Special Subgroups of the Cremona Group via Calabi-Yau Pairs

Carolina Araujo (IMPA)

CIMAT, August $24^{\text {th }} 2020$
(remotely from Rio de Janeiro)

Joint with Alessio Corti and Alex Massarenti

(We always work over \mathbb{C})

Automorphisms in Algebraic Geometry

$X \subset \mathbb{P}^{n}$ complex projective variety

Automorphisms in Algebraic Geometry

$X \subset \mathbb{P}^{n}$ complex projective variety

$\operatorname{Aut}(X)=\{f: X \rightarrow X$ automorphism $\}$

Automorphisms in Algebraic Geometry

Example $\left(X=\mathbb{P}^{n}\right)$
$\operatorname{Aut}\left(\mathbb{P}^{n}\right)=\operatorname{PGL}_{n+1}(\mathbb{C})$

Automorphisms in Algebraic Geometry

$\operatorname{ExAmple}\left(X=\mathbb{P}^{n}\right)$
$\operatorname{Aut}\left(\mathbb{P}^{n}\right)=P G L_{n+1}(\mathbb{C})$

X projective variety (over \mathbb{C})
Aut (X) Lie group
Aut ${ }^{0}(X) \subset \operatorname{Aut}(X)$ connected component of $\mathbb{I}_{X} \quad(\mathbb{C}$-algebraic group $)$

Automorphisms in Algebraic Geometry

X projective variety (over \mathbb{C})
Aut (X) Lie group
Aut ${ }^{0}(X) \subset \operatorname{Aut}(X)$ connected component of $\mathbb{I}_{X} \quad(\mathbb{C}$-algebraic group)

Automorphisms in Algebraic Geometry

X projective variety (over \mathbb{C})
$\operatorname{Aut}(X)$ Lie group
Aut ${ }^{0}(X) \subset \operatorname{Aut}(X)$ connected component of $\mathbb{I}_{X} \quad$ (\mathbb{C}-algebraic group)
Example (X smooth projective curve of genus g)

$g=0$

$g=1$

$g \geq 2$

Automorphisms in Algebraic Geometry

X projective variety (over \mathbb{C})
$\operatorname{Aut}(X)$ Lie group
$\operatorname{Aut}^{0}(X) \subset \operatorname{Aut}(X)$ connected component of $\mathbb{I}_{X} \quad$ (\mathbb{C}-algebraic group)
Example (X smooth projective curve of genus g)

$$
g=0
$$

$g=1$

$g \geq 2$

- $g=0 \quad \operatorname{Aut}^{0}\left(\mathbb{P}^{1}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})$
- $g=1 \operatorname{Aut}^{0}(X) \cong X$
- $g \geq 2 \operatorname{Aut}(X)$ is finite

Birational Geometry

Birational Geometry

Definition

X and Y are birational equivalent if \exists dense open subsets $U \subset X$ and $V \subset Y$ and isomorphism

$$
X \supset U \xrightarrow{\cong} V \subset Y
$$

Birational Geometry

Definition

X and Y are birational equivalent if \exists dense open subsets $U \subset X$ and $V \subset Y$ and isomorphism

$$
X \supset U \xrightarrow{\cong} V \subset Y
$$

$$
X \quad-\simeq \rightarrow Y
$$

Birational Geometry

Definition

X and Y are birational equivalent if \exists dense open subsets $U \subset X$ and $V \subset Y$ and isomorphism

$$
X \supset U \xrightarrow{\cong} V \subset Y
$$

Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}(Y)
$$

Birational Geometry

Definition

X and Y are birational equivalent if \exists dense open subsets $U \subset X$ and $V \subset Y$ and isomorphism

$$
X \supset U \xrightarrow{\cong} V \subset Y
$$

$$
X \quad \simeq \simeq \quad Y
$$

Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}(Y)
$$

The problem of birational classification :
Given a projective variety X, to find a simplest representative in its birational class - minimal model of X

Birational Geometry

Definition

X is rational if it is birationally equivalent to \mathbb{P}^{n}
Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)
$$

Birational Geometry

DEfinition

X is rational if it is birationally equivalent to \mathbb{P}^{n}
Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)
$$

Problems

- Which algebraic varieties are rational?

