

Proceedings for First Workshop on

Aspect-oriented Product Line Engineering

(AOPLE-1)

Lancaster University

Computing Department

 Technical Report

COMP-004-2007

Held at GPCE 2006

Portland, Oregon, USA

Sunday October 22nd 2006

AOPLE Web site at

http://www.softeng.ox.ac.uk/aople/index.html

Preface

Aims and Goals of Workshop __3

Attendees__3

Workshop Program__4

Workshop Papers

Karen Cortes-Verdin and Cuauhtemoc Lemus Olalde.
Assessment of Product Line Architecture and Aspect Oriented Software Architecture
Methods___5

Olaf Spinczyk, Daniel Lohmann and Wolfgang Schröder-Preikschat.

Concern Hierarchies__13

Sven Apel, Don Batory and Marko Rosenmueller.

On the Structure of Crosscutting Concerns: Using Aspects or Collaborations? ___20

Roberto Erick Lopez-Herrejon.

Towards Crosscutting Metrics for Aspect-Based Features ____________________25

Jing (Janet) Liu, Robyn Lutz and Hridesh Rajan.

The Role of Aspects in Modeling Product Line Variabilities ___________________32

Florian Heidenreich and Henrik Lochmann.

Using Graph Rewriting for Model Weaving in the context of Aspect Oriented Product
Line Engineering___40

Vander Alves, Alberto Costa Neto, Sergio Soares, Gustavo Santos, Fernando Calheiros,
Vilmar Nepomuceno, Davi Pires, Jorge Leal and Paulo Borba.

From Conditional Compilation to Aspects: A Case Study in Software Product Lines
Migration __46

2

Preface

Aims and Goals of the Workshop

Product Line Engineering (PLE) is an increasingly important paradigm in software
development whereby commonalities and variations among similar systems are
systematically identified and exploited. PLE covers a large spectrum of activities,
from domain analysis to product validation and testing. Variability is manifested
throughout this spectrum in artefacts such as models, requirements, code and
components and it is often of crosscutting nature. These characteristics make Aspect-
Oriented Software Development (AOSD) techniques appealing as suitable candidates
to modularize variability. Work on Generative Programming (GP) and Component
Engineering (CE) has shown the crucial role they play in PLE and the potential
benefits of its synergy with AOSD.

The workshop aimed at expanding and capitalizing on the increasing interest of
researchers from these communities. The main goal of the workshop is therefore to
share and discuss ideas, identify research opportunities and foster collaboration to
tackle the challenges these opportunities may bring about.

Attendees

Neil Loughran - loughran@comp.lancs.ac.uk

Roberto Lopez-Herrejon - Roberto.Lopez@comlab.ox.ac.uk

Daniel Lohmann - dl@cs.fau.de

Karen Cortes Verdin - karen@cimat.mx

Janet Liu - janetlj@iastate.edu

Sven Apel - apel@iti.cs.uni-magdeburg.de

Florian Heidenreich - florian.heidenreich@inf.tu-dresden.de

Sergio Soares - sergio@dsc.upe.br

Paulo Borba - phmb@cin.ufpe.br

Leslie Seymour - lseymour@MagellanGPS.COM

Michael Haupt - michael.haupt@hpi.uni-potsdam.de

Mario Sudholt – sudholt@emn.fr

3

Workshop Program

The morning session was set aside for presentations of the accepted papers as follows:

9:00 Coffee and Welcome

9:20 Paper 1: Concern Hierarchies

9:40 Paper 2: Assessment of Product Line Architecture and Aspect-Oriented

Software Architecture Methods

10:00 Paper 3: Using Graph-Rewriting for Model Weaving in the context of Aspect-

Oriented Product Line Engineering

10:20 Paper 4: From Conditional Compilation to Aspects: A Case Study in Software

Product Lines Migration

10:40 Coffee Break

11:00 Paper 5: On the Structure of Crosscutting Concerns: Using Aspects or

Collaborations?

11:20 Paper 6: Towards Crosscutting Metrics for Aspect-Based Features

11:40 Paper 7: The Role of Aspects in Modeling Product Line Variabilities

12:00 Wrap up morning session

12.15 Lunch (until 2.00pm)

The afternoon session was set aside for discussion and debate regarding the role of
AOSD in software product line engineering. A separate workshop report was created
which discusses the many topics addressed. It can be downloaded at:

http://www.softeng.ox.ac.uk/aople/aople1/report.pdf

4

Assessment of Product Line Architecture and Aspect­Oriented Software
Architecture Methods

Karen Cortes Verdin, Cuauhtemoc Lemus Olalde
Computer Science Department

Center for Research in Mathematics (CIMAT, A.C.)
Calle Jalisco S/N

Col. Mineral de Valenciana Guanajuato, Gto. 36240, Mexico
karen@cimat.mx, clemola@cimat.mx

Abstract

The Product Line Architecture is the most
important asset of a Product Line. The Product Line
Architecture defines not only the product line quality
attributes but also encompasses the capability of
reuse, product derivation, and product line evolution.
Aspect­Oriented approaches seek proper separation
of concerns in order to obtain evolvable,
maintainable, comprehensible, customizable and
reusable software. Current Product Line Architecture
and Aspect­Oriented Software Architecture methods
are assessed considering those characteristics that a
product line architecture must fulfill as well as the
aspect­oriented software architecture’s
characteristics. The results from this effort will
provide the basis for the development of an Aspect­
Oriented Product Line Architecture approach. The
objective is the proper identification, separation, and
modeling of a PLA’s crosscutting concerns.

1. Introduction

A Software Product Line (SPL) is a “set of
software­intensive systems sharing a common,
managed set of features that satisfy the specific needs
of a particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way” [1]. Software Product Line
Engineering attempts to capitalize reuse by setting a
framework for planning, development and
management of core assets. The Product Line
Architecture (PLA) is the most valuable core asset
since it enables cost­effective development of Product
Line (PL) products, models commonality (a key

feature for PLA and therefore for a successful PL) and
supports SPL evolution. A PLA encompasses
interesting challenges in addition to those of a
software architecture. When dealing with a PLA, in
addition to the quality attributes of the products, the
PLA has to exhibit its own quality attributes.
Furthermore, the PLA should support commonality
and variability, and it also has to be generic enough to
support the realization of the planned products within
the PL.

Aspect­Oriented (AO) approaches seek to apply the
separation of concerns principle in order to obtain
software which is simpler to evolve, maintain,
comprehend, customize, and reuse. Such separation of
concerns can be applied from the early phases of
software development. Concerns in these phases
crosscut requirements’ and/or architecture’s artifacts.
These concerns are known as Early Aspects (EA) [2].

Current PLA and Aspect Oriented Software
Architecture (AOSA) methods are assessed herein.
The objective is to appraise if current PLA and AOSA
methods consider PL­specific quality attributes, the
characteristics that a PLA must fulfill (generality, and
support for commonality and variability), as well as if
they follow an AO or EA approach. What is sought by
incorporating an AO approach into the design of a
PLA, is the proper identification of crosscutting
concerns, and their inclusion into a PLA. If these
concerns are not properly considered, they can lead to
tangled code during implementation, with the obvious
consequences of loss of maintainability, integrability,
manageability, and evolvability for the PL. This
assessment is part of the work done during the first.
year of doctoral research. The corresponding outcomes
will justify the development of an Aspect­Oriented
Product Line Architecting (AOPLA) methodology.

5

mailto:karen@cimat.mx
mailto:clemola@cimat.mx

The assessment considers as criteria, in the first
place, the PL­specific quality attributes as specified in
the CAFÉ Quality Model [3]. The assessment
addresses whether the architecting method considers
the identification and design of such quality attributes.
The PL­specific quality attributes are [3]:

1. Variability. An asset contains common and
varying parts covering in this way aspects of
different product line members.

2. Derivability. A generic core asset has
attributes that provide for product­specific
instance derivation..

3. Reusability. The asset’s capability of being
reused in different product line members.

4. Rateability. Capability to estimate a core
asset’s worth.

5. Integrability. The extent to which a a system­
specific asset can be into the PL
infrastructure.

6. Correctness. Extent to which an asset realizes
satisfies its specification and meets the PL’s
mission objectives.

7. Evolvability. The degree to which an asset
can deal with growing complexity and
demand as well as continuous change.

8. Manageability. A core asset is manageable if
one can plan, decide and observe with respect
to the different states the asset can get into.

9. Maintainability. Capability of an asset to be
modified

Generality is considered too, as well as the support
for commonality and variability.

From the AO point of view, the assessment
contemplates whether the method specifically
considers: 1) a process for concern development, 2)
aspect modularization, 3) whether the aspects are
depicted in the architecture, and 4) if the method
provides some mechanism for specifying concern
composition.

2. Assessment

The PLA methods selected for this assessment are
the most well know and applied methods for Product
Line Architecture development. The selection of
AOSA methods is mainly based on the survey
presented in [14]. This survey already makes a
selection of the most significant AOSA approaches.

PLA methods are presented in section 2.1
followed by AO methods in section 2.2. Table 2.1, in
section 2.3 summarizes the actual assessment. It
should be noted that, in the case of PLA methods, as
they have not been developed to consider crosscutting
concerns in a specific way, they do not fulfill the AO
criteria already mentioned. The AOSA methods, in
turn, do not address PL­specific quality attributes or
generality. They also do not support commonality and
variability.

2.1. PLA methods

2.1.1. ADD. Attribute Driven Design Method (ADD)
[4] was developed within the SEI’s Product Line
initiative along with Robert Bosch GmbH. ADD is a
recursive decomposition method. The method makes
an explicit consideration of quality attributes since it
asks, from the beginning, for an explicit statement of
quality attribute requirements. ADD guides the
architect through a series of design decisions that help
to meet those requirements. Architectural drivers
constitute the guide for making such design decisions.
Architectural drivers are “the combination of quality,
functional, and business requirements that shape the
architecture” [4]. Commonality is supported by
identification of commonalities across architecture’s
component instances. However, in order for the PL­
specific quality attributes and generality to be
explicitly considered, care should be taken that they
are defined within the architectural drivers.

2.1.2. PuLSE­DSSA. PuLSE­DSSA [5] is a process
that integrates software architecture creation and
evaluation. It develops a reference architecture by
applying generic scenarios in an iterative process. The
application of generic scenarios proceeds from the
most to the least architecturally significant. Evaluation
is integrated in each iteration of the PLA creation
process. Inputs to PuLSE­DSSA are the scope
definition from PuLSE­ECO and the domain model.
The output is a PLA which consists of a PLA
description, an Architecture Decision Model (ADM),
and optionally, a prototype. In order for PL­specific
quality attributes and generality to be explicitly
considered they must be described as critical use cases
in scenarios. PuLSE­DSSA supports commonality and
variability.

2.1.3. FAST. Family­Oriented Abstraction,
Specification, and Translation (FAST) is actually a
pattern for software production processes that “strives
to resolve the tension between rapid production and

6

careful engineering” [6]. Any process that conforms to
such a pattern is called a FAST process. FAST relies
on the concept of concurrent engineering: both
product and process are designed together. The FAST
process specifically encompasses commonality
analysis. Since FAST is a pattern it can be customized
according to the business’ needs. Therefore, PL­
specific quality attributes, generality and AO
characteristics can be incorporated into FAST,

2.1.4. FORM. Feature­Oriented Reuse Method
(FORM) [7] is an extension of Feature­Oriented
Domain Analysis method (FODA) [8] supporting the
construction of a reference architecture. FORM is
based on a commonality analysis expressed in a
domain model in terms of features. Features are used
due to the fact that they are abstractions that both
customers and developers understand. From the
domain model, product architectures and components
can be derived. FORM considers different types of
features:

§ Services or functions provided by the system,
about which users are more concerned.

