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Abstract 
 
Modern approaches in software development propose the 
use of software architectures to help handle the 
complexity of large software system developments. An 
important technique to define, analyze, validate, and 
evaluate a software architecture is through the use of 
scenarios. A scenario is a brief description of a single 
interaction of a stakeholder with a system. Scenario 
modeling is a well-accepted practice among software 
architects. However, there is no agreement on how to 
model scenarios.  Message Sequence Charts (MSC) is a 
graphical-textual notation used to specify scenarios. This 
notation is standardized by the International 
Communication Union (ITU) and has a well-defined 
semantics. In this paper we present an approach for 
describing architectural scenarios using MSC. The paper 
focuses in the features proposed by the MSC notation to 
describe complex behaviors and time constraints.  In 
addition, a brief discussion on the advantages of using 
MSC to validate architectural scenarios is presented. This 
validation is performed using an executable interpretation 
of MSC. 
  

1. Introduction 
The software development process is composed of 
different systematic stages: analysis, design, 
implementation, testing, and maintenance. Modern 
approaches, such as the Unified Process [1], propose the 
use of software architectures to help handle the 
complexity of large software system developments. The 
main benefits of a software architecture-based 
development include:  
?  The architecture is the earliest document of the 

development process that brings to perspective 
critical design decisions that are difficult to change. 
These decisions have a great impact on the final 
product. 

?  The architecture may be the common vehicle of 
communication among stakeholders of the system 
(user, client, architect, designer, developer, etc.) 
supporting tradeoff analysis between system qualities 

of the system (performance, security, maintainability, 
reliability, etc.). 

 
There are several definitions of software architecture from 
practitioners and researchers. In this paper we use the one 
proposed by the IEEE Std 1471-2000 [2]: “The 
fundamental organization of a system embodied in its 
components, their relationships to each other, and to the 
environment, and the principles guiding its design and 
evolution.”  
 
An architectural scenario (or scenario) is a brief 
description of a single interaction of a stakeholder with a 
system [3]. This concept is similar to the notion of use 
cases prevalent in the object-oriented community [4]. 
 
In order to design a software architecture, an architectural 
creation process must be defined and established. The 
fundamental premise of the software architecture creation 
process is the transformation of a set of functional and 
quality requirements specifications into a software 
architectural description. In [3], [5], and [6] software 
architecture processes are proposed, where the driving 
force behind architecture description, analysis, and 
evaluation is the use of scenarios.  
 
Scenarios are the underpinnings in an iterative 
development method. Scenarios are useful for  
1. Requirement elicitation and validation 
2. Helping stakeholders understand the architecture 
3. Identify flaws and limitations of the architecture 
4. Identify architectural views and their representation 

(process view, logical view, implementation 
view, deployment view, and use case view) [1] 

5. Understand the impact of anticipated changes on the 
architecture 
 

During the past decade, several notations have been 
developed in order to specify, verify, and validate 
communication systems (based on communication 
protocols). The International Communications Union 
(ITU), formerly CCITT, standardizes some of these 
notations. Particularly, the Message Sequence Charts 
(MSC) [7] is a notation used to specify interactions 
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among communicating entities. The official name for this 
notation is ITU-T Recommendation Z.120 (11/99) 
Message Sequence Charts.  
 
The MSC is a standardized textual-graphical notation that 
has formal semantics [8]. The MSC has been used widely 
to capture requirements, to visualize interactions of the 
system’s execution simulations [9], and to verify design 
models [10]. MSC has been proposed to be part of the 
UML 2.0 because of its easy understanding and 
expressiveness [11]. 
 
The MSC includes useful issues to describe complex and 
precise scenarios in the system such as timing and data 
mechanisms.  
 
In this paper we propose MSCs as a mean to describe 
architectural scenarios. Additionally, we propose the use 
of an executable interpretation of MSC to validate the 
system execution. This process is based on an Abstract 
Execution Machine. The validation requires two elements: 
the architectural scenarios and a set of recorded traces 
from the execution of the system.  
 
The advantage of using an executable interpretation of the 
notation is presented in the use of automated tools. If a 
model (defined by a set of diagrams) can be interpreted 
and mapped to executable elements then the tools can be 
used to generate code, generate test cases, validate the 
system, etc. 
 
The paper is organized as follows. Section 2 is an 
overview of the most important elements of the MSC 
notation. Section 3 introduces a software architecture 
modeling example using MSCs. Section 4 describes the 
validation process using an executable interpretation of 
MSCs. And finally, Section 5 provides the conclusions 
and final remarks on the content of this paper. 

Related Work 
A scenario-based architecture description and evaluation 
is proposed in [5]. The Software architecture is modeled 
using Use Case Maps (UCM). In [6] a method to describe 
architectures is presented; scenarios are used to define the 
meaning of quality requirements. 
 