Birational Geometry

DEfinition

X is rational if it is birationally equivalent to \mathbb{P}^{n}
Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)
$$

Problems

- Which algebraic varieties are rational?
- Which properties are invariant under birational equivalence?

Birational Geometry

Definition

X is rational if it is birationally equivalent to \mathbb{P}^{n}
Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)
$$

Problems

- Which algebraic varieties are rational?
- Which properties are invariant under birational equivalence?

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Birational Geometry

Problem

Which properties are invariant under birational equivalence?

Birational Geometry

Problem

Which properties are invariant under birational equivalence?

Aut (X) is not a birational invariant

Birational Geometry

Problem

Which properties are invariant under birational equivalence?

Aut (X) is not a birational invariant

Definition (The Birational Group)

$$
\operatorname{Bir}(X):=\{\varphi: X-\simeq \rightarrow X \text { birational self-map }\}
$$

The Cremona Group

The Cremona Group

Definition (The Cremona Group in dimension n)

$\operatorname{Bir}\left(\mathbb{P}^{n}\right):=\left\{\varphi: \mathbb{P}^{n}-\simeq \rightarrow \mathbb{P}^{n}\right.$ birational self-map $\}$

$$
\operatorname{PGL}_{n+1}(\mathbb{C})=\operatorname{Aut}\left(\mathbb{P}^{n}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)
$$

The Cremona Group

Definition (The Cremona Group in dimension n)

$$
\operatorname{Bir}\left(\mathbb{P}^{n}\right):=\left\{\varphi: \mathbb{P}^{n} \quad \simeq \simeq \mathbb{P}^{n} \text { birational self-map }\right\}
$$

$$
\mathrm{PGL}_{n+1}(\mathbb{C})=\operatorname{Aut}\left(\mathbb{P}^{n}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)
$$

Example (The standard quadratic transformation)

$$
\begin{array}{ccc}
\tau: & \mathbb{P}^{2} & -\rightarrow
\end{array} \mathbb{P}^{2}
$$

The Cremona Group

Definition (The Cremona Group in dimension n)

$\operatorname{Bir}\left(\mathbb{P}^{n}\right):=\left\{\varphi: \mathbb{P}^{n} \quad \simeq \simeq \mathbb{P}^{n}\right.$ birational self-map $\}$
$\operatorname{PGL}_{n+1}(\mathbb{C})=\operatorname{Aut}\left(\mathbb{P}^{n}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)$
Example (The standard quadratic Transformation)

$$
\begin{array}{cccc}
\tau: & \mathbb{P}^{2} & -> & \mathbb{P}^{2} \\
& (x: y: z) & \longmapsto & \left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right)=(y z: x z: x y)
\end{array}
$$

The Cremona Group

Definition (The Cremona Group in dimension n)

$$
\operatorname{Bir}\left(\mathbb{P}^{n}\right):=\left\{\varphi: \mathbb{P}^{n}-\simeq \rightarrow \mathbb{P}^{n} \text { birational self-map }\right\}
$$

$\mathrm{PGL}_{n+1}(\mathbb{C})=\operatorname{Aut}\left(\mathbb{P}^{n}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)$
Example (The standard quadratic transformation)

$$
\begin{array}{cccc}
\tau: & \mathbb{P}^{2} & -\simeq & \mathbb{P}^{2} \\
& (x: y: z) & \longmapsto & \left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right) \stackrel{P^{2}}{=}(y z: x z: x y)
\end{array}
$$

The Cremona Group

Definition (The Cremona Group in dimension n)

$$
\operatorname{Bir}\left(\mathbb{P}^{n}\right):=\left\{\varphi: \mathbb{P}^{n}-\simeq \rightarrow \mathbb{P}^{n} \text { birational self-map }\right\}
$$

$\operatorname{PGL}_{n+1}(\mathbb{C})=\operatorname{Aut}\left(\mathbb{P}^{n}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)$
Example (The standard quadratic transformation)

$$
\begin{array}{ccc}
\tau: \begin{array}{cc}
\mathbb{P}^{2} & -\simeq
\end{array} & \mathbb{P}^{2} \\
& (x: y: z) & \longmapsto
\end{array}\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right) \stackrel{(y z: x z: x y)}{=}
$$

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

The Cremona Group in dimension 2

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

The Cremona Group in dimension 2

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

Theorem (Cantat-Lamy 2010)
$\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is not a simple group.