§ Domain technologies, which are the concern
of system analysts and designers.

§ Implementation techniques, which are of
developer’s interest.

Only during FORM’s domain engineering
phase, by the identification and modeling of features,
can PL­specific quality attributes and generality be
considered. Commonality analysis, on the other hand,
is explicitly addressed during domain or feature
modeling in the domain engineering phase.

2.1.5. QADA. Quality­driven Architecture Design and
quality Analysis (QADA) [9] provides a systematic
way to transform functional and quality requirements
into software architecture. QADA is a quality driven
method. It uses architectural styles and patterns for the
achievement of quality requirements. QADA is also a
scenario­based method. It guides the development of
PLA documentation and specifically addresses
variation modeling.

One of the activities in QADA is
requirements engineering, which, in the case of this
method, consists of an interface between the
requirements engineering phase and architectural
design. Only if the PL­specific quality attributes have
been specified during the requirements engineering
phase will they be considered during QADA.

With respect to generality, the method is not
clear on how to consider it during the architecting
process. Nevertheless, it does assess the architecture’s
generality when performing the scenario­based
analysis of the concrete architecture design (the PLA
design is divided into a conceptual architecture design
and a concrete architecture design).

2.1.6. QASAR. (Quality Attribute oriented
Software ARchitecture) This PLA approach
explicitly includes an assessment of quality attributes
and the corresponding design decisions to achieve
such quality attributes. The architecture consists of
four artifacts [10]: the system context, the archetypes,
the architecural structure and the design decisions.
Commonality is represented by means of architectural
archetypes. The first step is to define a requirement
specification for the PLA that combines the functional
requirements for each feature in one set of functional
requirements. A similar activity is done for the quality
requirements. Next, a functionality based architecture
is developed. Then, a qualtiy attributes assessment is
performed in this first resulting architecture. The
assessment considers three main techniques [10]:
scenarios, simulation, or mathematical modeling.
According to the results of the assessment, the
architecture is transformed. If any transformations are
identified, these may be: “imposing an architectural
style, imposing and architectural pattern, applying a
design pattern and converting quality requirements to
functionality” [10].

In order for QASAR to address the PL­
specific quality attributes and generality, they must be
specified during scoping and requirements
engineering. During the assessment step the derivation
of specific products is explicitly considered.

2.1.7. KobrA. Komponentbasierte
Anwendungsentwicklung (KobrA, german for
component­based application development), claims to
be “the first comprehensive methodology to support
model driven architectures” [11]. It can be used in
combination with other PL methods such as FODA
and FAST.

KobrA applies the separation of concerns
principles along the process by considering three
orthogonal dimensions of development: level of
abstraction, level of genericity, and decomposition.
During the framework engineering phase (a
framework is a reusable set of artifacts whose core is
embedded within all products), the PLA is developed.
During this phase, by applying the genericity

7

principle, commonalities and variabilities within the
PL are captured.

KobrA makes use of KobrA components or
Komponents. Komponents are not physical
components in the sense of actual component
technologies. They rather correspond to logical
building blocks of a software system. In this sense the
term Komponent refers to any kind of component
including components. KobrA supports the principle
of encapsulation by modeling a Komponent in terms
of a “specification” and a “realization.” A Komponent
specification defines what the Komponent does, while
a realization describes how the Komponent does it. At
the framework level it is possible to have
specifications without accompanying realizations. The
non­functional or quality requirements specification is
an auxiliary artifact of a Komponent specification.
Such quality requirements must be oriented towards
the specific Komponents and should be contained in
the corresponding Komponent requirements
document. Therefore, if PL­specific quality and
generality attributes are to be considered, they should
be specified in the corresponding Komponent’s
requirements document.

2.2. AO methods

2.2.1. PCS (Perspectival Concern­Space). PCS
“represents a technique of depicting concerns of
multiple kinds (or dimensions) in an architectural
view consisting of one or more models and diagrams”
[12]. A perspective is a “way of looking at a
multidimensional space of software concerns from a
specific viewpoint” [7]. Every perspective has an
orientation, and the orientation of a perspective is
determined by a set of related concerns, a purpose, a
context and a viewpoint. PCS addresses
multidimensional separation of concerns [13] in
combination with UML and IEEE Std­1471.

PCS concern development process is concern
reification. This process reifies stakeholders’ concerns
into viewpoint language elements. Reification is
accomplished via projection. A projection is “an
architectural abstraction that defines the relationship
between a viewpoint and a view – or between a view
and a set of models” [12]. A projection defines how to
reify one or more concerns into descriptive units.
Descriptive units compose the software architecture.
Descriptive units can be simple and composite, and
they correspond, in the case of simple units, to a link,
an attribute, a parameter. In the case of composite

units, they can be classes, subsystems, packages and
any kind of UML diagrams.

2.2.2. DAOP­ADL. DAOP­ADL is an XML­based
architecture description language used to describe the
architecture of an application in terms of a set of
components, a set of aspects and the interconnections
among them.

DAOP­ADL does not consider a concern
development process. Since DAOP­ADL is an ADL it
provides the constructs for representing aspects and
components in the architecture. It does not provide
any guideline for aspect modularization. DAOP­ADL
handles two different kinds of composition constraints
[14]:

1. The componentCompositionRules describe
the rules that drive the composition of
components

2. The aspectEvaluationRules, which are
equivalent to aspect pointcuts in AOP
languages. These rules describe the weaving
rules between components and aspects.

2.2.3. AOGA. Aspect­Oriented Generative
Approaches (AOGA) [14] is an architecture­centric
approach that was originally focused on multi­agent
systems. AOGA encompasses domain­specific
languages, modeling notations and code generation
tools. It is divided in three stages: domain analysis and
specification, architecture design, and
implementation. Aspects can be captured and specified
in previous development stages. During domain
analysis and specification is a stepwise process that
allows modeling, specifying, and modularizing
crosscutting as well as non crosscutting concerns.
Since this is an AO architecting method aspects are
represented within the software architecture. Concern
composition specification is accomplished via its own
domain­specific­language named Agent­DSL.

2.2.4. TranSAT. TranSAT is a framework that
focuses on facilitating software evolution through the
realization of Aspect Oriented Software Development
(AOSD) principles [15]. It consists of an incremental
process during which the architecture is defined by
weaving a new architecture plan within the
architecture. In TranSAT, concerns are merged until
the system is complete. A new concern is integrated
into the architecture by the use of a software
architecture pattern. A pattern contains all the
necessary information to enable the inclusion of a new
concern. It organizes the information in three parts: an

8

architecture plan, a join point mask, and a set of
transformation rules. The actual binding or integration
is performed by a weaver, which uses the join point
mask and the transformation rules.

2.2.5. PRISMA. PRISMA is an extension to OASIS
(Open and Active Specification for Information
Systems) that encompasses Component­Based
Software Development and Aspect­Oriented Software
development. PRISMA provides a component
definition language to define architectural types at a
high abstraction level [16]. It also provides a
configuration language which “designs the software
architecture of systems by creating and
interconnecting instances of the defined types
including all the imported COTS” [16]. OASIS is a
formal language for defining conceptual models of
object­oriented systems. PRISMA extends OASIS to
allow the specification of software architectures.
PRISMA includes a higher level of abstraction, that is
conceptual design. A PRISMA type can include
several aspects: functional, coordination, distribution,
quality, context­awareness, and evolution. PRISMA is
a model to define architectures. The architectural
model consists of different types: interface, aspect,
component, connector, and system. PRISMA types are
defined by composition of aspects

PRISMA employs reflection as the means for the
modification of its metamodel. In this way PRISMA
can be tailored to fulfill specific needs.

2.3. Assessment

The actual assessment of PLA and AOSA
methods is presented in Table 2.1 on next page. These
results she that neither method fulfills all the
assessment criteria. PLA methods were designed to
consider conventional architectural concerns, not to
follow an AO approach. Nevertheless, some of the
methods are suitable to consider crosscutting concerns.
AOSA methods, on the other hand although not
designed to consider the development of a PLA are
suitable for considering PLA characteristics, specially
the PL­Quality attributes and generality.

3. Summary

PLA and AOSA methods have been assessed.
The objective of this effort was to determine the status
of current PLA and AOSA methods in addressing PL
and AO characteristics.

The assessment considered the main characteristics
that a PLA architecture must fulfill: PL­specific
quality attributes, generality and support for
commonality and variability. In relation to AO, the
appraisal considered whether the methods
encompassed; 1) a process for concern development,
2) aspect modularization, 3) description of aspects
within the architecture, and 4) if the method provides
some mechanism for specifying concern composition.

Neither architecting methods satisfies all the
assessment criteria. These results justify therefore, the
development of an Aspect­Oriented Product Line
Architecting (AOPLA) methodology. This
methodology should explicitly encompass the PL­
specific quality attributes, generality and commonality
and variability support. Furthermore, by incorporating
an AO approach it is with the intent to properly
identify crosscutting concerns, and their inclusion into
a PLA.

9

Table 2.1. Assessment of PLA and AOSA methods.

Approach/
Characteri
stic

PL­specific
quality
attributes

Support for
commonality and
variability

Generality Concern
development
process

Aspect
modularization

Aspects
representation in
architecture

Concern
composition
specification

ADD PL­specific
quality attributes
must be in the
architectural
drivers in order
to be considered
during the process

At each iteration,
commonalities
across component
instances must be
identified

It should be
considered in the
architectural drivers

No No No No

PuLSE­
DSSA

PL­specific
quality attributes
must be specified
as critical use
cases in the
scenarios

It is explicitly
considered during
the process

It should be
considered in a
scenario

No No No No

FAST FAST process can
be customized

Commonality and
variability is
explicitly
considered during
the process

It is explicitly
performed during
Domain Modeling

FAST process can
be customized

FAST process can be
customized

FAST process can
be customized

FAST process can
be customized

QADA The quality
attributes must be
specified during
the requirements
engineering phase

Supports variation
modeling

Assessed during
scenario­based
analysis of the
concrete
architecture

No No No No

KobrA Must be specified
in the
requirements
specification
document of the
corresponding
Komponents

Commonalities
and variabilities
are captured
during framework
engineering by
applying the
genericity
principle

By separating
concerns, the
method explicitly
defines a dimension
for genericity

No No No No

PCS No No No By means of
projection, PCS
reifies
stakeholders’
concerns into
viewpoint language

By means of
projection, concerns
are transformed into
descriptive units
within the
architecture

Basic descriptive
units correspond to
UML elements.
Composite
descriptive units
correspond to

By means of
interaction
concerns. This is
done using a
perspectival
concern­space

10

elements classes, subsystems,
packages and any
kind of UML
diagram

named Aspect­
oriented
Construction PCS

DAOP­ADL No No No No No As an ADL it
describes aspects
within the
architecture

It specifies
aspectEvalautionRu
les, which
constraint
composition among
components and
aspects

AOGA No No No Aspects can be
captured and
specified in
preliminary
development stages.
In domain analysis
and specification,
the specification of
crosscutting
features is done as
domain aspects

The architect defines
architectural aspects
in the AO
architecture during
architecture design in
a stepwise fashion

During AO
architecture design

By means of the
Agent­DSL

TranSAT No No No By means of an
architecture pattern,
TranSAT allows the
inclusion of new
concerns into the
architecture

The new architecture
plan within the
architecture pattern
identifies a self­
sufficient component
assembly, which in
turn, implements a
given concern

By means of the
new architecture
plan, the component
assemblies
implementing a
concern are
identified, this
becomes part of the
architecture

The architecture
pattern’s join point
mask and set of
transformation rules
specify the
architecture’s
concern integration

PRISMA Can be
considered within
the aspects in the
PRISMA types

No An aspect
categorization is
pre­defined in
PRISMA, however
additional aspects
can be included

By using the types
of PRISMA
architectural model

By means of the
PRISMA architectural
model

By means of
PRISMA types
defined in the
architectural model

PRISMA types are
obtained by
composition of
aspects; functional,
quality,
distribution,
coordination,
context­awareness,
and evolution. The
composition is pre­
defined by the
aspects

11

5. References

[1] P. Clements, and L. Northrop, Software Product Lines:
Practices and Patterns, Addison­Wesley, USA, 2001.

