
Scenario-based Software Architecture Modeling
Using Message Sequence Charts

Abstract

Modern approaches in software development propose the
use of software architectures to help handle the
complexity of large software system developments. An
important technique to define, analyze, validate, and
evaluate a software architecture is through the use of
scenarios. A scenario is a brief description of a single
interaction of a stakeholder with a system. Scenario
modeling is a well-accepted practice among software
architects. However, there is no agreement on how to
model scenarios. Message Sequence Charts (MSC) is a
graphical-textual notation used to specify scenarios. This
notation is standardized by the International
Communication Union (ITU) and has a well-defined
semantics. In this paper we present an approach for
describing architectural scenarios using MSC. The paper
focuses in the features proposed by the MSC notation to
describe complex behaviors and time constraints. In
addition, a brief discussion on the advantages of using
MSC to validate architectural scenarios is presented. This
validation is performed using an executable interpretation
of MSC.

1. Introduction
The software development process is composed of
different systematic stages: analysis, design,
implementation, testing, and maintenance. Modern
approaches, such as the Unified Process [1], propose the
use of software architectures to help handle the
complexity of large software system developments. The
main benefits of a software architecture-based
development include:
? The architecture is the earliest document of the

development process that brings to perspective
critical design decisions that are difficult to change.
These decisions have a great impact on the final
product.

? The architecture may be the common vehicle of
communication among stakeholders of the system
(user, client, architect, designer, developer, etc.)
supporting tradeoff analysis between system qualities

of the system (performance, security, maintainability,
reliability, etc.).

There are several definitions of software architecture from
practitioners and researchers. In this paper we use the one
proposed by the IEEE Std 1471-2000 [2]: “The
fundamental organization of a system embodied in its
components, their relationships to each other, and to the
environment, and the principles guiding its design and
evolution.”

An architectural scenario (or scenario) is a brief
description of a single interaction of a stakeholder with a
system [3]. This concept is similar to the notion of use
cases prevalent in the object-oriented community [4].

In order to design a software architecture, an architectural
creation process must be defined and established. The
fundamental premise of the software architecture creation
process is the transformation of a set of functional and
quality requirements specifications into a software
architectural description. In [3], [5], and [6] software
architecture processes are proposed, where the driving
force behind architecture description, analysis, and
evaluation is the use of scenarios.

Scenarios are the underpinnings in an iterative
development method. Scenarios are useful for
1. Requirement elicitation and validation
2. Helping stakeholders understand the architecture
3. Identify flaws and limitations of the architecture
4. Identify architectural views and their representation

(process view, logical view, implementation
view, deployment view, and use case view) [1]

5. Understand the impact of anticipated changes on the
architecture

During the past decade, several notations have been
developed in order to specify, verify, and validate
communication systems (based on communication
protocols). The International Communications Union
(ITU), formerly CCITT, standardizes some of these
notations. Particularly, the Message Sequence Charts
(MSC) [7] is a notation used to specify interactions

Gerardo Padilla, Cuauhtémoc Lemus, and Miguel A. Serrano

Centro de Investigación en Matemáticas (CIMAT)
Apdo. Postal 402, Guanajuato, Gto, 36000, MEXICO

(gpadilla, clemola, masv)@cimat.mx

among communicating entities. The official name for this
notation is ITU-T Recommendation Z.120 (11/99)
Message Sequence Charts.

The MSC is a standardized textual-graphical notation that
has formal semantics [8]. The MSC has been used widely
to capture requirements, to visualize interactions of the
system’s execution simulations [9], and to verify design
models [10]. MSC has been proposed to be part of the
UML 2.0 because of its easy understanding and
expressiveness [11].

The MSC includes useful issues to describe complex and
precise scenarios in the system such as timing and data
mechanisms.

In this paper we propose MSCs as a mean to describe
architectural scenarios. Additionally, we propose the use
of an executable interpretation of MSC to validate the
system execution. This process is based on an Abstract
Execution Machine. The validation requires two elements:
the architectural scenarios and a set of recorded traces
from the execution of the system.