The Cremona Group in dimension 2

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

Theorem (Cantat-Lamy 2010)
$\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is not a simple group.

Theorem (Bertini 1877, …, Dolgachev-Iskovskikh 2009)
Classification of finite subgroups of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$.

The Cremona Group in higher dimensions

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

The Cremona Group in higher dimensions

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

Theorem (Hilda Hudson 1927)
For $n \geq 3$, $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ cannot be generated by elements of bounded degree.

The Cremona Group in higher dimensions

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

Theorem (Hilda Hudson 1927)

For $n \geq 3$, $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ cannot be generated by elements of bounded degree.

Problem

To construct interesting subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$.

SYMPlectic Birational transformations of \mathbb{P}^{2}

$\frac{d x}{x} \wedge \frac{d y}{y}$ - meromorphic volume form on \mathbb{P}^{2}
$\operatorname{Bir}\left(\mathbb{P}^{2}, \frac{d x}{x} \wedge \frac{d y}{y}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{2}\right)$

Symplectic birational transformations of \mathbb{P}^{2}

$\frac{d x}{x} \wedge \frac{d y}{y}$ - meromorphic volume form on \mathbb{P}^{2}
$\operatorname{Bir}\left(\mathbb{P}^{2}, \frac{d x}{x} \wedge \frac{d y}{y}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{2}\right)$
Theorem (Blanc 2013)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}, \frac{d x}{x} \wedge \frac{d y}{y}\right)=\langle\underbrace{\operatorname{SL}(2, \mathbb{Z}),\left(\mathbb{C}^{*}\right)^{2}}_{\text {preserve the torus }\left(\mathbb{C}^{*}\right)^{2}},(x, y) \mapsto\left(y, \frac{1+y}{x}\right)\rangle
$$

Symplectic birational transformations of \mathbb{P}^{2}

$\frac{d x}{x} \wedge \frac{d y}{y}$ - meromorphic volume form on \mathbb{P}^{2}
$\operatorname{Bir}\left(\mathbb{P}^{2}, \frac{d x}{x} \wedge \frac{d y}{y}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{2}\right)$
Theorem (Blanc 2013)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}, \frac{d x}{x} \wedge \frac{d y}{y}\right)=\langle\underbrace{\operatorname{SL}(2, \mathbb{Z}),\left(\mathbb{C}^{*}\right)^{2}}_{\text {preserve the torus }\left(\mathbb{C}^{*}\right)^{2}},(x, y) \mapsto\left(y, \frac{1+y}{x}\right)\rangle
$$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right):(x, y) \mapsto\left(x^{a} y^{b}, x^{c} y^{d}\right)
$$

Symplectic birational transformations of \mathbb{P}^{2}

$\frac{d x}{x} \wedge \frac{d y}{y}$ - meromorphic volume form on \mathbb{P}^{2}
$\operatorname{Bir}\left(\mathbb{P}^{2}, \frac{d x}{x} \wedge \frac{d y}{y}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{2}\right)$
Theorem (Blanc 2013)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}, \frac{d x}{x} \wedge \frac{d y}{y}\right)=\left\langle\operatorname{SL}(2, \mathbb{Z}),\left(\mathbb{C}^{*}\right)^{2},(x, y) \mapsto\left(y, \frac{1+y}{x}\right)\right\rangle
$$

Symplectic birational transformations of \mathbb{P}^{2}

$\frac{d x}{x} \wedge \frac{d y}{y}$ - meromorphic volume form on \mathbb{P}^{2}
$\operatorname{Bir}\left(\mathbb{P}^{2}, \frac{d x}{x} \wedge \frac{d y}{y}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{2}\right)$
Theorem (Blanc 2013)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}, \frac{d x}{x} \wedge \frac{d y}{y}\right)=\left\langle\operatorname{SL}(2, \mathbb{Z}),\left(\mathbb{C}^{*}\right)^{2},(x, y) \mapsto\left(y, \frac{1+y}{x}\right)\right\rangle
$$

Problem

To determine $\operatorname{Bir}\left(\mathbb{P}^{n}, \frac{d x_{1}}{x_{1}} \wedge \cdots \wedge \frac{d x_{n}}{x_{n}}\right)$.