[2] Early Aspects Web Site, http://www.early­aspects.net/

[3] M. Anastasopoulos, J. Bayer , Product Family Specific
Quality Attributes (IESE Report No. 042.02/E, Version 1.0).
Kaiserslautern, Germany: Fraunhofer Institut
Experimentelles Software Engineering, 2002.

[4] ADD Method Web Site,
http://www.sei.cmu.edu/productlines/add_method.html

[5] M. Anastasopoulos, J. Bayer , O. Flege, C. Gacek, “A
Process For Product Line Architecture and Evaluation.
PuLSE­DSSA – Version 2.0,” Fraunhofer Institut
Experimentelles Software Engineering, Kaiserslautern,
Germany, IESE Report No. 038.00/E, Version 1.0, 2000.

[6] D. M. Weiss, and C. T. Robert Lai, Software Product­
Line Engineering. A Family­Based Software Development
Process, Addison­Wesley, 1999.

[7] FORM Method Web Site,
http://selab.postech.ac.kr/publication/1998_FORM_AFeatur
e­Oriented Reuse Method with Domain­Specific Reference
Architectures.pdf

[8] http://www.sei.cmu.edu/domain­engineering/FODA.html

[9] M. Matinlassi, E. Niemelä , L. Dobrica, “Quality­driven
architecture design and quality analisis method. A
revolutionary initiation approach to a product line
architecture,” Technical Research Centre of Finland (VTT) ,
Oulu, Finland , VTT Report No. P456, 2002.

[10] J. Bosch: Design and Use of Software Architectures.
Adopting and evolving a Product­line approach, Addison­
Wesley, Great Britain, 2000

[11] C. Atkinson, I. Bayer, C. Bunse, E. Kamsties, O.
Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wüst, and
J. Zettel, Component­based Software Product­Line
Engineering with UML, Addison­Wesley, Great Britain,
2002.

[12] M. M. Kandé, “A concern­oriented approach to
software architecture,” Ph.D. Dissertation, Faculté
Informatique et Communications, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne, Suisse, 2003.

[13] H. Ossher, and P. Tarr, “Using Multi.dimensional
Separation of Concerns to (Re)Shape Evolving Software,“
Communications of the ACM, vol. 44, no. 10, October
2001, pp. 43­50.

[14] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M.
Pinto Alarcón, J. Bakker, B. Tekinerdogan., S. Clarke, and
A. Jackson, “Survey of Aspect­Oriented Analysis and
Design Approaches,” University of Lancaster, Lancaster,
UK, AOSD­Europe­ULANC­9, Editor(s): R. Chitchyan, A.
Rashid, 2005.

[15] R.E. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect­
Oriented Software Development, Addison­Wesley, USA,
2004.

[16] J. Pérez, I. Ramos, J. Jaen, P. Letelier, and E. Navarro,
“PRISMA: towards quality, aspect oriented and dynamic
software architectures”, Proc. 3rd International Conference
on Quality Software (QSIC’03), IEEE, Dallas, Texas, USA,
2003, pp. 59­66.

12

http://www.early-aspects.net/
http://www.sei.cmu.edu/productlines/add_method.html
http://selab.postech.ac.kr/publication/1998_FORM_AFeature-Oriented
http://www.sei.cmu.edu/domain-engineering/FODA.html

Concern Hierarchies

Olaf Spinczyk, Daniel Lohmann, and
Wolfgang Schröder-Preikschat

Friedrich-Alexander University
91058 Erlangen, Germany

{os,dl,wosch}@cs.fau.de

ABSTRACT
About 30 years ago the pioneers of family-based software devel-
opment invented very useful models. Today we would describe
them as models that help software engineers to bridge the gap be-
tween variable requirements and the reference architecture of a
product line platform. This is one of the key challenges in prod-
uct line engineering. In this paper we revisit one of these mod-
els, namely the functional hierarchy. The goal is to derive a new
model called a concern hierarchy that also takes today’s knowledge
about crosscutting concerns and aspect-oriented programming into
account. The resulting concern hierarchy model facilitates the de-
sign of aspect-oriented software product lines by supporting the
derivation of class hierarchies, aspects, and their dependency rela-
tions more systematically without being overly complex.

1. INTRODUCTION
The design of a software product line is much more challenging
than the design of a single application. Many application scenar-
ios (configurations) shall be covered by the same software compo-
nents. Therefore, components often have to be designed and imple-
mented in a generic way. Furthermore, instead of defining a fixed
architecture, a reference architecture has to be developed that can
be understood as a set of composition rules for the generic compo-
nents.

A very important issue in this design process are dependencies be-
tween components. If, for instance, a component A depends on a
component B, a composition rule has to be defined that guarantees
that no product line variant can be configured that contains A but
not B. Without such composition rule compile time error messages
or even runtime errors would be the unpleasant consequence. Even
more problematic are cyclic dependencies. If A depends on B, B
on C, and C on A, there is almost no room for configuration. Any
product variant has to contain either none of these components or
all of them.

All these considerations are completely independent of the pro-
gramming language and even independent of programming paradigms
such as object-orientation or functional, imperative, and logical

GPCE ’06, First Workshop on Aspect-Oriented Product-Line Engineering,
October 22, 2006, Portland, Oregon.

programming. They also do not depend on the actual mechanism
that is used for the interaction between the components, such as
local function call, remote procedure call, message passing com-
munication, or even macro expansion.

This was the motivation for the program family pioneers from the
seventies to abstract from all technical issues, when they designed
their systems. The main goal was to get the dependency rela-
tions between the logical “functions” right. These models such as
Parnas’ “uses hierarchies” [16] or Habermann’s “functional hierar-
chies” [12] are still highly influential. Their simplicity makes them
attractive.

However, computer science made some steps forward during the
last decades. The awareness that crosscutting concerns are a prob-
lem for reusability and extensibility as well as the notion of aspects
that implement crosscutting concerns in a modular way, came up
in the late nineties. Parnas and Habermann did not consider these
problems in their work sufficiently. In our opinion it is necessary
to revisit and update their work, as aspect-oriented product line en-
gineering can hardly be done without these fundamental models.

The following sections are structured as follows: Section 2 will
briefly introduce Habermann’s functional hierarchies and discuss
our experiences with system design based on this model. Section
3 is the main contribution of this paper. It contains an informal
description of the extended functional hierarchy model that we call
“concern hierarchy”. In section 4 we will discuss how concern
hierarchies can be used to derive an aspect-oriented class hierarchy
as well as a dependency graph. The paper ends with a discussion
of related work in section 5 and our conclusions in section 6.

2. FUNCTIONAL HIERARCHIES
Like many software engineering pioneers Habermann worked on
operating systems. The inherent complexity of these systems –
even in the seventies – almost automatically made computer sci-
entists think about modularization and configurability in general.

2.1 The FAMOS Structure
Figure 1 illustrates the structure of his FAMOS System1 as a func-
tional hierarchy. The system is structured in layers. Each layer
consists of functions. The term “function” is used in a very general
sense and abstracts from the actual implementation and interaction
mechanism. Each function knows the functions of its own layer
and the functions from the layers below. This acyclic structure al-
lows the hierarchy to be pruned at any layer and, thus, facilitates the

1 Family of Operating Systems

13

Synchronization

Process Management

Address Spaces

Hardware

A
Process Control

System

Special Devices

A
Batch

System

Disk I/O

Process Creation

Address Space Creation

A
Time−sharing

System

Job Control Language

File system

Swapping

User Interface

Figure 1: Functional hierarchy of the FAMOS operating sys-
tem family

derivation of family members. In the case of the FAMOS operat-
ing system the lowest function represents the elementary operations
provided by the hardware. Based on that are functions which imple-
ment Address Spaces, Process Management, and Synchronization.
On top of Synchronization there is a branch in the hierarchy. With a
“minimal extension”, i.e. Special Device drivers, a Process Control
System variant can be constructed. The other branch, which starts
with dynamic Address Space Creation, is the base for the construc-
tion of a Batch System variant and a Time-Sharing System variant.

2.2 The PURE Structure
In the late nineties our research group designed and implemented a
highly configurable operating system for the domain of deeply em-
bedded systems. For this purpose we combined the family-based
design approach known from FAMOS with a C++ implementation.
The result was the PURE operating system family [6, 17].

Figure 2 shows the class diagram of the PURE thread management
subsystem. It was derived from a fine-grained functional hierarchy
in order to achieve a very high degree of configurability and thereby
scalability of the memory consumption with the application’s re-
quirements. Each class implements a function from this functional
hierarchy. Due to the duality of Habermann’s incremental design
approach and implementation inheritance in OO, it was natural to
map the edges of the functional hierarchy to inheritance relations
in the class diagram – at least as a rule of thumb. The result was
a very deep class hierarchy that looks a bit like the corresponding
functional hierarchy rotated by 180◦. The static configuration of
the system was based on two mechanisms:

1. Application-Driven Configuration: Operating systems for
deeply embedded systems normally have to support only one
specific application. A PURE operating system was used by
applications like an ordinary static C++ class library. Hence,
we could exploit the C++ compiler and linker for the static
system configuration. For example, if the application only
instantiated the class Native, the code of the classes Bundle

Actor

Entrant

Aspirant

Queue

Fellow

machine

Servant

thread

Waiter

data

object

life:Active

data

case

object

Context

Threads
osek

Stack

setevent
waitevent
clearevent
getevent

liedown
getup

start
seize

settle
resume

actionappear
burial

Queue

Commuter Priority

hive:Filing

data

pool
Filing

clear
check

store

Threadbox

Semaphore

case

team:Patron

object

Trimmer

block state
annul

Genius

appear
action
burial

Monitor

alive
arise
hello
liedown

getup
block
ready
pause

setevent
waitevent
clearevent
getevent

Counter
rust;

block
ready

sleep
awake

state
wait

Conductor Customer

Temper
Jitterbug

query

Informer
Accountant

Stoic

Deafmute

argc argv envp

Bundle
domain

Native

Native

Bundle

clear

pause
check
exit
scope

arise
alive
ready
block

arise
ready
block

pause
check

SchemeSchemer

arise
ready
block

pause
check

Dreamer
Activity

Active
life

active actual

Hermit

Being

operator

Coroutine Trigger Triplet

Patron
pool

Figure 2: Class diagram of the PURE thread subsystem

and Genius would not be referenced and, thus, not linked into
the final system.