The advantage of using an executable interpretation of the
notation is presented in the use of automated tools. If a
model (defined by a set of diagrams) can be interpreted
and mapped to executable elements then the tools can be
used to generate code, generate test cases, validate the
system, etc.

The paper is organized as follows. Section 2 is an
overview of the most important elements of the MSC
notation. Section 3 introduces a software architecture
modeling example using MSCs. Section 4 describes the
validation process using an executable interpretation of
MSCs. And finally, Section 5 provides the conclusions
and final remarks on the content of this paper.

Related Work
A scenario-based architecture description and evaluation
is proposed in [5]. The Software architecture is modeled
using Use Case Maps (UCM). In [6] a method to describe
architectures is presented; scenarios are used to define the
meaning of quality requirements.

 The use of UML Sequence Diagram to define
architectural scenarios is proposed in [12]. The
Architecture Tradeoff Analysis method (ATAM) [13]
explains and describes the use of scenarios as a mean to
evaluate an architecture description.

2. Message Sequence Chart (MSC)
Message Sequence Chart is a graphical-textual notation
used to describe communication interactions among
entities. This section presents an overview of some
modeling constructors described in the MSC
recommendation. The example and figures presented in
this section describe operational scenarios for a toaster
machine.

Basic Message Sequence Chart

A basic MSC (bMSC) is presented in Figure 1. Usually
the bMSC is called just MSC. The MSC depicts a
scenario composed of instances (represented by boxes,
User, Control, and Heating in Figure 1) and messages
(represented by arrows, start, start_ack, and hot in
Figure 1). Every instance owns its time axis (vertical
line). Messages between instances are shown as arrows
connecting the axes.

Figure 1. Basic Message Sequence Chart (bMSC).

The communication is one-to-one and asynchronous.
There is no explicit information about the communication
media. Besides message exchange, a MSC may contain
other elements such as internal actions, timer events,
conditions, and co-regions [7].

Every message is composed of two events: sending and
receiving as shown in Figure 2. Figure 2 is modified from
Figure 1 to show explicitly the events of sending and
receiving. Notice that this extended notation is not in the
MSC recommendation. We proposed this extension as an
enhancement to improve the understanding of message
events. The sending event of the message start is
represented by !start, and the receiving by ?start.

Figure 2. Basic MSC with explicit event representation

(non standardized notation).

Semantically, an MSC describes a partially ordered set of
events, defined by the order imposed by the time axis of
each instance and the relation send-receive of each
message. For example, in Figure 2, the time axis order of
instance User establishes that the event !start precedes
the ?start_ack event. The relation send-receive for the
start message establishes that the !start event precedes
the ?start_ack event. An MSC describes a set of traces (a
trace is a sequence of events) computed by the partial
order of events. The traces described in the MSC
presented in Figure 1 are:

This set of traces defines the notion of execution in the
MSC that provides the basis for the validation proposed in
Section 4.

Structured MSC (sMSC)

Structured MSC is a more expressive MSC. Basically, a
bMSC is extended to handle more complex interactions
such as parallelism, iteration, and alternative selection.
These complex interactions are described using inline
expressions. The inline expression is graphically
represented with a box containing, in the left upper
corner, a word denoting the composition operation (alt,
loop, and par). This word may define different operations:
parallel (par), loop (loop), and alternative composition
(alt). Parallel and Alternative composition requires
sections; the sections of an inline expression are separated
by a dotted line (there is no restriction in the number of

sections). Examples of alternative and parallel inline
expressions are presented in Figure 3 and 4, respectively.

Figure 3 shows an example of alternative composition.
Two sections are denoted, one section contains the
message msg2, and the other contains the message msg3.
In this case, according to the interpretation provided in
[7], two sections may occur, but not both. The question
about which section should be selected, can be formally
interpreted as follows: msg1 is sent; then either message
msg2 is sent (first section occurs), or message msg3 is
sent (second section occurs).

Instance A Instance B

alt

msg1

msg2

msg3

msc ExampleAlt

Figure 3. Structured Message Sequence Chart (sMSC)

denoting alternative composition.