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

ω meromorphic volume form on \mathbb{P}^{n}

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, \omega\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)
$$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

ω meromorphic volume form on \mathbb{P}^{n}

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, \omega\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)
$$

$$
[\operatorname{div}(\omega)]=\left[\operatorname{div}_{0}(\omega)\right]-\left[\operatorname{div}_{\infty}(\omega)\right] \sim-(n+1) H \quad\left(K_{\mathbb{P}^{n}} \in \operatorname{Pic}\left(\mathbb{P}^{n}\right)\right)
$$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

ω meromorphic volume form on \mathbb{P}^{n}

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, \omega\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)
$$

$[\operatorname{div}(\omega)]=\left[\operatorname{div}_{0}(\omega)\right]-\left[\operatorname{div}_{\infty}(\omega)\right] \sim-(n+1) H \quad\left(K_{\mathbb{P}^{n}} \in \operatorname{Pic}\left(\mathbb{P}^{n}\right)\right)$
REMARK
$D \subset \mathbb{P}^{n}$ hypersurface of degree $n+1 \rightsquigarrow \exists \omega_{D}$ (unique up to scaling)

$$
D=-\left[\operatorname{div}\left(\omega_{D}\right)\right]
$$

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Bir}\left(\mathbb{P}^{n}, \omega_{D}\right)
$$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

ω meromorphic volume form on \mathbb{P}^{n}

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, \omega\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)
$$

$[\operatorname{div}(\omega)]=\left[\operatorname{div}_{0}(\omega)\right]-\left[\operatorname{div}_{\infty}(\omega)\right] \sim-(n+1) H \quad\left(K_{\mathbb{P}^{n}} \in \operatorname{Pic}\left(\mathbb{P}^{n}\right)\right)$
REmark
$D \subset \mathbb{P}^{n}$ hypersurface of degree $n+1 \rightsquigarrow \exists \omega_{D}$ (unique up to scaling)

$$
D=-\left[\operatorname{div}\left(\omega_{D}\right)\right]
$$

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Bir}\left(\mathbb{P}^{n}, \omega_{D}\right)
$$

Problem

To determine $\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

Problem

Given $D \subset \mathbb{P}^{n}$ hypersurface of degree $n+1$, to determine $\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)$.

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

Problem

Given $D \subset \mathbb{P}^{n}$ hypersurface of degree $n+1$, to determine $\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)$.

Theorem A
If $n \geq 3$ and D is very general, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right)
$$

(D is smooth and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$)

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

Problem

Given $D \subset \mathbb{P}^{n}$ hypersurface of degree $n+1$, to determine $\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)$.

Theorem A
If $n \geq 3$ and D is very general, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right)
$$

(D is smooth and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$)

Example
If $D=-(n+1) H$, then

$$
\operatorname{Aut}\left(\mathbb{A}^{n}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}, D\right)
$$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

Problem

Given $D \subset \mathbb{P}^{n}$ hypersurface of degree $n+1$, to determine $\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)$.

Theorem A
If $n \geq 3$ and D is very general, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right)
$$

(D is smooth and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$)

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

Problem

Given $D \subset \mathbb{P}^{n}$ hypersurface of degree $n+1$, to determine $\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)$.

Theorem A
If $n \geq 3$ and D is very general, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right)
$$

(D is smooth and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$)

If the singularities of D are mild ${ }^{(*)}$, then techniques from the MMP can be used to determine $\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)$.

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$

Problem

Given $D \subset \mathbb{P}^{n}$ hypersurface of degree $n+1$, to determine $\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)$.

