
Improving the IEEE std 1471-2000 for Communication among Stakeholders and
Early Design Decisions

Luis Felipe Fernández Martínez, Cuauhtémoc Lemus Olalde, Miguel Serrano Vargas

(luisf, clemola, masv)@cimat.mx
Center for Research in Mathematics, A. C. (CIMAT)

Guanajuato, Gto.
México

Abstract

There are, at least, three reasons why software
architecture is important: a) communication among
stakeholders, b) early design decisions, and c) transferable
abstraction of a system. The IEEE Recommended Practice
for Architectural Description of Software-Intensive
Systems introduces and integrates stakeholders, concerns,
viewpoints, views, and architectural models facilitating
the expression, communication, evaluation, and
comparison of architectures in a consistent manner.
However, the standard does not specify a delivery format
for architectural description. In addition, it is difficult to
know if an architecture is within the principles of design
imposed by a specific concern. A similar effort, to
describe software architectures is the creation and
improvement of special-purpose languages, known as
architecture description languages (ADLs). However,
ADLs have the disadvantage of not providing adequate
support for separating several kinds of concerns across
different viewpoints. In order to alleviate these issues, our
paper proposes an enhancement to the conceptual model
introduced in the standard. Our enhanced model, improves
two of the reasons mentioned: a) communication among
stakeholders and b) early design decisions.

Keywords: Software architecture, software design
and development, IEEE std 1471-2000.

1. Introduction

The attention given to issues of software architecture
is increasing in both the software engineering research
community and standardization organizations.
Fundamentally, there are, at least, three reasons why
software architecture is important [2]: a) communication
among stakeholders, b) early design decisions, and c)
transferable abstraction of a system. In this sense the IEEE
std 1471-2000 effort [1], recommends architectural

description practices for software intensive systems,
seeking a common frame of reference to codify common
elements between different architectural initiatives. The
standard makes a clear distinction between the
architecture of a software system and its description. The
IEEE std 1471-2000 presents one consistent set of
definitions targeting architectural descriptions. It involves
stakeholders, concerns, viewpoint, view, and architectural
models. The standard introduces a conceptual model of an
architectural description that encompasses these concepts.
Figure 1, shows how these concepts are related. However,
the standard does not specify a delivery format for
architectural description; in fact, it does not propose a way
to express the richness of the model. There is another
aspect that the IEEE 1471 does not take into account:
How is it possible to know if an architecture is within the
principles of design imposed by a specific concern?
Hence, and assessment of the architecture must be
performed.

A similar effort comes from the research community
that has focused on the creation and improvement of
special-purpose languages to describe software
architecture, known as architecture description languages
(ADLs) [8], [9] and [10]. Due to their formal nature,
ADLs may be difficult to understand and use. However,
ADLs also have the disadvantage of not providing
adequate support for separating several kinds of concerns
across different viewpoints. In addition, ADLs do not
address the clear difference between software architecture
and its representations, as does the IEEE 1471 [11].

In many occasions when practitioners or academics

address an architecture, the concepts stated in IEEE 1471
(stakeholders, concerns, viewpoint, view, and
architectural models), are intuitively and implicitly
expressed. It is not clear however, if the design has
followed specific principles of design and under what
concerns the architecture was developed, as it is proposed
by the standard.

In order to help improve this situation, our paper
proposes an enhancement of the conceptual model
introduced in the standard. As a first step, the model is
seen from a perspective of class diagram, and not just as
entities related among them. Second, we added attributes
in some classes of the model, associating a metrics class
to architectural models, and their relationship to concerns.
Then a format is introduced using OCL (Object Constrain
Language). Finally, we propose a semi-formal notation for
architectural model to express in a condensed form most

of the information. The paper is organized as follows.
Section 2 offers an overview of IEEE 1471-2000 standard.
Section 3 exposes a brief discussion about software
architecture, and introduces a notation for architectural
model. Section 4 introduces the enhancement to the
conceptual model proposed in the standard. Also in
section 4, a brief discussion of the approach and a simple
example is presented. Finally, section 5 summarizes the
paper and discusses future work.

2. IEEE std 1471-2000 overview

The IEEE std 1471-2000 is a recommended practice

that addresses the activities of the creation, analysis, and
sustainment for architectures of software-intensive

systems, and the representation of such architectures in
terms of architectural descriptions. The purpose of this
recommended practice is to facilitate the expression and
communication of architectures among stakeholders.