2. Feature-Driven Configuration: In many cases we experi-
enced the need to statically configure the implementation of
a certain layer. For example, each thread object contains
some state information that depends on the thread schedul-
ing strategy. While priority-based strategies require a thread
priority value, a simple FIFO strategy only requires a pointer
to the next thread object. Therefore, a layer was often im-
plemented by a number of classes and a configurable “class
alias” that can be used by the next layers to access the code
and data members of the configurable layer. Technically, a
class alias is a C++ typedef that points to 1 of N classes with
alternative implementations of the same abstract function. In
order to statically configure these class aliases, the variabil-
ity was described by a feature model [9]. A configuration
tool allowed users to select a valid configuration by mark-
ing features. The feature selection was used to generate the
necessary class aliases. For instance, in the class diagram
Informer is a class alias that could be configured to be ei-
ther an Accountant or a Deafmute. Both classes don’t have
to be interface compatible. The only requirement is that all
members that are referenced by the other system layers are
provided. By using this technique configurable and optional

14

layers were implemented in PURE.2

Another experience with PURE was that also in operating systems
there are crosscutting concerns and that it makes sense to imple-
ment them as aspects. For example, based on the AspectC++ lan-
guage [1, 18]we modularized the implementation of interrupt syn-
chronization [15]. The main advantage was that the synchroniza-
tion strategy could much easier be statically configured than in
other systems.

However, it turned out that the step from a variable interrupt syn-
chronization feature to a class hierarchy with aspects was not straight-
forward, because the functional hierarchy model does not provide
any elements to represent crosscutting concerns.

2.3 Lessons Learned
In comparison to other configurable systems such as eCos [2] the
PURE operating system family consists of modules that are much
better to understand and maintain, because no code is needed within
the modules to implement the static configuration. Not a single
#ifdef pollutes the classes and, due to AOP, code that implements
crosscutting concerns is well-separated. For instance, in eCos cross-
cutting concern implementations contribute about 20% of the whole
kernel code [14].

However, on the modeling level we experienced two important prob-
lems that were related to functional hierarchies:

1. no nested hierarchies: highly configurable systems cannot
be represented by a single deep functional hierarchy. The
functions of FAMOS were rather course-grained in compari-
son to the functions of PURE. Therefore, nested class hierar-
chies would have been necessary to cope with the complex-
ity.

2. no crosscutting concerns: on the modeling level functional
hierarchies offer no adequate element to describe crosscut-
ting concerns. That makes it very difficult to derive a class
diagram with aspects in a systematic way.

These problems were the motivation for us to start thinking about
an extension of the functional hierarchy model.

3. THE CONCERN HIERARCHY MODEL
In the functional hierarchy model functions are atomic entities.
This makes the static configuration very easy. No feature-driven
configuration techniques are necessary. However, for product lines
that strive for a high degree of configurability this is not enough.
Therefore, our extension does not only model purely functional
concerns, but also its sub-concerns and crosscutting concerns. We
call this more general and extended model “concern hierarchy”.
The following sections will describe the two extensions in detail.

3.1 Sub-Concern Modeling
Sub-concern modeling is needed to support step-wise refinement
during the modeling process. A complex function is regarded as a
program family within the program family. It is again modeled as a

2 More details on feature-driven configuration can be found in [5]
and [7]

float sin(int grad) {
 return sin_tab[grad];
}

 return cos_tab[grad];
} arg[0] = arg[0] % 360;

execution of
sin() or cos()

float cos(int grad) {

periodtrigonometry

aspect:component:

necessary relation for the component code

affects/activates relation

Figure 3: Component code depends on an aspect

concern hierarchy. For convenience the sub-concern hierarchy can
either be visualized in-place or as a separate diagram.

As a consequence concern hierarchies don’t have atomic entities.
Every concern can always be refined. This process is continued
until a granularity has been reached that matches the demands on
configurability.

3.2 Crosscutting Concern Modeling
Crosscutting concern modeling is much more complicated than sub-
concern modeling, because the relations between crosscutting con-
cerns and non-crosscutting concerns as well as the relations among
crosscutting concerns are still a field of active research. The follow-
ing parts will describe the authors’ point of view, which is based on
experience with aspect-oriented product line development with As-
pectC++. Our approach is to analyze the relations between aspects
and component code as well as the relations among aspects. This
knowledge is then used to describe relations on the more abstract
concern hierarchy level.

3.2.1 Relations Between Crosscutting Concerns and
Ordinary Concerns

An aspect weaver can be regarded as a generic system monitor [10].
Whenever a certain condition becomes true, which is described by
an aspect, some specific instructions (advice code) are executed.
An explicit call is not necessary. There are two possible perspec-
tives on this relationship. On the one hand the aspect code is ac-
tivated by the component code. The activation happens implicitly
by reaching a certain state. On the other hand the aspect code af-
fects the component code, because it modifies the component code
state after activation.

This bidirectional relationship between aspects and component code
does not necessarily mean a dependency in the sense of the func-
tional hierarchy. In many cases aspects can exist in a system even
though their condition never becomes true and, thus, the aspect
code is never activated. At the same time it is often no problem
for component code to be unaffected by aspects. This becomes im-
mediately clear if one considers an aspect for the detection of error
conditions. For developers of software product lines this property
of aspects is very important. It makes it possible to write loosely
coupled aspects that work independently of the system configura-
tion, where some or all target components might be missing.

Besides loose coupling there are also tight coupling scenarios. For
example, some component code implementation might rely on an
affecting aspect. This is illustrated in figure 3. It shows a com-
ponent that implements trigonometric functions and an aspect that

15

insert,

remove

modify,

component: component:

read

querycaching

database

maintainance

aspect:

affects /
activation relation

necessary for the
aspect to work properly

Figure 4: Aspect code depends on activation

makes sure that the argument for sin and cos is always in the range
between 0◦ and 359◦. Without this aspect the component would
not conform to its specification.

The dashed line in the figure represents the relation between the
component trigonometry and the aspect period. The filled black
circle on the component side means that the component depends
on this relation. It is a necessary relation.

It is also possible that an aspect depends on the activation in or-
der to work properly. This illustrated in figure 4. The scenario is
a database management system that consists of a maintenance and
a query component. An aspect should improve the system’s query
performance by caching result values. This is implemented by ad-
vice for the query component. However, in order to guarantee the
consistency of the cached results, an additional advice for the main-
tenance component is necessary. It is used to monitor all operations
that insert, remove, or modify data.

In this case the mark is on the aspect side. The line that connects
the mark with the advice for the query component means that the
necessary activation would not be necessary without the relation to
the query component.

As buffering, query, and maintenance can also be regarded as con-
cerns in a concern hierarchy, we conclude that we can and should
use the same kinds of relationships for crosscutting and ordinary
concerns in concern hierarchies as well. We also use the same
graphical notations. The main difference between figures 3 and
4 and the corresponding concern hierarchies is that a crosscutting
concern can not always be implemented by an aspect. This depends
on programming language features and the nature of the concern.

Another special property of the relationship between crosscutting
concerns and ordinary concerns is that crosscutting concerns can
affect groups of other concerns. We represent groups in graphical
concern hierarchies by areas with a dashed borderline and a group
name such as group 1 and group 2 in figure 5.

3.2.2 Relations Among Crosscutting Concerns
In languages like AspectJ or AspectC++ aspects have ordinary at-
tributes and member functions. They can be regarded as an exten-
sion of the class concept. Therefore, an aspect can have the same
relations to other aspects as to component code.

More interesting are indirect interactions among crosscutting con-

crosscutting
concern 1

crosscutting
concern 2

concern 2

concern 3

necessary activation

necessarily
affects

concern 1

uses

group 1 group 2

affects

concern 4

Figure 5: Concern hierarchy with concern groups

"hello" or
"H6:rgJ2"?

...
send ("hello");
...

...
receive (message);
... decrypt received

messages

logging

encryption

encrypt all sent
messages

log all messages

receiver

sender

Figure 6: Interactions of crosscutting concerns

cerns. Figure 6 illustrates these interactions with an example. There
are two communicating components sender and receiver. Two as-
pects affect the components. The first aspect is logging. It stores
all transmitted messages in a log file. The second aspect is en-
cryption. It encrypts all messages on the sender side and decrypts
them on the receiver side. Although these two aspects don’t have a
direct dependency, the order in which the advice is activated is cru-
cial in this scenario. If the logging aspect is activated first, the log
file will contain unencrypted messages, otherwise encrypted mes-
sages. This difference might decide over the whole system’s secu-
rity. Therefore, AspectJ and AspectC++ provide special language
elements to control the invocation order of advice code.

Our conclusion is that crosscutting concerns can have order rela-
tions, in some cases even necessary order relations. An example
for a necessary order relation is an encryption concern that extends
all messages, for instance, by a code that describes the encryption
method. If the logging concern relies on this message format, it
would not work properly without the encryption concern’s advice
being executed first. This means that a necessary order relation is
required, because at least one of the aspects would otherwise not
work according to its specification. In the case of a non-necessary
order relation all aspects work properly, but there is a relevant dif-
ference in the system’s behavior and, thus, we would like to apply
an ordering mechanism.

Figure 7 shows the graphical notation for normal and necessary
order relations in concern hierarchies. For order relations a dotted
line is used. A necessary relation is again marked by a filled circle.

4. TOWARDS A DOMAIN DESIGN
The previous sections described the relations of crosscutting con-
cerns with other ordinary and crosscutting concerns. These re-
lations shall be used in concern hierarchies. Modeling them ex-

16

logging

encryption encryption

logging

order relation necessary order

Figure 7: Normal and necessary oder relations

plicitely facilitates the derivation of a detailed design. As concern
hierarchies are completely independent of the applied program-
ming paradigm and, of course, also independent of the program-
ming language, they can be used for any project and any design
model. As an example, the following sections will discuss how
an aspect-oriented class hierarchy can be derived from a concern
hierarchy.

4.1 Ordinary Concern Modeling
As described earlier in section 2.2, ordinary concerns can be imple-
mented by classes. The dependency relations between these con-
cerns can be expressed by inheritance. If a concern is too com-
plicated to be implemented by a single class, it has to be refined
by sub-concern modeling on the concern hierarchy level. If a con-
cern is not complex enough to be implemented by a class, it often
makes sense to group a number of concerns from the same layer of
the concern hierarchy into one class3.

4.2 Crosscutting Concern Modeling
Crosscutting concerns are most naturally implemented by aspects.
However, there are cases in which the aspect-oriented program-
ming language is not powerful enough to express the crosscutting
concern in a modular way and a scattered implementation is un-
avoidable. Nevertheless, even in this case the explicit separation of
crosscutting concerns in concern hierarchies is beneficial, because
the developers are now aware of the problem and can mark the
scattered code fragments. This allows them to configure these con-
cerns statically, for instance with text-based transformation tools,
or to remove the code automatically as soon as better AOP support
is available.

4.3 Sub-Concern Modeling
Concern hierarchy modeling can be applied recursively. Each con-
cern can be described by another, more detailed, sub-concern hi-
erarchy. The classes and aspects from the sub-concern hierarchy
can either be grouped by using UML elements like “components”
or they can simply be merged with the classes and aspects from the
main concern hierarchy.

The motivation for the design of a sub-concern hierarchy is the need
to implement a certain concern in a configurable manner. This typ-
ically means that a component that uses the resulting configurable
components has to be developed against a common interface. A
very simple approach to decouple client code from configurable
service classes is a “class alias”.