 The use of UML Sequence Diagram to define 
architectural scenarios is proposed in [12]. The 
Architecture Tradeoff Analysis method (ATAM) [13] 
explains and describes the use of scenarios as a mean to 
evaluate an architecture description.  

2. Message Sequence Chart (MSC) 
Message Sequence Chart is a graphical-textual notation 
used to describe communication interactions among 
entities.  This section presents an overview of some 
modeling constructors described in the MSC 
recommendation. The example and figures presented in 
this section describe operational scenarios for a toaster 
machine.  
 

Basic Message Sequence Chart 
 
A basic MSC (bMSC) is presented in Figure 1. Usually 
the bMSC is called just MSC. The MSC depicts a 
scenario composed of instances (represented by boxes, 
User, Control, and Heating in Figure 1) and messages 
(represented by arrows, start, start_ack, and hot in 
Figure 1). Every instance owns its time axis (vertical 
line). Messages between instances are shown as arrows 
connecting the axes.   
 

 
Figure 1. Basic Message Sequence Chart  (bMSC). 

The communication is one-to-one and asynchronous. 
There is no explicit information about the communication 
media. Besides message exchange, a MSC may contain 
other elements such as internal actions, timer events, 
conditions, and co-regions [7]. 
 
Every message is composed of two events: sending and 
receiving as shown in Figure 2. Figure 2 is modified from 
Figure 1 to show explicitly the events of sending and 
receiving. Notice that this extended notation is not in the 
MSC recommendation. We proposed this extension as an 
enhancement to improve the understanding of message 
events. The sending event of the message start is 
represented by !start, and the receiving by ?start. 



 

 
Figure 2. Basic MSC with explicit event representation 

(non standardized notation). 

Semantically, an MSC describes a partially ordered set of 
events, defined by the order imposed by the time axis of 
each instance and the relation send-receive of each 
message. For example, in Figure 2, the time axis order of 
instance User establishes that the event !start precedes 
the ?start_ack event. The relation send-receive for the 
start message establishes that the !start event precedes 
the ?start_ack event. An MSC describes a set of traces (a 
trace is a sequence of events) computed by the partial 
order of events. The traces described in the MSC 
presented in Figure 1 are: 
 

 
This set of traces defines the notion of execution in the 
MSC that provides the basis for the validation proposed in 
Section 4.  
 

Structured MSC (sMSC) 
 
Structured MSC is a more expressive MSC. Basically, a 
bMSC is extended to handle more complex interactions 
such as parallelism, iteration, and alternative selection. 
These complex interactions are described using inline 
expressions. The inline expression is graphically 
represented with a box containing, in the left upper 
corner, a word denoting the composition operation (alt, 
loop, and par). This word may define different operations: 
parallel (par), loop (loop), and alternative composition 
(alt). Parallel and Alternative composition requires 
sections; the sections of an inline expression are separated 
by a dotted line (there is no restriction in the number of 

sections). Examples of alternative and parallel inline 
expressions are presented in Figure 3 and 4, respectively. 
 
Figure 3 shows an example of alternative composition. 
Two sections are denoted, one section contains the 
message msg2, and the other contains the message msg3. 
In this case, according to the interpretation provided in 
[7], two sections may occur, but not both. The question 
about which section should be selected, can be formally 
interpreted as follows: msg1 is sent; then either message 
msg2 is sent (first section occurs), or message msg3 is 
sent (second section occurs). 
 

Instance A Instance B

alt

msg1

msg2

msg3

msc ExampleAlt

 
Figure 3. Structured Message Sequence Chart (sMSC) 

denoting alternative composition. 

 

Figure 4 presents an inline expression describing a 
parallel composition operation. The interpretation is 
simple: every section may occur simultaneously. But, 
outside from the inline expression the order described 
must be accomplished. 
 

msc ExamplePar

Instance A Instance B Instance C Instance D

par

msg1

msg2

msg3

msg4

 
Figure 4. Structured Message Sequence Chart (sMSC) 

denoting parallel composition. 

 



High-Level MSC (HMSC) 
 
High-level MSCs provide a mean to graphically define 
how a set of MSCs can be combined. Figure 5 presents an 
example of a HMSC. A HMSC is a directed graph where 
each node is either: a start symbol (an inverted triangle), 
an MSC reference (the round corned box), a connection 
point (circle), or others elements.  The MSC reference is a 
link to an sMSC, bMSC, or other HMSC. 
 

IDLE

START

TOASTEJECT

ERROR

msc Toaster

 
Figure 5. High-Level MSC (HMSC). 