Theorem A
If $n \geq 3$ and D is very general, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right)
$$

(D is smooth and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$)

If the singularities of D are mild ${ }^{(*)}$, then techniques from the MMP can be used to determine $\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)$.
${ }^{(*)}\left(\mathbb{P}^{n}, D\right)$ has \log canonical singularities

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$$
x_{0}^{2} A_{2}\left(x_{1}, x_{2}, x_{3}\right)+x_{0} B_{3}\left(x_{1}, x_{2}, x_{3}\right)+C_{4}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$$
x_{0}^{2} A_{2}\left(x_{1}, x_{2}, x_{3}\right)+x_{0} B_{3}\left(x_{1}, x_{2}, x_{3}\right)+C_{4}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

Example
$\varphi:\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(-A x_{0}-B: A x_{1}: A x_{2}: A x_{3}\right)$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$$
x_{0}^{2} A_{2}\left(x_{1}, x_{2}, x_{3}\right)+x_{0} B_{3}\left(x_{1}, x_{2}, x_{3}\right)+C_{4}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

Example
$\varphi:\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(-A x_{0}-B: A x_{1}: A x_{2}: A x_{3}\right)$

$$
\langle\varphi\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \subset \operatorname{Bir}\left(\mathbb{P}^{3}, D\right)
$$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$$
x_{0}^{2} A_{2}\left(x_{1}, x_{2}, x_{3}\right)+x_{0} B_{3}\left(x_{1}, x_{2}, x_{3}\right)+C_{4}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

Example
$\varphi:\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(-A x_{0}-B: A x_{1}: A x_{2}: A x_{3}\right)$

$$
\langle\varphi\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \subset \operatorname{Bir}\left(\mathbb{P}^{3}, D\right)
$$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$$
x_{0}^{2} A_{2}\left(x_{1}, x_{2}, x_{3}\right)+x_{0} B_{3}\left(x_{1}, x_{2}, x_{3}\right)+C_{4}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

Example
$\varphi:\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(-A x_{0}-B: A x_{1}: A x_{2}: A x_{3}\right)$

$$
\langle\varphi\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \subset \operatorname{Bir}\left(\mathbb{P}^{3}, D\right)
$$

Theorem B

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z}
$$

\mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$

Special subgroups of $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$$
x_{0}^{2} A_{2}\left(x_{1}, x_{2}, x_{3}\right)+x_{0} B_{3}\left(x_{1}, x_{2}, x_{3}\right)+C_{4}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

Example
$\varphi:\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(-A x_{0}-B: A x_{1}: A x_{2}: A x_{3}\right)$

$$
\langle\varphi\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \subset \operatorname{Bir}\left(\mathbb{P}^{3}, D\right)
$$

Theorem B

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z}
$$

\mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$

$$
\mathbb{G}=\left\{\left[(A G-B F) x_{0}-C F: A\left(F x_{0}+G\right) x_{1}: A\left(F x_{0}+G\right) x_{2}: A\left(F x_{0}+G\right) x_{3}\right]\right\}
$$

$\left(F, G \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]\right.$ homogeneous with $\left.\operatorname{deg}(G)=\operatorname{deg}(F)+1\right)$

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$$
\tilde{D} \xrightarrow{(2: 1)} \mathbb{P}^{2}
$$

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$$
\tilde{D} \xrightarrow{(2: 1)} \mathbb{P}^{2}
$$

$\tau: \tilde{D} \xrightarrow{\simeq} \tilde{D}$ associated involution

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$\tau: \tilde{D} \xrightarrow{\simeq} \tilde{D}$ associated involution

$$
\operatorname{Bir}(D) \cong \operatorname{Aut}(\tilde{D})=\langle\tau\rangle \cong \mathbb{Z} / 2 \mathbb{Z}
$$

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$\tau: \tilde{D} \xrightarrow{\simeq} \tilde{D}$ associated involution

$$
\operatorname{Bir}(D) \cong \operatorname{Aut}(\tilde{D})=\langle\tau\rangle \cong \mathbb{Z} / 2 \mathbb{Z}
$$

FACT
Restriction to D induces a group homomorphism

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \rightarrow \operatorname{Bir}(D)
$$

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$\tau: \tilde{D} \xrightarrow{\simeq} \tilde{D}$ associated involution

$$
\operatorname{Bir}(D) \cong \operatorname{Aut}(\tilde{D})=\langle\tau\rangle \cong \mathbb{Z} / 2 \mathbb{Z}
$$

FACT
Restriction to D induces a group homomorphism

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \rightarrow \operatorname{Bir}(D)
$$