2.1 The conceptual model of IEEE std 1471-
2000

This standard introduces a conceptual model, or frame
of reference, for architectural descriptions. The model
establishes terms and concepts pertaining to the content

and use of architectural descriptions. For our work, the
model is seen from a perspective of class diagram, and not
just as entities related among them. As depicted in Figure
1, every system has an architecture. An architecture is
expressed by an architectural description. According to
Figure 1, a system has one or more stakeholders. Each
stakeholder typically has concerns relative to that system.
Concerns are those interests, which pertain to the system’s
development, its operation or any other aspects that are
critical or otherwise important to one or more
stakeholders. Concerns include system considerations
such as performance, reliability, security, distribution, and
evolvability. An architectural description is organized into
one or more constituents called (architectural) views. Each
view addresses one or more concerns of the system’s
stakeholders.

Figure 1: Conceptual Model of Architectural Description (Enhanced)

A viewpoint establishes the conventions by which a
view is created, depicted and analyzed. In this way, a view
conforms to a viewpoint. The viewpoint determines the
languages (including notations, model, or product types)
to be used to describe the view, and any associated
modeling methods or analysis techniques to be applied to
these representations of the view.

An architectural description selects one or more
viewpoints. The selection of viewpoints typically is based
on considering the stakeholders to whom the architectural
description is addressed and their concerns. A view may
consist of one or more architectural models. Each
architectural model is developed using the methods
established by its associated architectural viewpoint. An
architectural model may participate in more than one
view. The IEEE 1471 does not address architectural
models definition in a clear manner. In the next section,
we clarify this concept.

3. Architecture of a software system

Although software systems have had architectures
since the early days of computers, it has been recognized
recently its relevance to specify, analyze and design
software architectures. Software architecture is concerned
with understanding and describing complex software-
intensive systems at different levels of abstraction.
Software architecture continues to present formidable
challenges and difficulties in its design, construction,
deployment, and evolution. Recent attempts to address
these difficulties have focused on the earliest period of
design decision-making and evaluation, increasingly
referred to as the architectural level of system
development. The concepts architectural level and
architecture, if imprecisely, are widely used. Their use
reflects acceptance of an architectural metaphor in the
analysis and development of software systems. A key
premise of this metaphor is that important decisions may
be made early in system development in a manner similar
to the early decision-making found in the development of
civil architecture projects. This early decision-making is
related to the stakeholder and concern concepts introduced
in the IEEE 1471.

3.1 Software architecture in the IEEE
perspective

At the essence of all the discussion about architectural
metaphor in the analysis and development of software
systems is a focus on reasoning about the structural issues
of a system. In the same way that a building exhibits many
structures, a software system has many architectural
structures that are views capturing different aspects of the
system, but as a whole describe the overall architecture of
the system. The conceptual model introduced in IEEE std
1471-2000 [1] covers this issue in a good way. The IEEE
1471 makes a clear distinction between the architecture

and the architecture description of a software system.
However, it does not address architectural models in a
clear manner. The architectural description is a collection
of products documenting a specific architecture. These
products include different architectural models, and each
model is related to views. The term software architecture
is a widely used term, and for the purpose of this paper,
software architecture is a set of architectural models. Such
architectural models are a structural representation of a
specific view. Each of these models is constructed using
the methods established by their associated viewpoint.
Examples of architectural models are: use case diagrams,
class diagrams, and sequence diagrams.

.
3.2 Architectural model

The IEEE standard introduces a definition of
architecture, this definition intended to encompass a
variety of uses of the term architecture by recognizing
their underlying common elements. This definition states
that architecture is:

“The fundamental organization of a
system embodied in its components, their
relationships to each other, and to the
environment, and the principles guiding
its design and evolution”

Considering that a system may be an individual

application, systems, subsystems, systems of systems,
product lines, whole enterprises, and other aggregation of
interest [1], we must distinguish different levels of
abstraction in the software system. Let us express
architectural model (AMλ) having a certain level of
abstraction, denoted as λ, which may be expressed as
follows (note that this expression is similar to Perry and
Wolf’s model of software architecture [3]):

AMλ = {Components, Relationships, Principles}

In a specific development of a software development, λ
must be consistent among all the stakeholders of the
system. AMλ states that the basis of an architectural model
is the design and evolution principles, but for some
reason, in many occasions, these are not explicitly
followed or considered. The principles for design and
evolution are restrictions that prevail in the construction of
architectural models. In addition, according to the
conceptual model in the standard, these principles must be
strictly bounded to the concerns of the stakeholder, which
are closely related to quality attributes of the system.
Although, architectural models consider components and
relationships, and design and evolution principles, often
this are not explicitly bounded (if any) to concerns. Then
AMλ can be extended, in order to show explicitly that the
structure has principles of design and are bounded to some
concerns of the stakeholder:

AMλ = {Components, Relationships, Principles}
[stakeholder: Concern]

What is the impact of including concern on the

components, relationships and principles of the
architectural model? Obviously, an interest on an
architectural model that fulfills specifications of the
system is the target goal. An approach would be to assess
the impact of design guidelines and principles.
Components and the relationships between them are
constrained by these principles along with viewpoint,
views, which should be considered in the architectural
model.

4. Enhancing the IEEE std 1471-2000

In this section, we introduce the enhancement of the
conceptual model proposed in the standard. The effort is
twofold. First, the model is enhanced through attributes in
some classes; and a metrics class is added and associated
with concerns, and the architectural model. Then we
suggest a format to express the semantics of the enhance
model using UML diagrams and OCL (Object Constrain
Language). Second, a semi-formal notation for
architectural models is introduced, under the assumption
that an architectural model may participate in one or more
views; and each view covers one or more concerns of a
stakeholder. The main goal is to express explicitly,
stakeholder, concern and view along with their role in
specific architectural model.

4.1 Enhancing the conceptual model

Figure 1 shows the modified version of the conceptual
model of architectural description introduced in [1].
Basically, the model was enhanced adding attributes in
some classes. According to our architectural model
expressed by AMλ = {Components, Relationships,
Principles} [stakeholder: Concern] that has guidelines and
principles for its design and evolution which are related to
concerns of a stakeholder. Therefore, “How can we assure
that the design and evolution principles are considered in
elaborating an architectural model?” A different
rewording of the question may be if the architectural
model is suitable enough for the system at hand.
Suitability may be stated in terms of satisfying a set of
criteria within these concerns. This means to some degree,
an evaluation of the architectural model. There is a need
to establish when an architectural model satisfies these
criteria, and the principles for design and evolution.

In concrete terms, an architecture evaluation produces
a report, the form and content of which varies according
to the method used. Our approach proposes the
consideration of metrics that allow decision-making and
determining the degree of suitability of the architectural
model.

Basically, the model was modified by adding a
“Metrics” class associated with architectural model class,
and a concern class. The metric class considers the criteria
compliant with a specific concern. We do not suggest the
use of specific metrics, the use of them depends on the
selected criteria. For example in [8] and [9], the authors
have developed metrics for specific criteria. It is important
to note that a metric is an indicator of a particular feature
within an architectural model, which addresses a specific
concern. Now, we express our model using OCL format
as shown in Table 1.

Table 1: Format for AD in OCL
context stakeholder inv:

self.name = stakeholder name
self.st_concern = stakeholder concern
self.st_desc = description
self.st_purpose = purpose of stakeholder

context concern
inv: self.has_associated ->notEmpty()

context viewpoint inv:
self.vpname = viewpoint name
self.vp_concern = viewpoint concern
self.vp_tech = associated modeling methods or
analysis techniques

context view inv:
self.vwname = view name
self.vw_concern = view concern
self.vw_desc = view description

context architectural model inv:
self.amname = architectural model name
self.am_elements = components in the model
self.am_principles = principles for design
self.am_construles = rules of construction
self.has_associated ->notEmpty()

Summarizing, we have a framework and a format to
express stakeholders, concerns, viewpoint, views,
architectural models and metrics associated to an
architectural model.

4.2 A semi-formal notation for architectural
model description

Since the standard does not specify a way to express

explicitly stakeholders, concerns, viewpoint and views; a
semi-formal notation is proposed and applied to the
architectural model introduced in section 3.1 (AMλ =
{Components, Relationships, Principles} [stakeholder:
Concern]). This notation addresses the recommended
practice provided in [1] and explained in Table 2

According to [1], the following definitions are
considered:

• Stakeholder: An individual, team, or
organization with interests in, or concerns
relative to, a system.

• Viewpoint: A specification of the conventions
for constructing and using a view.

• View: A representation of a whole system from
the perspective of related set of concerns.

• Concerns: A concern expresses a specific
interest in some topic pertaining to a particular
system of interest.

In this semi-formal notation, an architectural model at

some level λ, has a dependency on viewpoint, and a
specific view. Viewpoints and concerns have a
dependency on the stakeholder.

