ≤ g .

NB: Gessel–Viennot implies that (the integer underlying)
detM(`, g) equals the number of non-intersecting lattice paths
connecting a pair of (g + 1)-tuples of points lying on the lines
x + y = 0 and 2y + x = 2`− 2g in the xy -plane.
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Local Euler indices for the hyperelliptic ramification locus

Theorem 4 (C-Darago-Han): Let C denote a hyperelliptic curve
defined over a field F of characteristic 6= 2. Whenever ` ≤ g , the
local Euler index of the complete linear series |2`∞C | in GW(F )
associated to a ramification point of the hyperelliptic projection
π : C → P1 is given by

ind(γ,0)W (λ) = Trk(γ)/F

((l+1
2

)
− 1

2
·H +

〈
(D1f )(γ)

2

〉)
.



Local Euler indices for the hyperelliptic ramification locus

Let X denote a hyperelliptic curve defined over a field F of
characteristic 6= 2. When ` > g and detM(`, g) is nonzero in F ,
the local Euler index of the complete linear series |2`∞C | in
GW(F ) associated to a ramification point of the hyperelliptic
projection π : X → P1 is given by

ind(γ,0)W (λ)

=


Trk(γ)/F

(
1

2

(
g+1
2

)
·H
)

if
(
g+1
2

)
is even

Trk(γ)/F

((
g+1
2

)
− 1

2
·H +

〈
(detM(`, g))2(g+1

2 )(D1f )(γ)(g+1
2 )+`(`−g)

〉)
else.



Local Euler indices away from Rπ

Given positive integers ` > g , we define the (g , `)th inflection
polynomial Pg ,`(x) ∈ F [x ] by

det(D(j)x iy)0≤i≤`−g−1;`+1≤j≤2`−g = (f −(`+1)y)`−gPg ,`(x) (2)

where D(j) = D
(j)
x .

Characteristic property of Pg ,`: its roots parameterize the
x-coordinates of F -rational inflection points of the complete linear
series |2`∞X | on X supported on the complement of Rπ.

When ` = g + 1, the equation (2) reduces to the statement that

D(g+2)y = f −(g+2)y · Pg ,g+1(x).

In general, we can always realize inflection polynomials as
determinants in the “atomic” polynomials Pg ,g+1(x).
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When ` = g + 1, the equation (2) reduces to the statement that

D(g+2)y = f −(g+2)y · Pg ,g+1(x).

In general, we can always realize inflection polynomials as
determinants in the “atomic” polynomials Pg ,g+1(x).
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Atomic inflection polynomials. . .

Given a positive integer g , let n = g + 2; write Pn in place of
Pg ,g+1.

Theorem 5 (C-Darago-Han): Suppose that char(F ) 6= 2. The
atomic inflection polynomials of the hyperelliptic curve defined by
the affine equation y2 = f (x) satisfies the recursion

Pn+1 =
1

n + 1

(
(D1Pn) · f +

(
− n +

1

2

)
Pn · (D1f )

)
for every n ≥ 1, subject to the seed datum P1 = 1

2D
1f .

NB: We use Hasse derivatives; the kth Hasse derivative is 1
k! times

the usual derivative. Every Pn, multiplied by an appropriate power
of 2, is an element of Z[x ].
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. . . for elliptic curves

Conjecture (R-inflection for elliptic curves): Let a ∈ R, and let
Pn(x), n ≥ 1 denote the nth atomic inflection polynomial
associated to the real Weierstrass elliptic curve
E(a,2) : y2 = x3 + ax + 2. The possible numbers of real zeroes of
Pn(x), as a function of the modular parameter a, are as follows.

Value of a n odd n even

a < −3 4, of which 2 sat-
isfy f > 0

2, of which 1 satis-
fies f > 0

a > −3 2i , i = 1, . . . , n−12 ,
of which (2i − 1)
satisfy f > 0

2i , i = 1, . . . , n2 , of
which (2i − 1) sat-
isfy f > 0

NB: When a = −3, the corresponding elliptic curve
y2 = x3 − 3x + 2 has vanishing discriminant (and is singular).
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R-inflection for elliptic curves, pictorially
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Figure: Dark blue curves trace out the real loci of Cn := (Pn = 0) for
n = 9, 10 in the (x , a)-plane. Here a parameterizes the punctured j-line,
and the fiber over a is the elliptic curve E(a,2) : z2 = x3 + ax + 2 in the
(x , z)-plane. Grey (resp., orange) shading indicates that the Weierstrass
cubic f (x) = x3 + ax + 2 (resp., dPn

dx ) is strictly positive.



Elliptic curves over Fq

Over Fq, Hasse–Weil theory applies, and establishes that
#Cn(Fq) = q + 1 + en,q, where |en,q| ≤ 2g

√
q. Here g =

(2n−1
2

)
is

the arithmetic genus of Cn in the xa-plane.

Conjecture 2 (Fq-inflection for elliptic curves): Let n ≥ 2, and
let ẽn,p :=

en,p
(2n−1)(2n−2)√p denote the renormalized error associated

with (the cardinality of) Cn(Fp), where Cn := (Pn = 0) is the nth
inflectionary curve derived from the Weierstrass family E(a,2) of
elliptic curves. Then for every n, the values of ẽn,p are
equidistributed as p varies over all odd primes.

NB: Conjecture 2 should be viewed as an analogue the Sato–Tate
conjecture (now a theorem of Barnet-Lamb, Geraghty, Harris and
Taylor), which establishes equidistribution for the error terms
associated with an arbitrary elliptic curve (as opposed to an
inflectionary curve) over Fq.
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equidistributed as p varies over all odd primes.

NB: Conjecture 2 should be viewed as an analogue the Sato–Tate
conjecture (now a theorem of Barnet-Lamb, Geraghty, Harris and
Taylor), which establishes equidistribution for the error terms
associated with an arbitrary elliptic curve (as opposed to an
inflectionary curve) over Fq.



Elliptic curves over Fq

Over Fq, Hasse–Weil theory applies, and establishes that
#Cn(Fq) = q + 1 + en,q, where |en,q| ≤ 2g

√
q. Here g =

(2n−1
2

)
is

the arithmetic genus of Cn in the xa-plane.

Conjecture 2 (Fq-inflection for elliptic curves): Let n ≥ 2, and
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