Class aliases are the best choice if a sub-concern hierarchy models a
family that implements an alternative feature from a feature model
and if the feature binding time is compile time. It statically connects
clients with 1 of N classes.

3 Note that grouping functions into one class might increase the
memory footprint of the system in some configurations if the de-
velopment tool chain does not support “function-level linking”.

If the binding time is runtime, a strategy design pattern [11] has to
be applied. Here the clients use an abstract strategy class to access
the classes of the sub-concern hierarchy. The project-specific ap-
plication code then has to connect the client classes with the right
instance of a concrete strategy implementation. It is important to
understand that the abstract and concrete strategy classes belong
to the client code and not the sub-concern hierarchy’s classes. In
contrast to pure OO design, a class hierarchy that is derived from a
concern hierarchy never starts with an abstract class. The goal is to
avoid dynamic dispatching wherever possible.

4.4 Derivation of a Dependency Model and
Tailoring

Concern hierarchies contain various kinds of concern relations that
were not known in functional hierarchies. The dependency rela-
tions in functional hierarchies are very useful, because they help
the developer to find a module structure that can be tailored by us-
ing only application-driven configuration mechanisms. Our next
step is to discuss the new kinds of concern relations with respect
to concern dependencies in order to systematically derive a depen-
dency model for the product line components.

If a crosscutting concern affects an ordinary concern, this relation
does not necessarily imply a dependency relation. For example, a
tracing concern does not depend on the existence of any specific
target component, nor do the system components depend on the
tracing concern. This kind of relation can be completely ignored in
a dependency graph. However, the situation is different with neces-
sary relations, which are marked by a filled circle in our graphical
notation. In this case the dependency is directed from the marked
concern to the other concern. Bidirectional dependencies have to be
avoided, because the dependency graph is cycle-free by definition
4.

For order relations the situation is quite similar. Normal order re-
lations are merely implementation guidelines. They do not affect
the system’s configurability. Once again this is different for neces-
sary order relations. The dependency is directed from the marked
crosscutting concern to its counterpart.

As an example figure 8 illustrates the dependency model derivation.
The relation of crosscutting concern 1 and group 1 can be ignored,
because it is not a necessary relation. Concern 2 and 3 have to
be affected by crosscutting concern 3. Therefore, the dependency
model contains an edge from concern 3 to crosscutting concern
3. As concern 2 also depends on concern 3, it is not necessary
to explicitly mark its dependency of crosscutting concern 3. The
dependency relation is transitive. Crosscutting concern 2 has to
affect group 2. Otherwise it would not work properly. This means
that a dependency edge from crosscutting concern 2 to concern 2
is needed.

The result of this mapping is a graph that precisely describes pos-
sible system configurations if each concern is implemented by a
separate module. As separation of concerns and the modular im-
plementation of crosscutting concerns are the main goals of aspect-
oriented programming, the model is an ideal design aid for devel-
opers of aspect-oriented software product lines.

4 Habermann describes a technique called “sandwiching” to get rid
of this problem [12].

17

necessarily
affects

concern 1

concern 3

concern 2 concern 1

concern 3

concern 2

concern 3

necessary activation

uses

affects

concern 4

concern 1

group 2group 1

concern 2
concern 1 concern 2

concern 3

concern 4

crosscutting

crosscutting

crosscutting crosscutting

crosscutting

crosscutting

Figure 8: Derivation of the dependency model from a concern hierarchy

5. RELATED WORK
This work is related to all product line engineering methodologies
such as FODA [13] or DEMRAL [9]. The unique feature of our
approach is that we explicitly try to support developers of aspect-
oriented product lines by modeling ordinary and crosscutting con-
cerns during early design steps. In this sense it is similar to the-
me/UML [8], but the class and dependency model derivation are
different. Furthermore, our approach is not based on UML, but ex-
tends the model of functional hierarchies. GenVoca architectures
and Feature-Oriented Programming [4, 3] are another product line
design approach that has its roots in Parnas’ and Habermann’s work
in the seventies. In a GenVoca architecture systems also have a lay-
ered structure that are also intended to be implemented as “object-
oriented virtual machines”. However, crosscutting concerns in the
sense of dynamic crosscutting (as supported by AspectJ and As-
pectC++) have not been considered by this approach, yet.

6. CONCLUSIONS AND FUTURE WORK
In our own ongoing product line development activities concern hi-
erarchies have already been very useful. We use them after describ-
ing the variability of the domain with a feature model[9]. While
feature models are typically used to describe a problem space, con-
cern hierarchies complement feature models, because they are used
to design a solution space. A concern hierarchy can therefore be re-
garded as the description of the relations of features in the context
of a planned solution space.

Concern hierarchies are a pragmatic extension of functional hierar-
chies that was necessary to cope with a modern aspect-oriented im-
plementation technology. By modeling crosscutting concerns very
early we can systematically derive a detailed design model, e.g. an
aspect-oriented class hierarchy, and a module dependency model.
We feel that this is a unique and very promising approach, which
we should share with other developers in this particular area.

The model description in this paper was informal and based on ex-
amples. Our intention was to address a broad audience.

Concerning future work, we plan to analyze and incorporate the
feedback on this paper. Our goal is to develop a more precise and
formal description of the model and the related development pro-
cess.

7. REFERENCES
[1] AspectC++ homepage. http://www.aspectc.org/.

[2] eCos homepage. http://ecos.sourceware.org/.

[3] D. Batory. Feature-oriented programming and the AHEAD
tool suite. In 26th Int. Conf. on Software Engineering (ICSE
’04), pages 702–703. IEEE Computer Society, 2004.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. In 25th Int. Conf. on Software
Engineering (ICSE ’03), pages 187–197, Washington, DC,
USA, 2003. IEEE Computer Society.

[5] D. Beuche. Variant management with pure::variants.
Technical report, pure-systems GmbH, 2003.
http://www.pure-systems.com/.

[6] D. Beuche, A. Guerrouat, H. Papajewski,
W. Schröder-Preikschat, O. Spinczyk, and U. Spinczyk. The
PURE family of object-oriented operating systems for deeply
embedded systems. In 2nd IEEE Int. Symp. on OO
Real-Time Distributed Computing (ISORC ’99), pages
45–53, St Malo, France, May 1999.

[7] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
Variability management with feature models. Sci. Comput.
Program., 53(3):333–352, 2004.

[8] S. Clarke and R. J. Walker. Generic aspect-oriented design
with Theme/UML. In R. E. Filman, T. Elrad, S. Clarke, and
M. Akşit, editors, Aspect-Oriented Software Development,
pages 425–458. Addison-Wesley, Boston, 2005.

[9] K. Czarnecki and U. W. Eisenecker. Generative
Programming. Methods, Tools and Applications. AW, May
2000.

[10] R. Douence, P. Fradet, and M. Südholt. Detection and
resolution of aspect interactions. Technical Report No. 4435,
Institut National de Recherche en Informatique et en
Automatique (INRIA), Rennes, France, Apr. 2002.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
AW, 1995.

[12] A. N. Habermann, L. Flon, and L. Cooprider. Modularization
and Hierarchy in a Family of Operating Systems. CACM,
19(5):266–272, 1976.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical report, Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, PA, Nov. 1990.

18

[14] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and
W. Schröder-Preikschat. A quantitative analysis of aspects in
the eCos kernel. In EuroSys 2006 Conference (EuroSys ’06),
pages 191–204. ACM, Apr. 2006.

[15] D. Mahrenholz, O. Spinczyk, A. Gal, and
W. Schröder-Preikschat. An aspect-orientied implementation
of interrupt synchronization in the PURE operating system
family. In 5th ECOOP W’shop on Object Orientation and
Operating Systems, pages 49–54, Malaga, Spain, June 2002.

[16] D. L. Parnas. Some hypothesis about the uses hierarchy for
operating systems. Technical report, TH Darmstadt,
Fachbereich Informatik, 1976.

[17] F. Schön, W. Schröder-Preikschat, O. Spinczyk, and
U. Spinczyk. Design rationale of the PURE object-oriented
embedded operating system. In Proceedings of the
International IFIP WG 10.3/WG 10.5 Workshop on
Distributed and Parallel Embedded Systems (DIPES ’98),
pages 231–240, Paderborn, Germany, Oct. 1998.

[18] O. Spinczyk and D. Lohmann. The design and
implementation of AspectC++. In Journal on
Knowledge-Based Systems, Special Issue on Creative
Software Design. Elsevier, 2006. (to appear).

19

On the Structure of Crosscutting Concerns:
Using Aspects or Collaborations?

Sven Apel
Department of Computer Science

University of Magdeburg, Germany
apel@iti.cs.uni-magdeburg.de

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs.utexas.edu

Marko Rosenm̈uller
Department of Computer Science

University of Magdeburg, Germany
rosenmueller@iti.cs.uni-magdeburg.de

Abstract
While it is well known that crosscutting concerns occur in many
software projects, little is known about the inherent properties
of these concerns nor howaspects(should) deal with them. We
present a framework for classifying the structural properties of
crosscutting concerns into (1) those that benefit from AOP and (2)
those that should be implemented by OOP mechanisms. Further,
we propose a set of code metrics to perform this classification.
Applying them to a case study is a first to step toward revealing
the current practice of AOP.

1. Introduction
While many studies have examined the capabilities ofaspect-
oriented programming (AOP)to improve the modularity, cus-
tomization, and evolution of software [8, 9, 13, 14, 21, 38], little
is known onhowAOP has been used. We are interested in know-
ing which language mechanisms are used in current aspect-oriented
programs, to what extent, and for what kinds of problems. Knowing
this helps (1) build AOP tools that reflect the programmer’s needs;
(2) provide programming guidelines for exploiting AOP mecha-
nisms better, i.e., what kind of crosscutting concern is implemented
best using which programming mechanism; and (3) discover mis-
use of AOP mechanisms, which may lead to significant problems
and penalties [11,13,14,16,19,24,28].

To address these issues we propose a framework for classify-
ing crosscutting concerns (a.k.a.crosscuts). Our framework en-
ables us to assign individual crosscuts to two distinct categories:
(1) crosscuts that really demand AOP mechanisms and (2) cross-
cuts that can be implemented appropriately using well-known OOP
mechanisms. This distinction follows a long line of prior work on
collaboration-based designs[31,32,35],feature-oriented program-
ming [4], and design patterns[12]. All of them advocate object-
oriented mechanisms for a certain class of design and implemen-
tation problems, so calledcollaborations, which fall into one cate-
gory.

We propose four metrics to analyze aspect-oriented programs
to make the above distinctions, i.e., do the aspects of a program
implement crosscutting concerns that really demand AOP language
mechanisms? We are building a tool that will collect data from a
representative spectrum of software projects that employ AOP. We
discuss the data for oneAspectJ1 project exemplarily.

1 http://www.eclipse.org/aspectj/

2. Crosscut Classification Framework
2.1 Homogeneous and Heterogeneous Crosscuts

A homogeneous crosscutextends a program at multiple join points
by adding oneextension, which is a coherent piece of code [10]. For
example, an advice may advise a whole set of method executions
or an inter-type declaration may introduce a field to a set of target
classes (left column of Table 1).

A heterogeneous crosscutextends multiple join points by
adding multiple extensions, where each individual extension is im-
plemented by a distinct piece of code that affects exactly one join
point [10]. For example, an aspect might bundle a set of advice that
extends a set of methods, whereby each advice extends exactly one
method; or an aspect bundles a set of inter-type declarations – each
intended for a distinct class (right column of Table 1).