Table 2: Semi-Formal notation for AM

AMλ(Vp,v) ={C, R, P}[stakeholder: Cn]

Where:
AMλ: architectural model at level λ
Vp: viewpoint
 v: view
C: components
R: relationships between things
P: principles guiding design and evolution
am: architectural model
Cn: concerns
and Vp(stakeholder)

AMλ is represented by components, relationships and

principles. The latter are closely dependent on stakeholder
concerns. The type of components and the relationships
that conforms the architectural model are constrained by
the level of abstraction, and by the viewpoint and view.

4.3 A brief discussion and example

Architectures serve as a communications vehicle in
two ways. First, they are a common abstraction of the
system providing a convenient -lingua franca- language
that all stakeholders can speak and understand. Second,
architectures serve as a communication vehicle by
providing a technical “blueprint” for the system that is to
be built, modified, or analyzed. Software architecture is a
coherent and justified collection of system’s earliest set of
design decisions. These decisions will affect much of
what the system will become [12], and must be taken into
account in every architectural model.

The enhanced model and semi-formal notation
proposed in this paper, expresses in a clear manner the
aspects that are important for having a software
architecture. We consider that stakeholders, concerns,
viewpoint, and view must be expressed explicitly in the
architectural models.

In order to demonstrate briefly our approach, we use a
simple example of the early stages of development of an
information system, where requirements are known
through use cases, which were elaborated following a set
of design principles and rules. The concern is correctness
(extent to which a program fulfills its specification). The
example follows OCL as basis. This example has a

requirements engineer or analyst as stakeholder. This
engineer/analyst has a specific concern, which can be
expressed in the same way that we express viewpoint,
view, and architectural model, and denoted as follows:

context correctness : concern inv:

correctness.has_associated ->notEmpty()
context viewpoint inv:

self.vpname = 'structural'
self.vp_concern = 'correctness'
self.vp_tech = 'UML v1.5'

context view inv:
self.vwname = 'functional requirements '
self.vw_concern = 'functionality of the system'
self.vw_desc = 'describes the functional
requirements and related non-functional
requirements of system'

context architectural model inv:
self.amname = 'Use Case'
self.am_elements = 'actors, uses cases,
associations'
self.am_principles = 'Use Cases: Best Practice' --
Document UCBP
self.am_construles = 'seven keys best practice' --
Document UCBP
self.has_associated ->notEmpty()

In this document, Use Cases are considered as an
architectural model. Use Cases are used in UML as a
mean to define the requirements for software systems. In
the section for architectural model (context architectural
model inv:) the format states that Use Case elaboration
should be performed following some principles and
construction rules. The format adopts as principles and
construction rules Use Cases: Best Practice (Document
UCBP) [4] because it contains some practices addressing
the correctness concern.

Another architectural model related to the functional
view is the “Domain Model”. According to Rational
Unified Process® (RUP®), a domain model is a business
object model that focuses on "product, deliverables, or
events that are important to the business domain”. The
domain model typically shows the major business entities,
their functional responsibilities, and the relationships
among the entities [5]. In UML, a domain model is
illustrated with a set of class diagrams without definition
of the operations.

Consider we are working with the UP (Unified
Process) methodology, and using the sample unified
process artifacts and timing proposed by Larman [13]. Its
is possible to express most of the information in a
condensed form, as follows:

AMIs (structural, functional)=

〈Actors|UseCases, Associations, Document USBP〉
[analyst: correctness]

 Then λ may be each of the four major phases: Ix:
Inception, Ex: Elaboration, Cx: Construction and Tx:
Transition. According with this methodology, subscript x
may be s: start or r: refine. This example emphasizes
several aspects. First, it states that the architectural model
has a structural viewpoint and a functional view. Second,
the architectural model has an analyst as a stakeholder,
and his/her concern is correctness. Third, the architectural
model under construction is a Use Cases model, and must
follow Document UCBP as rules and principles for its
design. Finally, λ = Is; which means that we are in
inception stage, and starting the construction of the model.

It is worth highlighting that in both cases (using the
format or semi-formal notation) we are prescribing an
architectural model, not describing it.

5. Summary and future work

In this work, we have enhanced the conceptual model
introduced in IEEE std 1471-2000, adding explicit
attributes in each class, and associating a class metrics for
architectural models related to concerns. In addition, we
have proposed a semi-formal notation in order to express
in a condensed way most of the information used in a
specific architectural model.