Figure 4 presents an inline expression describing a
parallel composition operation. The interpretation is
simple: every section may occur simultaneously. But,
outside from the inline expression the order described
must be accomplished.

msc ExamplePar

Instance A Instance B Instance C Instance D

par

msg1

msg2

msg3

msg4

Figure 4. Structured Message Sequence Chart (sMSC)

denoting parallel composition.

High-Level MSC (HMSC)

High-level MSCs provide a mean to graphically define
how a set of MSCs can be combined. Figure 5 presents an
example of a HMSC. A HMSC is a directed graph where
each node is either: a start symbol (an inverted triangle),
an MSC reference (the round corned box), a connection
point (circle), or others elements. The MSC reference is a
link to an sMSC, bMSC, or other HMSC.

IDLE

START

TOASTEJECT

ERROR

msc Toaster

Figure 5. High-Level MSC (HMSC).

The flow lines connect the nodes in the HMSC and they
indicate the sequencing that is possible among the nodes
in the HMSC. If there is more than one outgoing flow line
from a node this indicates an alternative. Figure 6 presents
the linked MSCs used in the msc Toaster presented in
Figure 5.

Figure 6. Combining bMSC and HMSC.

MSC Time constraints specification

Timing constraints and measurements are introduced into
MSC to support the notion of quantified time for the
description of real-time systems with a precise meaning of
the sequence of events in time [7]. Time constraints can
be specified in order to define the time at which events
may occur. According to the recommendation, the time
progress (i.e., clocking) is equal for all instances in an
MSC. Also, all the clock values are equal, i.e., a global
clock is assumed.

There are three main areas where time can be used: as
time observations, time constraints, and timer related
events. Time observations are relative or absolute
measurements between two events. These measurements
can be also used to specify time constraints.

Figure 7 shows an example of time constraints (time
points). The absolute timing constraints, represent with
the “@” symbol, denotes that execution of this MSC must
start when the global clock starts, or the occurrence of this
scenario restarts the global clock. There is a relative
timing constraint in the MSC, the time consumed between
the sending of the message initialize and the reception of
the message ready must be 10 ms.

msc SystemBoot

Access Card
Controller

Central
Controller

Data Services Historic Data
Controller

initialize

ready

[@100 ms]

[@0]

[10ms]

initialize

ready

initialize

ready

Figure 7. Time constraints example.

Measurements are used to observe the delay between the
enabling and occurrence of an event (for relative timing)
and to measure the absolute time of the occurrence of an
event (for absolute timing) [7]. In order to distinguish
between absolute and relative timing different time marks
are used (“@” for absolute, and “&” for relative). Figure 8
shows an example of relative and absolute timing. The
time consumed between the reception of the message
access_granted and the sending of the message save_log
is recorded in the variable rel1. Two additional absolute

measurements are performed: the time when first event
occurrence inside the MSC is recorded in variable abs1
and the absolute time for the last event inside MSC is
recorded in variable abs2.

msc RefuseAccess

Access Card
Controller

Central
Controller

Data Services Historic Data
Controller

request_access(ID)
request_access(ID,Door)

access_granted()

save_log(ID,Door)

refuseAccess

@abs2

@abs1

&rel1

&rel2

Figure 8. Time observations.

3. Scenario-based Architecture Modeling
In this section we present an example of using MSC to
describe architectural scenarios. We enhance the example
presenting a model of subsystems using UML notation.

Architecture specification example

In the example below, an alarm system is modeled. The
main components of this system are depicted in Figure 9
using an UML Subsystem Diagram to describe the
subsystem dependencies [4].

«subsystem»
Central Controller

«subsystem»
Access Card Controller

«subsystem»
Door Controller

«subsystem»
Data Services

«subsystem»
Historic Data Controller

Figure 9. Basic Architectural Subsystems for the Security

System.

The system is composed of five subsystems: 1) A central
controller which is responsible for the entire system
operation, 2) an Access Card Controller, 3) a Door
Controller is responsible from controlling the interfaces
among the system and the external devices, 4) the Historic
Data Controller subsystem keeps the log information, and
5) the Data Services subsystem works as interface with
the Data Base system. Some dependencies are drawn
explicitly.

 msc AccessControlSystem

msc SystemBoot

msc GetAccess msc RefuseAccess msc TotalEmergency

msc ConfirmSafety

@0

@100 ms

10 s

Figure 10. HMSC AccessControlSystem.

