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birational class - minimal model of X
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〈 ϕ 〉 ∼= Z/2Z ⊂ Bir(P3,D)
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The geometry of D
D ⊂ P3 general quartic hypersurface with 1 singular point P

D̃ ⊂ X

D ⊂ P3 P2
πP

P1-bundleBlP
D̃ P2

(2 : 1)

τ : D̃
'−→ D̃ associated involution

Bir(D) ∼= Aut(D̃) = 〈τ〉 ∼= Z/2Z

Fact

Restriction to D induces a group homomorphism

Bir(P3,D) → Bir(D)

Remark

This is not true for arbitrary D
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The Group G

D ⊂ P3 general quartic hypersurface with 1 singular point P

D̃ ⊂ X

D ⊂ P3 P2
πP

P1-bundleBlP

Key point: Given ψ ∈ Bir(P3,D) there is a commutative diagram:

X X

P3 P2 P2 P3.
ψ

BlPBlP

ψ̃

G is the group of birational self-maps of X over P2 fixing D̃ pointwise

View X as a model of P1 over C(x , y)

G is a form of Gm over C(x , y)
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Factorizing birational maps ψ : Pn 99K Pn

The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

Pn = X0 X1 · · · Xn−1 Xn = Pn
ψ1 ψ2 ψn−1 ψn

ψ

The Xi ’s are Mori fiber spaces

The ψi ’s are elementary links

Definition (Mori Fiber Space)

f : X → Y fibration such that

X has “mild singularities” (terminal)

ρ(X/Y ) = 1

−KX is f -ample
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The surface case

The Mori fiber spaces are:

P2 → pt

Fm → P1 (P1-bundle)

( F0
∼= P1 × P1 and F1

∼= BlPP2 )

The elementary links are

Type 1

P2 F1

pt P1

BlP

Type 2

Z

Fm Fm±1

P1 P1

Type 3

F1 P2

P1 pt

BlP

Type 4

F0 F0

P1 P1
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Calabi-Yau pairs

Definition (Calabi-Yau pair)

(X ,D) such that

X terminal projective variety

D is a hypersurface ∼ −KX ( D = −div(ωD) )

(X ,D) is log canonical

Definition

(X ,DX ) and (Y ,DY ) Calabi-Yau pairs

f : X 99K Y birational map  f∗ : Ωn
C(X )/C → Ωn

C(Y )/C

If f∗ωDX
= ωDY

(up to scaling) then we say that

f : (X ,DX ) 99K (Y ,DY ) is volume preserving
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Volume Preserving Sarkisov Program

Theorem (Corti-Kaloghiros 2016)

A volume preserving birational map between Mori fibered Calabi-Yau pairs
is a composition of volume preserving Sarkisov links.

(X0,D0) (X1,D1) · · · (Xn−1,Dn−1) (Xn,Dn)

Y0 Y1 Yn−1 Yn

ψ1 ψ2 ψn−1 ψn

ψ

Example

If D ⊂ Pn is a smooth hypersurface of degree n + 1, and f : X → Pn is a
volume preserving blowup along a smooth center Z , then

Z ⊂ D and codimPn(Z ) = 2.
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Volume Preserving Sarkisov Program

Theorem A

If n ≥ 3 and D is very general hypersurface of degree n + 1, then

Bir
(
Pn,D

)
= Aut

(
Pn,D

)
.(

D is smooth and Pic(D) = Z ·
(
H|D

) )

(Pn,D) (X1,D1) · · · (Xn−1,Dn−1) (Pn,D)

pt Y1 Yn−1 pt

ψ1 ψ2 ψn−1 ψn

ψ

X1 has worst than terminal singularities
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Volume Preserving Sarkisov Program

Theorem B

If D ⊂ P3 general quartic hypersurface with 1 singular point P, then

Bir(P3,D) ∼= Go Z/2Z,

where G is a form of Gm over C(x , y).

(P3,D) (X , D̃) · · · (X , D̃) (P3,D)

pt P2 P2 pt· · ·

BlP

ψ2 ψn−1 BlP

ψ
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Thank you! 1

1Thanks to Santiago Arango and Wikipedia for some nice pictures