 
The flow lines connect the nodes in the HMSC and they 
indicate the sequencing that is possible among the nodes 
in the HMSC. If there is more than one outgoing flow line 
from a node this indicates an alternative. Figure 6 presents 
the linked MSCs used in the msc Toaster presented in 
Figure 5.  
 

 
Figure 6. Combining bMSC and HMSC. 

 

MSC Time constraints specification 
 
Timing constraints and measurements are introduced into 
MSC to support the notion of quantified time for the 
description of real-time systems with a precise meaning of 
the sequence of events in time [7]. Time constraints can 
be specified in order to define the time at which events 
may occur. According to the recommendation, the time 
progress (i.e., clocking) is equal for all instances in an 
MSC. Also, all the clock values are equal, i.e., a global 
clock is assumed.  
 
There are three main areas where time can be used: as 
time observations, time constraints, and timer related 
events. Time observations are relative or absolute 
measurements between two events.  These measurements 
can be also used to specify time constraints. 
 
Figure 7 shows an example of time constraints (time 
points).  The absolute timing constraints, represent with 
the “@” symbol, denotes that execution of this MSC must 
start when the global clock starts, or the occurrence of this 
scenario restarts the global clock.  There is a relative 
timing constraint in the MSC, the time consumed between 
the sending of the message initialize and the reception of 
the message ready must be 10 ms.  
 

msc SystemBoot

Access Card
Controller

Central
Controller

Data Services Historic Data
Controller

initialize

ready

[@100 ms]

[@0]

[10ms]

initialize

ready

initialize

ready

 
Figure 7. Time constraints example. 

 
Measurements are used to observe the delay between the 
enabling and occurrence of an event (for relative timing) 
and to measure the absolute time of the occurrence of an 
event (for absolute timing) [7]. In order to distinguish 
between absolute and relative timing different time marks 
are used (“@” for absolute, and “&” for relative). Figure 8 
shows an example of relative and absolute timing. The 
time consumed between the reception of the message 
access_granted and the sending of the message save_log 
is recorded in the variable rel1. Two additional absolute 



measurements are performed: the time when first event 
occurrence inside the MSC is recorded in variable abs1 
and the absolute time for the last event inside MSC is 
recorded in variable abs2. 
 

msc RefuseAccess

Access Card
Controller

Central
Controller

Data Services Historic Data
Controller

request_access(ID)
request_access(ID,Door)

access_granted( )

save_log(ID,Door)

refuseAccess

@abs2

@abs1

&rel1

&rel2

 
Figure 8. Time observations. 

 

3. Scenario-based Architecture Modeling 
In this section we present an example of using MSC to 
describe architectural scenarios. We enhance the example 
presenting a model of subsystems using UML notation. 

Architecture specification example 
 
In the example below, an alarm system is modeled. The 
main components of this system are depicted in Figure 9 
using an UML Subsystem Diagram to describe the 
subsystem dependencies [4]. 
 

«subsystem»
Central Controller

«subsystem»
Access Card Controller

«subsystem»
Door Controller

«subsystem»
Data Services

«subsystem»
Historic Data Controller

 
Figure 9. Basic Architectural Subsystems for the Security 

System. 

The system is composed of five subsystems: 1) A central 
controller which is responsible for the entire system 
operation, 2) an Access Card Controller, 3) a Door 
Controller is responsible from controlling the interfaces 
among the system and the external devices, 4) the Historic 
Data Controller subsystem keeps the log information, and 
5) the Data Services subsystem works as interface with 
the Data Base system. Some dependencies are drawn 
explicitly.  
 

   msc AccessControlSystem

msc SystemBoot

msc GetAccess msc RefuseAccess msc TotalEmergency

msc ConfirmSafety

@0

@100 ms

10 s

 
Figure 10. HMSC AccessControlSystem. 

 
The hierarchical organization for a subset of scenarios 
specified in the system is depicted in Figure 10. The 
initial scenario, msc SystemBoot, describes the set of 
messages among modules when the system is initialized 
(Figure 7).  The HMSC presented in Figure 10 has two 
constraints. Both of them indicate a time constraint for the 
MSC. The meaning of this constraint is as follows: The 
scenario must fulfill the requirement of time in order to be 
valid, i.e., the time between the first and the last event 
inside of it must be less than the time specified (10s for 
msc GetAccess). In addition, msc SystemBoot indicates 
that the time spent to initialize the system must be less 
than 100 ms from the time it was turned on. 
 