2.2 Static and Dynamic Crosscuts

A static crosscutextends the structure of a program statically [29],
i.e., it adds new classes and interfaces as well as injects new fields,
methods, interfaces, and super-classes etc.2 Inter-type declarations
are examples of static crosscuts (first row of Table 1).

A dynamic crosscutaffects the runtime control flow of a pro-
gram [29]. The semantics of a dynamic crosscut can be understood
and defined in terms of an event-based model [36]: it runs addi-
tional code when predefined events occur during program execu-
tion. Such events are also calleddynamic join points[27, 36]. A
piece of advice implements a dynamic crosscut (second row of Ta-
ble 1).

Basic and advanced dynamic crosscuts. Dynamic crosscuts are
especially interesting when they exceed the level of known events
such as method calls or executions. Work on AOP suggests that
expressing a program extension in terms of sophisticated events in-
creases the abstraction level and captures the programmer’s inten-
sion more directly. There are proposals for new language constructs
for defining and catching new kinds of events during the program
execution [26,30]. In order to distinguish these new kinds of events
and the novel language mechanisms that support them from known
events in OOP, we distinguish betweenbasic dynamic crosscutsand
advanced dynamic crosscuts, which are defined as follows:
1. A basic dynamic crosscut addresses only events that are related

to method calls and executions; advanced dynamic crosscuts
address all other events, e.g., throwing an exception or assign-
ing a value to a field.

2. Basic dynamic crosscuts affect a program control flow uncondi-
tionally; advanced dynamic crosscuts may specify a condition

2 Some AOP languages do not support adding classes by aspects, e.g.,
AspectJ. While it is correct that one can just add another class to an
environment, this is at the tool level, and is not at a model level [23].

20

homogeneous heterogeneous
static declare parents : (Line || Point)

implements Shape
void Point.setX(int x)
{ /* ... */ }

basic
dynamic

before() : execution(* set*(..))
{ /* ... */ }

before() : execution(void Point.setX(int))
{ /* ... */ }

advanced
dynamic

before() : execution(* set*(..)) &&
!cflow(execution(* rotate(..)))
{ /* ... */ }

before() : execution(void Point.setX(int)) &&
!cflow(execution(void Line.rotate(double)))
{ /* ... */ }

Table 1. A classification framework for crosscutting concerns (AspectJ examples).

that is evaluated at runtime, e.g., a method execution is only
advised if it occurs in the control flow of another method exe-
cution.

3. Basic dynamic crosscuts address events known from OOP; ad-
vanced dynamic crosscuts can specify composite events that
trigger the execution of an extension, e.g.,trace matchesare
executed when events fire in a specific pattern thereby involv-
ing the history of computation [1].

With AOP, an advanced dynamic crosscut is implemented by anad-
vanced adviceand a basic dynamic crosscut by abasic advice. The
distinction between basic and advanced advice is useful to identify
which pieces of advice make use of advanced AOP mechanisms
and which pieces of advice mimic well-known OOP method exten-
sions.

3. Two Categories of Crosscutting Concerns
We argue it is crucial to decide which crosscutting concerns should
be implemented as aspects, and how, and which using traditional
object-oriented techniques. For that purpose, we divide the space
of possible crosscuts that is defined by our classification framework
into two categories, (1) those crosscuts that abstract collaborations
and (2) those that address the dynamic program semantics and/or
that are homogeneous. The two categories map roughly to the two
programming paradigms, OOP and AOP.

3.1 Collaborations

A collaboration of classes is a set of classes that communicate
with one another to implement a semantically coherent piece of
functionality. Classes of a program play differentroles in different
collaborations[35]. A set of collaborating classes being added to
a program can be understood as afeatureof that program [4]. That
is, a collaboration extends a program by adding new classes and
by applying new roles to existing classes, whereby each role is
implemented as a refinement (e.g., usingvirtual classes[25] or
mixins [6]). From that perspective, a role adds new elements to a
class and extends existing elements, such as methods.

Figure 1 depicts a collaboration-based design of a graph imple-
mentation, where the classesGraph, Node, andEdgecollaborate
together.3 The featureWeightedGraphadds the classWeightand
extends the classesGraphandEdgesimultaneously. For example,
the classEdgeplays two roles, one in theBasicGraphand one in
theWeightedGraph.

A significant body of work has observed that collaborations of
classes are predominantly of a heterogeneous structure [4,5,20,29,
32–35]. That is, the roles and classes added to a programs differ in
their functionality, as in our graph example. Hence, a collaboration
is a heterogeneous crosscut and a heterogeneous crosscut can be
understood as collaboration applied to a program. Therefore, it
is straightforward to employ from techniques for encapsulating

3 The diagram follows the UML notation with some extensions: white boxes
represent classesor roles; gray boxes denote collaborations; filled arrows
mean refinement, i.e., to apply a role to a class.

refines class Edge

Graph

Basic
Graph

class Node

void print();

Weighted

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

class Graph

refines class Graph

Node a, b;

void print();

class Weight

void print();

class Edge

Figure 1. Collaboration-based design of a graph implementation.

and composing object-oriented collaborations when implementing
heterogeneous crosscuts [6,25,29,32,35].

3.2 Homogeneous and Advanced Dynamic Crosscuts

Crosscuts that do not fall in the above category are either homoge-
neous crosscuts and/or advanced dynamic crosscuts.

Aspects perform well in extending a set of join points using one
coherent advice or one localized inter-type declaration, thus, mod-
ularizing a homogeneous crosscut. Thereby, programmers avoid
code replication. Figure 2 depicts an aspect that implements the
featureColor, which is homogeneous. It defines an interface for
colored entities (Line 2) and declares via inter-type declaration that
NodeandEdgeimplement that interface (Line 3). Furthermore, it
introduces via inter-type declarations a fieldcolor (Line 4) and two
accessor methods toNodeandEdge(Lines 5-7,8-10).4 Finally, it
advises the execution of the methodprint of all colored entities to
change the display the color (Lines 11-13).

1 a s p e c t Color {
2 interface Colored { Color getColor (); }
3 d e c l a r e p a r e n t s: (Node || Edge) imp lemen ts Colored;
4 Color (Node || Edge).color;
5 v o i d (Node || Edge). setColor(Color c) {
6 color = c;
7 }
8 p u b l i c Color (Node || Edge). getColor () {
9 r e t u r n color;

10 }
11 b e f o r e(Colored c) : t h i s (c) && e x e c u t i o n(* print ()){
12 Color.changeDisplayColor(c.getColor ());
13 }
14 }

Figure 2. The featureColor implemented as aspect.

Advice is well-suited for implementing advanced dynamic
crosscuts [29]. When advising the printing mechanism of our graph
implementation we can take advantage of the sophisticated mech-
anisms of AOP. Background is that theprint methods of the par-

4 Our notation of inter-type declarations differs from AspectJ. Declaration
int (A || B).i means that fieldi is introduced to both classes,A andB.

21

ticipants of the graph implementation call each other (especially,
composite nodes that callprint of their inner nodes). To make sure
that we do not advise all calls toprint, but only the top-level calls,
i.e., calls that do not occur in the dynamic control flow of other exe-
cutions ofprint, we can use thecflowbelowpointcut as conditional
(Fig. 3). This is an example of an advanced advice.

1 a s p e c t PrintHeader {
2 b e f o r e() : e x e c u t i o n(v o i d print ()) &&
3 cflowbelow(e x e c u t i o n(v o i d print ())) { header (); }
4 v o i d header() { System.out.print("header: "); }
5 }

Figure 3. Advisingprint advanced advice.

Though language abstractions such ascflow and cflowbelow
can be implemented (emulated) using traditional OOP, usually that
results in code replication, tangling, and scattering.

3.3 Discussion

Table 2 depicts the guidelines for using AOP and OOP mech-
anisms based on their individual strengths. First, aspects should
be used for modularizing homogeneous crosscuts to avoid code
replication. Second, aspects avoid code scattering and tangling in
case of using advanced advice for implementing advanced dynamic
crosscuts. For heterogeneous crosscuts which extend only methods
and classes, OOP techniques for collaboration-based designs suf-
fice. It has been observed that although both approaches are able
to implement the crosscuts of the other, they cannot do so ele-
gantly [2,3,29].

heterogeneous homogeneous
static set of roles that

add elements
inter-type declaration

basic
dynamic

set of roles that
override methods

basic advice

advanced
dynamic

set of advanced advice advanced advice

Table 2. What implementation technique for what kind of cross-
cutting concern?

4. Metrics
We propose a set of metrics to provide insight into the current prac-
tice of AOP. They enable to decide in which category a given as-
pect falls. The metrics are quantified by thenumber of occurrences
(NOO)of a certain software artifact and/or thelines of code (LOC)
associated with it.

Classes, interfaces, and aspects (CIA). The CIA metric deter-
mines the NOO of classes, interfaces, and aspects, as well as the
LOC associated with each. It tells us if aspects (as opposed to
classes and interfaces) are a small or a large fraction of the used
modularization mechanisms in a software project, and if these im-
plement a significant or only a small part of the code base of that
project.

Homogeneous crosscuts (HC). The HC metric measures the ex-
tent in which homogeneous and heterogeneous crosscuts are used.
We calculate the fraction of advice and inter-type declarations that
implement homogeneous crosscuts (NOO) and the fraction of the
code base that is associated with them (LOC). The HC metric tells
us if the aspects of a program exploit the pattern-matching mecha-
nisms of AOP or merely emulate OOP mechanisms.

Advanced dynamic crosscuts (ADC). This metric determines the
NOO of advanced advice and the overall LOC associated with
them.5 It tells us to what extent aspects make use of the advanced
capabilities of AOP for implementing dynamic crosscuts.

Code replication reduction (CRR). The CRR metric determines
the reduction in LOC when using homogeneous advice and inter-
type declarations, as opposed to the LOC resulting from using
traditional OOP mechanisms. The code reduction for one piece of
homogeneous advice / inter-type declaration is roughly the number
of affected join points, multiplied by the LOC associated with them.

5. Collecting Statistics of AspectJ Programs
CIA metric. Collecting data for the CIA metric we traverse all
source files of a given project and calculate the number and LOC
of aspects, classes, and interfaces – excluding blank lines and
comments.

HC metric. Homogeneous crosscuts are indicated by inter-type
declarations and advice that contain wildcards (* and+). If we dis-
cover logical operators in pointcuts that combine two pointcuts of
the same type (e.g.,execution(...)|| execution(...)) then the asso-
ciated advice are also counted as homogeneous. Inter-type decla-
rations that contain logical operators are considered homogeneous
as well as advice that do not qualify a target method or field com-
pletely, e.g., by omitting the type or the arguments.

ADC metric. We define all advice as advanced advice except
those associated tocall andexecutionand that are not combined
with any other pointcuts, except withtargetandargs(executioncan
also be combined withthis). This is an overestimation that might
consider some pieces of advice that are not advanced as advanced
advice, but not vice versa. The remaining advice are considered
basic advice.6

CRR metric. For determining the code reduction due to eliminat-
ing replicated code, we determine the number of join points per
homogeneous advice and inter-type declaration. We multiply the
number of join points minus one for each advice or inter-type dec-
laration, with the LOC associated. Finally, we sum up the saved
LOC of all advice and inter-type declarations to get the overall code
reduction.