The resulting approach highlights the ability to

describe in a more explicit manner most of the important
aspects that are involved in software architecture.
Furthermore, our proposed model has the advantage to
associate concerns and metrics, allowing evaluation of the
architectural model.

Fundamentally, there are three reasons why software

architecture is important: Communication among
stakeholders, early design decisions, and transferable
abstraction of a system [2]. Our approach helps to
improve al least two of these points. First, the enhanced
model, the format and the semi-formal notation offer a
good way to express clearly, among stakeholders, the
concepts stated in the IEEE standard. Second, the
proposed model helps to express what design decisions
must be taken into account when an architectural model is
constructed, keeping in mind explicitly stakeholders and
concerns. Finally, our framework provides a mean to
define and associate metrics to concerns and to the
architectural model.

Future work identifies the refinement of the proposed

semi-formal notation and conceptual model. The work
presented a conceptual model or framework, without
addressing performance issues of a software architecture
process. In this sense, work is underway in identifying,
defining and establishing a software architecture process
with the proposed framework as basis.

Acknowledgements

This research is supported by the National Council of
Science and Technology of the State of Guanajuato
(CONCYTEG) Project “Promoting Quality in the
Software Industry: Human Resources, Research and
Services” (GTO-2002-C01-5333)

L. F. Fernández Martínez is a professor at Universidad

Autónoma de Ciudad Juárez, Electrical and Computer
Department.

References

[1] Software Engineering Standards Committee of the IEEE
Computer Society, IEEE Recommended practice for architecture
description of software-intensive systems, IEEE Std 1471-2000,
Approved 21 September 2000, IEEE-SA Standards Board, Print:
ISBN 0-7381-2518-0 SH94869, PDF: ISBN 0-7381-2519-9
SS94869, available at (http://standards.ieee.org/).
[2] Bass, L., Clements, P., Kazman R., Software Architecture in
Practice, SEI Series in Software Engineering, Addison Wesley,
5th printing May 1999.
[3] Perry, D. E. and Wolf, A. L., Foundations for the Study of
Software Architecture, ACM SIGSOFT Software Engineering
Notes, Vol. 17, No. 4, 1992, pp. 40-52
[4] Gottesdiener, Ellen, Use Cases: Best Practice, Rational
Software June 2003,
http://www.rational.com/products/whitepapers/474.jsp
[5] Menard, R., Domain modeling: Leveraging the heart of RUP
for straight through processing,
http://www.therationaledge.com/content/jun_03/t_domainmodeli
ng_rm.jsp
[6] Chidamer, S., Kemerer, Ch., A metrics suite for object
oriented design, IEEE Transactions on Software Engineering,
Vol. 20, N0 6, June 1994, pp. 476-493
[7] Hyoseob, K., Boldyreff, C., Developing software metrics
applicable to UML models, Centre for HCI Design, City
University, Northhampton Square, London, ECIV 0HB, UK
[8] Garlan, D., Monroe, R. T., and Wile, D., ACME: An
Architecture Description Interchange Language. Proceedings of
CASCON '97 (1997), pp. 169-183.
[9] Medvidovic, N., and Taylor, R. N., A Classification and
Comparison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering, Vol.
26, No.1, January 2000, pp. 70-93.
[10] Clements, P., A Survey of Architecture Description
Languages. 8th International Workshop on Software
Specification and Design, Germany, March, 1996, pp. 16-25.
[11] Robbins, J. E., Medvidovic, N,. Redmiles, V., and
Rosenblum, D. S., Integrating Architecture Description
Languages with a Standard Design Method. In Proceedings of
the 20th International Conference on Software Engineering
(ICSE'98), 1998, pp. 209-218.
[12] Clements, P., Kazman, R., Klein, M., Evaluating software
architectures: Methods and case studies, SEI Series in Software
Engineering, Addison Wesley, 2000.
[13] Larman, G., Applying UML and patterns: An introduction
to object-oriented analysis and design and the Unified Process.
Prentice Hall, Second Edition, 2002.
[14] Bosch, J., Design & Use of Software Architectures:
Adopting and evolving a product-line approach, Addison
Wesley 2000

http://standards.ieee.org/
http://www.rational.com/products/whitepapers/474.jsp
http://www.therationaledge.com/content/jun_03/t_domainmodeling_rm.jsp
http://www.therationaledge.com/content/jun_03/t_domainmodeling_rm.jsp