Figure 11 shows the msc GetAccess. This scenario 
describes the interactions among subsystems when an 
external user request access using the Access Card 
Controller subsystem. Notice the usage of inline 
expressions to denote parallelism of the messages 
save_log(ID, Door) and open(Door). Two time 
constraints are presented in Figure 11. The first one 
denotes the maximum time (60 milliseconds) between the 
sending request_access(ID,Door) event  and the  
receiving access_granted( ) event. The second time 
constraint shown in Figure 11 is similar. 



msc GetIvalidAccess

Access Card
Controller

Central
Controller

Data Services Door
Controller

Historic Data
Controller

par

request_access(ID)

request_access(ID,Door)

access_granted( )

save_log(ID,Door)

open(Door)

openAcknowledge(Door)
100 ms

50 ms

 
Figure 11. MSC GetAccess with time constraints. 

 

4. Scenario-based Architecture Validation 
 
The formal semantics of MSC allows the development of 
tools that automate the visualization, simulation, and in 
some cases, test generation [14]. Using an executable 
interpretation (as it was presented in Section 2), it is 
possible to develop a “validation engine”. The validation 
engine can be built using an Abstract Execution Machine 
(AEM) [15]. The validation process requires two 
elements, the MSCs and a set of recorded traces from the 
system execution.  

The Abstract Execution Machine 
 
In order to use the MSC as input to the AEM, we need to 
provide an interpretation for the MSC (we explain only 
the basic MSC for the sake of simplicity). Our 
interpretation does not change the semantic order 
described in [7].  
 
Event Structure: The Event Structure is a vector of 
sequences. The elements of the sequences are events. 
Figure 12 is an example of event structure showing our 
interpretation of a bMSC. 
 

 
Figure 12. Event Structure. 

 
Abstract Execution Machine: The AEM is composed of 
three major parts: Instance References, Event Memory 
Data Space, and Operational Rules. Figure 13 shows a 
graphical representation of the AEM. 

 

 
Figure 13. The Abstract Execution Machine. 

 
The Instance References are responsible of tracking the 
execution progress, i.e., which events have occurred or 
are ready to occur. It may be conceived as a container of 
events. The Event memory is responsible of keeping the 
dynamic information related to the events happening, e.g., 
the sending of message m at time t. The Operational 
Rules define the execution progress and availability of 
events.  
 
Operational Rules: In order to describe the operational 
rules, two predicates were defined: 1) enabled(Event), 
which determines if an event is able to occur; and 2) the 
rule compute_progress(InstanceReference), which  
determines if the current instance reference is empty then 
move to the next instance reference within the sequence. 
 
Having these components, the AEM can function as a 
generator of traces, i.e., the AEM can provide a set of 
possible events that may occur (in some domains it is 
called test oracle). Another application, as mentioned in 
this paper, is the AEM as a trace acceptor (i.e., the AEM 
can accept or reject the events provided by a system 
execution traces and its MSCs).  
 

Validation  
 
The validation process using MSC as input is a well-
known practice in the Telecommunications industry [10]. 
Usually, basic MSC is used only to validate the system. 
The lack of using sMSC and HMSC is originated by their 
inherent complexity. We propose the use of the AEM 
since the AEM can generate the traces from structured 
MSC.  
 
In order to perform the validation, the final 
implementation of the system should be able to record the 
event traces using an event logger mechanism (this 
mechanism records the instance name, event, and the time 



when it happens, we call this tuple an event stamp). MSCs 
and the recorded traces are used as input to the AEM to 
validate the execution. The validation procedure can be 
described as follows: 
1. The AEM computes the first set of probable events to 

happen. 
2. The AEM uses the first event in the trace recorded to 

match it. 
a. If the event matches then, 

i. If the event is the end of the event structure 
then reports a successful validation 

ii. If the event is not the end of the event structure 
then go to Step 3. 

b. If the event does not match, then the execution 
did not satisfy the behavior described in the 
MSC. The validation process reports a failure 
validation. 

3. The event matched is eliminated from the trace 
recorded. The AEM computes the progress and offers 
a new set of probable events. 

4. Go to Step 2 
 
If we need to validate the time constraints, the AEM can 
include a time-progress mechanism to compute the time 
between events. This would be a new operation rule based 
on predicates defined using the time constraints. 
 

Beyond Time Constraints 
 
In the previous section, we showed how to use MSC to 
specify architectural scenarios having time constraints. 
Furthermore, the MSC can be used to describe more 
issues, such as data manipulation during message 
interactions, and conditional interactions. These 
characteristics allow the architect to model complex 
interactions and, in some cases, non-functional (extra-
functional) properties.  
 

5. Conclusions 
 
In this paper, we have presented the use of MSC notation 
to describe architectural scenarios. The MSC notation 
provides a set of powerful constructs that can be used to 
specify complex interactions among system’s entities, as 
well as, time constraints. Even more, the usage of HMSC 
provides a mean to structure a set of software architecture 
scenarios. Finally, we have described how to validate 
system execution traces using an executable interpretation 
of MSC using an Abstract Execution Machine. 
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