6. A Case Study
As case study we analyzedFACET (6364 LOC), an AspectJ-based
CORBA event channel, implemented at the Washington Univer-
sity [18]. We used our toolAJStats7 for collecting the NOO and
LOC of all artifacts of FACET. We determined the properties of
advice / inter-type declarations and the caused code reduction by
hand.

Table 3 depicts our collected statistics. ColumnNOO lists the
number of artifacts we found of a specific type (e.g., homogeneous
advice) and its fraction with regard to the overall number of this
type (e.g., all pieces of advice). ColumnLOC depicts the LOC
associated with a certain kind of artifact and its fraction of the
overall code base. In the following paragraphs we examine the data
in depth.

5 Recall that advanced advice can be either heterogeneous or homogeneous
(cf. Fig. 1).
6 Although the semantics ofcall is to advise the client side invocations of a
method, it can be implemented as method extension – preconditioned that
all calls to the target method are advised; the above definition ensures that.
7 http://wwwiti.cs.uni-magdeburg.de/itidb/ajstats/

22

metric NOO (% of artifacts) LOC (% of code base)

CIA classes/int. 181 (62%) 5143 (81%)
aspects 113 (38%) 1221 (19%)

HC heterogen. 150 (93%) 572 (9%)
homogen. 12 (7%) 24 (0.4%)

ADC basic 38 (78%) 187 (3%)
advanced 11 (22%) 110 (2%)

CRR adv. + itds — 534 (8%)

Table 3. FACET statistics.

CIA metric. FACET uses relatively many aspects, compared to
other studies [2, 8, 9, 21, 38]. This observation is remarkable since
it demonstrates that aspects are used in different software projects
to a different extent. 38% of all modularization mechanisms were
aspects, which occupied 19% of the overall code base.

HC metric. In FACET we found 4 of 49 pieces of advice and
8 of 113 inter-type declarations were homogeneous.8 That is, 7%
of all implemented crosscuts were homogeneous, which occupied
0.4% of the overall code base. In contrast, 93% of all crosscuts were
heterogeneous, occupying 9% of the code base.

ADC metric. We found 11 of 49 advice were advanced advice.
They are associated tocflowpointcuts or use thereturningclause.
That is, 22% of all advice were advanced advice, which occupied
2% of the overall code base. The remaining 38 advice were basic
advice, which occupied 3% of the overall code base.

CRR metric. 4 pieces of advice and 8 inter-type declarations are
homogeneous. We calculated the effective code reduction of 534
LOC, which is a 8% reduction compared to a version that uses OOP
mechanisms for implementing homogeneous crosscuts.

7. Related Work
AOP case studies. Colyer and Clement refactored an application
server using aspects [9]. Specifically, they factored 3 homogeneous
and 1 heterogeneous crosscuts. While the number of aspects is
marginal, the size of the case study is impressively high (millions
of LOC). Although they draw positive conclusions, they admit (but
do not explore) a strong relationship to collaborations.

Coady and Kiczales undertook a retroactive study of aspect
evolution in the code of the FreeBSD operating system (200-400
KLOC) [8]. They factored 4 concerns and evolved them in three
steps; inherent properties of concerns were not explained in detail.

Lohmann et al. examined the applicability of AOP to embed-
ded infrastructure software [21]. For their study they factored 3
concerns of a commercial embedded operating system; 2 concerns
were homogeneous and 1 heterogeneous.

Lopez-Herrejon et al. explored the ability of AOP to imple-
ment product lines [22]. They demonstrated how collaborations are
translated automatically to aspects. They did note that less than 1%
of their code base was attributable to heterogenous advice. They
did not address in what situations which implementation technique
is most appropriate nor how the generated aspects affect program
comprehensibility.

Xin et al. evaluatedJiazziand AspectJ for feature-wise decom-
position [37]. They reimplemented FACET by replacing aspects
with Jiazzi units, which encapsulate collaborations. They do not
examine the structure of the resulting collaborations. Our analysis
of FACET revealed that some crosscuts should be implemented us-
ing aspects.

8 Note that the code associated to advice and inter-type declarations (596
LOC) is only a subset of the overall aspect code (1221 LOC), which
includes also fields, methods, etc.

Metrics for AOP. Zhang and Jacobson used a set of object-
oriented metrics to quantify the program complexity reduction
when using AOP for implementing middleware [38].

Garcia et al. applied seven metrics to Hannemann’s [17] imple-
mentation of design patterns [15]. They found that most aspect-
oriented solutions improve separation of pattern related concerns,
although only 4 aspect-oriented implementations have exhibited
significant reuse.

Zhao and Xu propose several metrics for aspect cohesion based
in aspect dependency graphs [39]. Ceccato and Tonella propose
metrics for measuring the coupling degree between program ele-
ments [7].

None of the above metrics and case studies take the different
structure of crosscutting concerns into account. We argue that the
structure of a concern decides over how it is implemented best.

8. Conclusions
Comparatively many aspects were used in FACET and they sum up
to a significant part of the code base (19%) – but only 3% of the
overall code base exploits the advanced capabilities of AOP to im-
plement homogeneous and dynamic crosscuts. 97% can be imple-
mented straightforward using traditional OOP and collaborations.
Nevertheless, the used AOP mechanisms reduce the code base by
8% compared to an OOP implementation. It follows that the plain
number of aspects, advice, etc. is not meaningful to judge the suc-
cessful application of AOP to a software project.

Our classification framework, categories, and metrics form a
quantitative basis for analyzing aspect-oriented programs in this
respect, and it can assist in exploiting the benefits of AOP. In further
work we intend to analyze and compare further AOP projects to
collect more data.

Acknowledgments
Sven Apel is sponsored by the German Research Foundation
(DFG), project number SA 465/31-1 and SA 465/32-1. Marko
Rosenm̈uller is sponsored by the German Research Foundation
(DFG), project number SA 465/32-1. The presented study was
conducted when Sven Apel was visiting the group of Don Batory
at the University of Texas at Austin. Batory’s research is sponsored
by NSF’s Science of Design Project #CCF-0438786.

References
[1] C. Allan et al. Adding Trace Matching with Free Variablesto AspectJ.

In Proceedings of International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2005.

[2] S. Apel and D. Batory. When to Use Features and Aspects? A Case
Study. InProceedings of International Conference on Generative
Programming and Component Engineering, 2006.

[3] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects
and Features in Concert. InProceedings of International Conference
on Software Engineering, 2006.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering, 30(6),
2004.

[5] J. Bosch. Superimposition: A Component Adaptation Technique.
Information and Software Technology, 41(5), 1999.

[6] G. Bracha and W. Cook. Mixin-Based Inheritance. InProceedings of
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA) and European Conference
on Object-Oriented Programming, 1990.

[7] M. Ceccato and P. Tonella. Measuring the Effects of Software
Aspectization. InWorkshop on Aspect Reverse Engineering, 2004.

23

[8] Y. Coady and G. Kiczales. Back to the Future: A Retroactive Study
of Aspect Evolution in Operating System Code. InProceedings of
International Conference on Aspect-Oriented Software Development,
2003.

[9] A. Colyer and A. Clement. Large-Scale AOSD for Middleware.
In Proceedings of International Conference on Aspect-Oriented
Software Development, 2004.

[10] A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns
in Program Families. Technical report, Computing Department,
Lancaster University, 2004.

[11] R. Douence, P. Fradet, and M. Südholt. Composition, Reuse
and Interaction Analysis of Stateful Aspects. InProceedings of
International Conference on Aspect-Oriented Software Development,
2004.

[12] E. Gamma et al.Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[13] A. Garcia et al. Separation of Concerns in Multi-agent Systems: An
Empirical Study. InSoftware Engineering for Multi-Agent Systems
II, Research Issues and Practical Applications, 2003.

[14] A. Garcia et al. Modularizing Design Patterns with Aspects: a
Quantitative Study. InProceedings of International Conference on
Aspect-Oriented Software Development, 2005.

[15] A. Garcia et al. Modularizing Design Patterns with Aspects: A
Quantitative Study. InProceedings of International Conference on
Aspect-Oriented Software Development, 2005.

[16] K. Gybels and J. Brichau. Arranging Language Features for More
Robust Pattern-based Crosscuts. InProceedings of International
Conference on Aspect-Oriented Software Development, 2003.

[17] J. Hannemann and G. Kiczales. Design Pattern Implementation in
Java and AspectJ. InProceedings of International Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2002.

[18] F. Hunleth and R. Cytron. Footprint and Feature Management Using
Aspect-Oriented Programming Techniques. InProceedings of Joint
Conference on Languages, Compilers, and Tools for Embedded
Systems & Software and Compilers for Embedded Systems, 2002.

[19] K. Lieberherr. Controlling the Complexity of Software Designs. In
Proceedings of International Conference on Software Engineering,
2004.

[20] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. AspectualCollabo-
rations: Combining Modules and Aspects.The Computer Journal,
46(5), 2003.

[21] D. Lohmann et al. A Quantitative Analysis of Aspects in the
eCos Kernel. InProceedings of the ACM SIGOPS EuroSys 2006
Conference, 2006.

[22] R. Lopez-Herrejon and D. Batory. From Crosscutting Concerns to
Product Lines: A Function Composition Approach. Technical Report
TR-06-24, University of Texas at Austin, 2006.

[23] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for
Features in Advanced Modularization Technologies. InProceedings
of European Conference on Object-Oriented Programming, 2005.

[24] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined
Approach to Aspect Composition. InProceedings of International
Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, 2006.

[25] O. L. Madsen and B. Moller-Pedersen. Virtual Classes: APowerful
Mechanism in Object-Oriented Programming. InProceedings of
International Conference on Object-Oriented ProgrammingSystems,
Languages and Applications, 1989.

[26] H. Masuhara and K. Kawauchi. Dataflow Pointcut in Aspect-
Oriented Programming. InProceedings of the Asian Symposium
on Programming Languages and Systems, 2003.

[27] H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-
Oriented Mechanisms. InProceedings of European Conference on

Object-Oriented Programming, 2003.

[28] N. McEachen and R. T. Alexander. Distributing Classes with
Woven Concerns: An Exploration of Potential Fault Scenarios.
In Proceedings of International Conference on Aspect-Oriented
Software Development, 2005.

[29] M. Mezini and K. Ostermann. Variability Management with Feature-
Oriented Programming and Aspects. InProceedings of ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, 2004.

[30] K. Ostermann, M. Mezini, and C. Bockisch. Expressive Pointcuts for
Increased Modularity. InProceedings of European Conference on
Object-Oriented Programming, 2005.

[31] T. Reenskaug et al. OORASS: Seamless Support for the Creation
and Maintenance of Object-Oriented Systems.Journal of Object-
Oriented Programming, 5(6), 1992.

[32] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-
Based Designs.ACM Transactions on Software Engineering and
Methodology, 11(2), 2002.

[33] F. Steimann. On the Representation of Roles in Object-Oriented
and Conceptual Modeling.Data and Knowledge Engineering, 35(1),
2000.

[34] F. Steimann. Domain Models are Aspect Free. InProceedings of
International Conference on Model Driven Engineering Languages
and Systems, 2005.

[35] M. VanHilst and D. Notkin. Using Role Components in Implement
Collaboration-based Designs. InProceedings of International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 1996.

[36] M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Advice
and Dynamic Join Points in Aspect-Oriented Programming.ACM
Transactions on Programming Languages and Systems, 26(5), 2004.

[37] B. Xin et al. A Comparison of Jiazzi and AspectJ for Feature-Wise
Decomposition. Technical Report UUCS-04-001, University of Utah,
2004.