REMARK

This is not true for arbitrary D

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$\tau: \tilde{D} \xrightarrow{\simeq} \tilde{D}$ associated involution

$$
\operatorname{Bir}(D) \cong \operatorname{Aut}(\tilde{D})=\langle\tau\rangle \cong \mathbb{Z} / 2 \mathbb{Z}
$$

FACT
Restriction to D induces a group homomorphism

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \rightarrow \operatorname{Bir}(D)
$$

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$\tau: \tilde{D} \xrightarrow{\simeq} \tilde{D}$ associated involution

$$
\operatorname{Bir}(D) \cong \operatorname{Aut}(\tilde{D})=\langle\tau\rangle \cong \mathbb{Z} / 2 \mathbb{Z}
$$

FACT
Restriction to D induces a group homomorphism

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \rightarrow \operatorname{Bir}(D)
$$

Example
$\varphi:\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(-A x_{0}-B: A x_{1}: A x_{2}: A x_{3}\right) \rightsquigarrow \quad \tau$

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$\tau: \tilde{D} \xrightarrow{\simeq} \tilde{D}$ associated involution

$$
\operatorname{Bir}(D) \cong \operatorname{Aut}(\tilde{D})=\langle\tau\rangle \cong \mathbb{Z} / 2 \mathbb{Z}
$$

FACT
Restriction to D induces a group homomorphism

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \rightarrow \operatorname{Bir}(D)
$$

The geometry of D

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$\tau: \tilde{D} \xrightarrow{\simeq} \tilde{D}$ associated involution

$$
\operatorname{Bir}(D) \cong \operatorname{Aut}(\tilde{D})=\langle\tau\rangle \cong \mathbb{Z} / 2 \mathbb{Z}
$$

FACT
Restriction to D induces a group homomorphism

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \rightarrow \operatorname{Bir}(D)
$$

$$
1 \rightarrow \mathbb{G} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \xrightarrow{\curvearrowleft} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 1
$$

The Group \mathbb{G}

The Group \mathbb{G}

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

The Group \mathbb{G}

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

Key point: Given $\psi \in \operatorname{Bir}\left(\mathbb{P}^{3}, D\right)$ there is a commutative diagram:

The Group \mathbb{G}

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

Key point: $\operatorname{Given} \psi \in \operatorname{Bir}\left(\mathbb{P}^{3}, D\right)$ there is a commutative diagram:

\mathbb{G} is the group of birational self-maps of X over \mathbb{P}^{2} fixing \tilde{D} pointwise

The Group \mathbb{G}

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

Key point: Given $\psi \in \operatorname{Bir}\left(\mathbb{P}^{3}, D\right)$ there is a commutative diagram:

\mathbb{G} is the group of birational self-maps of X over \mathbb{P}^{2} fixing \tilde{D} pointwise View X as a model of \mathbb{P}^{1} over $\mathbb{C}(x, y)$

The Group \mathbb{G}

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

Key point: Given $\psi \in \operatorname{Bir}\left(\mathbb{P}^{3}, D\right)$ there is a commutative diagram:

\mathbb{G} is the group of birational self-maps of X over \mathbb{P}^{2} fixing \tilde{D} pointwise View X as a model of \mathbb{P}^{1} over $\mathbb{C}(x, y)$
\mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$

FACTORIZING BIRATIONAL MAPS $\psi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$

FACTORIZING BIRATIONAL MAPS $\psi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$
The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

FACTORIZING BIRATIONAL MAPS $\psi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$
The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

The X_{i} 's are Mori fiber spaces
The ψ_{i} 's are elementary links

FACTORIZING BIRATIONAL MAPS $\psi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$

The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

The X_{i} 's are Mori fiber spaces
The ψ_{i} 's are elementary links
Definition (Mori Fiber Space)
$f: X \rightarrow Y$ fibration such that

- X has "mild singularities" (terminal)
- $\rho(X / Y)=1$
- $-K_{X}$ is f-ample

FACTORIZING BIRATIONAL MAPS $\psi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$

The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

The $X_{i} \rightarrow Y_{i}$'s are Mori fiber spaces
The ψ_{i} 's are elementary links
Definition (Mori Fiber Space)
$f: X \rightarrow Y$ fibration such that