The hierarchical organization for a subset of scenarios
specified in the system is depicted in Figure 10. The
initial scenario, msc SystemBoot, describes the set of
messages among modules when the system is initialized
(Figure 7). The HMSC presented in Figure 10 has two
constraints. Both of them indicate a time constraint for the
MSC. The meaning of this constraint is as follows: The
scenario must fulfill the requirement of time in order to be
valid, i.e., the time between the first and the last event
inside of it must be less than the time specified (10s for
msc GetAccess). In addition, msc SystemBoot indicates
that the time spent to initialize the system must be less
than 100 ms from the time it was turned on.

Figure 11 shows the msc GetAccess. This scenario
describes the interactions among subsystems when an
external user request access using the Access Card
Controller subsystem. Notice the usage of inline
expressions to denote parallelism of the messages
save_log(ID, Door) and open(Door). Two time
constraints are presented in Figure 11. The first one
denotes the maximum time (60 milliseconds) between the
sending request_access(ID,Door) event and the
receiving access_granted() event. The second time
constraint shown in Figure 11 is similar.

msc GetIvalidAccess

Access Card
Controller

Central
Controller

Data Services Door
Controller

Historic Data
Controller

par

request_access(ID)

request_access(ID,Door)

access_granted()

save_log(ID,Door)

open(Door)

openAcknowledge(Door)
100 ms

50 ms

Figure 11. MSC GetAccess with time constraints.

4. Scenario-based Architecture Validation

The formal semantics of MSC allows the development of
tools that automate the visualization, simulation, and in
some cases, test generation [14]. Using an executable
interpretation (as it was presented in Section 2), it is
possible to develop a “validation engine”. The validation
engine can be built using an Abstract Execution Machine
(AEM) [15]. The validation process requires two
elements, the MSCs and a set of recorded traces from the
system execution.

The Abstract Execution Machine

In order to use the MSC as input to the AEM, we need to
provide an interpretation for the MSC (we explain only
the basic MSC for the sake of simplicity). Our
interpretation does not change the semantic order
described in [7].

Event Structure: The Event Structure is a vector of
sequences. The elements of the sequences are events.
Figure 12 is an example of event structure showing our
interpretation of a bMSC.

Figure 12. Event Structure.

Abstract Execution Machine: The AEM is composed of
three major parts: Instance References, Event Memory
Data Space, and Operational Rules. Figure 13 shows a
graphical representation of the AEM.

Figure 13. The Abstract Execution Machine.

The Instance References are responsible of tracking the
execution progress, i.e., which events have occurred or
are ready to occur. It may be conceived as a container of
events. The Event memory is responsible of keeping the
dynamic information related to the events happening, e.g.,
the sending of message m at time t. The Operational
Rules define the execution progress and availability of
events.

Operational Rules: In order to describe the operational
rules, two predicates were defined: 1) enabled(Event),
which determines if an event is able to occur; and 2) the
rule compute_progress(InstanceReference), which
determines if the current instance reference is empty then
move to the next instance reference within the sequence.

Having these components, the AEM can function as a
generator of traces, i.e., the AEM can provide a set of
possible events that may occur (in some domains it is
called test oracle). Another application, as mentioned in
this paper, is the AEM as a trace acceptor (i.e., the AEM
can accept or reject the events provided by a system
execution traces and its MSCs).

Validation

The validation process using MSC as input is a well-
known practice in the Telecommunications industry [10].
Usually, basic MSC is used only to validate the system.
The lack of using sMSC and HMSC is originated by their
inherent complexity. We propose the use of the AEM
since the AEM can generate the traces from structured
MSC.