- X has "mild singularities" (terminal)
- $\rho(X / Y)=1$
- $-K_{X}$ is f-ample

The surface case

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle $)$
$\left(\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \quad\right.$ and $\left.\quad \mathbb{F}_{1} \cong B I_{P} \mathbb{P}^{2}\right)$

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle)
$\left(\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \quad\right.$ and $\left.\quad \mathbb{F}_{1} \cong B l_{P} \mathbb{P}^{2}\right)$
The elementary links are

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle $)$
$\left(\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \quad\right.$ and $\left.\quad \mathbb{F}_{1} \cong B l_{P} \mathbb{P}^{2}\right)$
The elementary links are

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle $)$
$\left(\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \quad\right.$ and $\left.\quad \mathbb{F}_{1} \cong B l_{P} \mathbb{P}^{2}\right)$
The elementary links are

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle $)$
$\left(\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}\right.$ and $\left.\left.\mathbb{F}_{1} \cong B\right|_{P} \mathbb{P}^{2}\right)$
The elementary links are

Calabi-Yau pairs

Definition (Calabi-Yau pair)
(X, D) such that

- X terminal projective variety
- D is a hypersurface $\sim-K_{X} \quad\left(D=-\operatorname{div}\left(\omega_{D}\right)\right)$
- (X, D) is log canonical

Calabi-Yau pairs

Definition (Calabi-Yau pair)
(X, D) such that

- X terminal projective variety
- D is a hypersurface $\sim-K_{X} \quad\left(D=-\operatorname{div}\left(\omega_{D}\right)\right)$
- (X, D) is log canonical

Definition

$\left(X, D_{X}\right)$ and $\left(Y, D_{Y}\right)$ Calabi-Yau pairs
$f: X \rightarrow Y$ birational map $\rightsquigarrow f_{*}: \Omega_{\mathbb{C}(X) / \mathbb{C}}^{n} \rightarrow \Omega_{\mathbb{C}(Y) / \mathbb{C}}^{n}$
If $f_{*} \omega_{D_{X}}=\omega_{D_{\gamma}}$ (up to scaling) then we say that

$$
f:\left(X, D_{X}\right) \rightarrow\left(Y, D_{Y}\right) \text { is volume preserving }
$$

Volume Preserving Sarkisov Program

Theorem (Corti-Kaloghiros 2016)
A volume preserving birational map between Mori fibered Calabi-Yau pairs is a composition of volume preserving Sarkisov links.

Volume Preserving Sarkisov Program

Theorem (Corti-Kaloghiros 2016)

A volume preserving birational map between Mori fibered Calabi-Yau pairs is a composition of volume preserving Sarkisov links.

Volume Preserving Sarkisov Program

Theorem (Corti-Kaloghiros 2016)

A volume preserving birational map between Mori fibered Calabi-Yau pairs is a composition of volume preserving Sarkisov links.

Example

If $D \subset \mathbb{P}^{n}$ is a smooth hypersurface of degree $n+1$, and $f: X \rightarrow \mathbb{P}^{n}$ is a volume preserving blowup along a smooth center Z, then

$$
Z \subset D \quad \text { and } \quad \operatorname{codim}_{\mathbb{P}^{n}}(Z)=2
$$

Volume Preserving Sarkisov Program

Theorem A

If $n \geq 3$ and D is very general hypersurface of degree $n+1$, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right) .
$$

(D is smooth and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$)

Volume Preserving Sarkisov Program

Theorem A
If $n \geq 3$ and D is very general hypersurface of degree $n+1$, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right) .
$$

(D is smooth and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$)

Volume Preserving Sarkisov Program

Theorem A
If $n \geq 3$ and D is very general hypersurface of degree $n+1$, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right) .
$$

(D is smooth and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$)

X_{1} has worst than terminal singularities

Volume Preserving Sarkisov Program

Theorem B

If $D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

Volume Preserving Sarkisov Program

Theorem B

If $D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

Volume Preserving Sarkisov Program

Theorem B
If $D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

Thank you! ${ }^{1}$

${ }^{1}$ Thanks to Santiago Arango and Wikipedia for some nice pictures