In order to perform the validation, the final
implementation of the system should be able to record the
event traces using an event logger mechanism (this
mechanism records the instance name, event, and the time

when it happens, we call this tuple an event stamp). MSCs
and the recorded traces are used as input to the AEM to
validate the execution. The validation procedure can be
described as follows:
1. The AEM computes the first set of probable events to

happen.
2. The AEM uses the first event in the trace recorded to

match it.
a. If the event matches then,

i. If the event is the end of the event structure
then reports a successful validation

ii. If the event is not the end of the event structure
then go to Step 3.

b. If the event does not match, then the execution
did not satisfy the behavior described in the
MSC. The validation process reports a failure
validation.

3. The event matched is eliminated from the trace
recorded. The AEM computes the progress and offers
a new set of probable events.

4. Go to Step 2

If we need to validate the time constraints, the AEM can
include a time-progress mechanism to compute the time
between events. This would be a new operation rule based
on predicates defined using the time constraints.

Beyond Time Constraints

In the previous section, we showed how to use MSC to
specify architectural scenarios having time constraints.
Furthermore, the MSC can be used to describe more
issues, such as data manipulation during message
interactions, and conditional interactions. These
characteristics allow the architect to model complex
interactions and, in some cases, non-functional (extra-
functional) properties.

5. Conclusions

In this paper, we have presented the use of MSC notation
to describe architectural scenarios. The MSC notation
provides a set of powerful constructs that can be used to
specify complex interactions among system’s entities, as
well as, time constraints. Even more, the usage of HMSC
provides a mean to structure a set of software architecture
scenarios. Finally, we have described how to validate
system execution traces using an executable interpretation
of MSC using an Abstract Execution Machine.

References

[1] I. Jacobson, G. Booch and J. Rumbaugh, The Unified

Development Process, Addison-Wesley, Madrid,
Spain, 1999.

[2] IEEE Std. 1471-2000, IEEE Recommended Practice
for Architectural Description of Software-Intensive
Systems, IEEE, Piscataway, N.J., 2000.

[3] Kazman,R., S. Carriere and S. Woods "Toward a
Discipline of Scenario-Based Architectural
Engineering", Annals of Software Engineering,
Kluwer Academic Publishers, vol. 9, pp. 5-33, 2000.

[4] OMG Unified Modeling Language Specification
Version 1.5, OMG, Needham, MA, 2002.

[5] H.d. Bruin and H.v. Vliet, "Scenario-Based
Generation and Evaluation of Software
Architectures," 3rd International Conference
Generative and Component-Based Software
Engineering, Springer-Verlag, LNCS 2186, 2001, pp.
128-139.

[6] J. Bosh, Design & Use of Software Architectures,
Pearson Education Limited, London, UK, 2000.

[7] Recommendation ITU-T Z.120 (11/99), Message
Sequence Charts, International Telecommunication
Union, Geneva, 1999.

[8] Recommendation ITU-T Z.120 Annex B (Z.120
Annex B (04/98), Message Sequence Charts Formal
Semantics, International Telecommunication Union,
Geneva , 1998.

[9] SDT 3.1 Reference Manual, Telelogic AB, Malmö,
Sweden, 1996.

[10] J. Grabowski, D. Hogrefe, I. Nussbaumer and A.
Spichiger, "Test Case Specification Based on MSCs
and ASN.1", Seventh SDL Forum, Elsevier Science,
Oslo, Norway, 1995, pp. 307-322.

[11] ad/03-01-02, Superstructure, U2 Partners' UML, 2nd
revised submission, http://u2-partners.org/uml2-
proposals.htm, 2002.

[12] C. Hofmeister, R. Nord and D. Soni, Applied
Software Architecture, Addison-Wesley, Reading
Massachusetts, 2000.

[13] P. Clements, R. Kazman and M. Klein, Evaluating
Software Architectures: Methods and Case Studies,
SEI Series in Software Engineering, Pearson
Education Limited, Indianapolis, IN, 2002, p. 323.

[14] S. Mauw, M. Reniers and T. Willemse, "Message
Sequence Charts in the software engineering
process", Handbook of Software Engineering and
Knowledge Engineering, World Scientific Publishing
Co, 2001, pp. 437-463.

[15] B. Jonsson and G. Padilla, "An Execution Semantics
for MSC2000", 10th International SDL Forum,
Springer-Varlag, LNCS 2078, pp. 365-378, 2001.