[38] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in
Middleware Systems. InProceedings of International Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2004.

[39] J. Zhao and B. Xu. Measuring Aspect Cohesion. InProceeding of
International Conference on Fundamental Approaches to Software
Engineering, 2004.

24

Towards Crosscutting Metrics for Aspect-Based Features

Roberto E. Lopez-Herrejon
Computing Laboratory

Oxford University
Oxford, England, OX1 3QD
rlopez@comlab.ox.ac.uk
Abstract
Features are increments in program functionality and are the
building blocks of product lines. Typical implementation of
features using Object Oriented techniques commonly cross-
cuts several classes and interfaces. There exist many tech-
niques that implement crosscuts, of which Aspect Oriented
ones distinguish themselves by their support of dynamic
crosscuts expressed with advice. Despite being a core tenet
of AOP, very little attention has been paid to measuring
crosscuts and how they are implemented by different lan-
guage constructs in particular advice. In this paper we
present a semi-formal definition of a set of basic metrics to
measure crosscutting in features that use aspects. Our met-
rics categorize features within a crosscutting spectrum that
ranges from heterogeneous to homogeneous according to the
relative number and types of crosscuts features implement.
This categorization helps assessing the actual use of aspects
for feature implementation and provides a quantitative
framework to gauge at and analyze the impact of aspects for
product line development. We apply our metrics to a non-
trivial product line case study implemented using AspectJ
and relate our results to the ongoing assessment of aspects
vs. collaboration-based designs for feature implementation.

1 Introduction
Features are increments in program functionality and are the
building blocks of product lines [17]. Typical implementa-
tion of features using Object Oriented techniques commonly
crosscuts several classes and interfaces, fact that has
attracted the attention of Aspect Oriented Programming
researchers as a promising area for the application and devel-
opment of AO techniques and tools. We call aspect-based
features those features that are implemented with a set of
aspects, classes, and interfaces [2][3][15][16].

Despite the increasing interest in AOP, very little attention
has been paid to measuring the crosscutting nature of pro-
grams and how it is tackled by different crosscutting mecha-
nisms of aspect languages [5].

In this paper we present a set of elementary metrics to mea-
sure crosscutting that highlights the use and contribution of
pieces of advice to the overall feature and program crosscut-
ting. We describe our metrics in a semi-formal notation using
a functional programming style over a simplified abstract

program structure. Our metrics categorize features within a
crosscutting spectrum that ranges from heterogeneous to
homogeneous according to the relative number and types of
crosscuts features implement.

This categorization helps assessing the actual use of aspects
for feature implementation and provides a quantitative
framework to gauge at and analyze the impact of aspects for
product line development. We apply our metrics to a non-
trivial product line case study implemented using AspectJ
and relate our results to the ongoing assessment of aspects
vs. collaboration-based designs for feature implementation.

2 Crosscutting Feature Metrics
In this section we provide a semi-formal description of our
crosscutting metrics. A goal of our metrics is to highlight the
use and contribution of advice (the distinctive characteristic
of aspect oriented languages) in the overall feature and pro-
gram crosscutting.

We describe our metrics using a functional programming
style (similar to Haskell [11]) over a simplified abstract pro-
gram structure. This notation provides a more concise
description than natural language and can serve as a guide-
line for the implementation of tools that automatically gather
these and related metrics.

We start by describing the abstract structure of our programs,
followed by the description of auxiliary functions used to
define our metrics which we present at the end of this sec-
tion.

2.1 Abstract Program Structure
We define a program P to be a set of features Fi, denoted
with the following list:

P=[F1,F2,...,Fn]

Where P is of type program and Fi is of type feature.
Figure 1 summarizes the abstract representation of our pro-
grams.

A feature F consists of a list of feature elements that can be
classes, interfaces or aspects. A class is a list of
class_element which can be of type method, constructor,
etc. An interface is a list of interface_element which can
be of type field or method declaration (methoddecl). An
25

aspect is a list of method (methodITD), constructor (con-
structorITD), and field (fieldITD) Inter-Type Declara-
tions (ITDs), and pieces of advice. These ITDs are denoted
as tuples of class and the corresponding element definition.
For example, the tuple for methodITD is of type (class,
method). For pieces of advice we consider the pointcut
expression pce and a body. We consider both named and
anonymous pointcuts but we focus only on the pointcut
expression formed with poincut designators and their com-
binations denoted with operators &&, | |, (), and !.

Finally we define an auxiliary type shadow with a tuple
whose elements are a program_element (elements of
classes, interfaces and aspects), a class, and a pointcut
expression pce. A shadow is a place on the source code
whose execution creates join points [25]. We represent a
shadow with a tuple of three elements. The first element of
shadow contains the program element that has the shadow
(a method for example for a execution join point), the
class that contains the program element, and pointcut
expression pce that casts the shadow in that program ele-
ment. This data structure is not created when programs are
originally parsed, instead it is the result of a weaving mech-
anism.

In this paper we use only the subset of program structures
of AspectJ shown in Figure 1. However this abstract pro-
gram representation can be extended, the same is true for
the set of auxiliary functions and metrics we describe in
next subsections.

2.2 Auxiliary Functions
The following functions provide the basic building blocks
of the definitions of our metrics. Note that the names of

some of these functions are the plural of the type of element
they return as result.

count. This function returns the number of elements in a
list. It has signature, where a is any type and n is a number:

count :: [a] -> n

union. N-ary and polymorphic disjoint set union. It
receives any number of arguments, unions them and elimi-
nates any repeated elements. We denote its signature with n
entries of type b that when unioned return a list of b ele-
ments:

union :: [b1] -> ...-> [bn] -> [b]

sum. Receives as input a list of numbers and performs the
summation on them. It has the following signature where n
is a number:

sum :: [n] -> n

foreach. Receives as input a list and a function. which
applies to all the elements in the list. It has signature (where
a and b are any type):

foreach :: [a] -> a -> b -> [b]

classes. Receives a feature and returns the list of classes in
that feature. It has signature:

classes :: feature -> [class]

interfaces. Receives a feature and returns the list of inter-
faces in that feature. It has signature:

interfaces :: feature -> [interface]

aspects. Receives a feature and returns the list of aspects in
that feature. It has signature:

aspects :: feature -> [aspect]

advices. Receives as input a list of aspects and returns the
list of pieces of advice contained in the aspects.

advices :: [aspect] -> [advice]

methodITDs. Receives as input a list of aspects and returns
the list of method ITDs or introductions contained in the
aspects.

methodITDs :: [aspect] -> [methodITD]

constructorITDs. Receives as input a list of aspects and
returns the list of constructor ITDs or introductions con-
tained in the aspects.

constructorITDs::[aspect] -> [constructorITD]

ccclasses. This function computes the crosscutting classes
from a list of method ITDs, constructor ITDs or field ITDs,
and removes any repeated elements. It has signature (where
symbol | stands for logical or):

ccclasses :: [methodITD | constructorITD |
fieldITD] -> [class]

Figure 1. Abstract Program Representation

program :: [feature]
feature :: [feature_element]
feature_element :: class | interface | aspect

class :: [class_element]
class_element :: method | constructor | ...

interface :: [interface_element]
interface_element :: methoddecl | field

aspect :: [aspect_element]
aspect_element :: methodITD | constructorITD

| fieldITD | advice

methodITD :: (class, method)
constructorITD :: (class, constructor)
fieldITD :: (class, field)
advice :: (pce,body)

pce :: pointcut_expression
shadow :: (program_element, class, pce)

program_element :: class_element |
interface_element | aspect_element
26

pointcuts. Receives as input a list of aspects and returns a
list of pointcut expression (pce).

pointcuts :: [aspect] ->[pce]

shadows. This function receives as input a list of pointcuts,
finds the join point shadows in a program and returns them
in a list:

shadows :: [pce] -> [shadow]

sclasses. This function receives a list of shadows, extracts
their classes (second elements in the shadow tuples), and
removes any duplicates.

sclasses :: [shadow] -> [class]

extensions. This function receives a list of pointcuts and
filters those whose shadows correspond exclusively execu-
tion and call join points. This kind of poinctuts are of par-
ticular interest in classifying features as we elaborate more
on Section 3 and Section 5.

extensions :: [pce] -> [pce]

NOF. Number of features.

NOF (P) = count (P)

2.3 Feature Crosscutting Metrics
In AOP literature, an homogenous concern is one that
applies a same piece of advice to several places; whereas an
heterogeneous concern adds different pieces of advice to
different places [4][16]. Our metrics broaden this concept to
features and provide a quantitative criteria to classify fea-
tures according to the number and type of crosscuts they
implement.

Let f be a feature of a program P, we define the following
metrics:

ECD. Extension Crosscutting Degree. Corresponds to the
number of classes crosscut by pieces of advice whose point-
cuts capture only execution and/or call join points on
methods and constructors.

ECD(f,P) = count(sclasses(shadows(
extensions(pointcuts(advices(aspects(f)))),

 P)))

FCD. Feature Crosscutting Degree. Corresponds to the
number of classes that are crosscut by all pieces of advice in
a feature and those crosscut by the ITDs.

FCD(f,P)= count(union(
ccclasses(methodITDs(aspects(f))),
ccclasses(constructorITDs(aspects(f))),
ccclasses(fieldITDs(aspects(f))),
sclasses(shadows(

pointcuts(advices(aspects(f))),P))
))

HD. We define the Heterogeneity Degree of a feature as a
pair of values, the Feature Crosscutting Degree FCD and the
number of pieces of advice.

HD(f,P) = [FCD(f,p),count(advices(aspects(f)))]

HQ. We define Heterogeneity Quotient as the division of
the number of pieces of advice by the feature crosscutting
degree (or the first entry by the second entry of HD):

HQ(f,P)= HD(f,P)1/HD(f,P)0 if FCD(f,P)!=0
= 1 otherwise

PHQ. Program Heterogeneity Quotient. It corresponds to
the summation of the heterogeneity quotients for all the fea-
tures in a program, divided by the Number of Features
NOF.

PHQ(P) = sum(foreach(P, λf.HQ(f,P)))/NOF(P)

3 Homogeneous vs. Heterogeneous Features
Let us now analyze how our metrics help categorizing fea-
tures according to their crosscutting. We can depict the val-
ues for the Heterogeneity Degree (HD) as a two
dimensional graph which we call Heterogeneity Graph. The
vertical dimension is the number of pieces of advice and the
horizontal dimension corresponds to feature crosscutting
degree FCD as shown in Figure 2. Also shown in this graph,
is the Perfect Heterogeneity Line (PHL) where the number
of pieces of advice is the same as the number of classes
crosscut by a feature.

By plotting the features that constitute a program into an
Heterogeneity Graph, it is possible to gauge how crosscut-
ting capabilities are used for its implementation. If most
features cluster around the perfect heterogeneity line, that is
an indication that the program makes little use of advice
crosscutting capabilities of aspects.

If the plotting of a feature falls into the area above the PHL,
then that feature employs a larger number of advice yet it is
crosscutting the same classes many times. If it falls in the
area below the line, it means that the feature is using advice
that crosscut more than one class. Falling either above or

Figure 2. Heterogeneity Graph

FCD

N
um

 A
dv

ic
es

perfect
heterogeneity
27

below the PHL does not necessarily imply a subuse or mis-
use of aspect crosscutting.

Quantitatively, if the Program Heterogeneity Quotient or
PHQ tends to value 1 the program is making little advice
crosscutting capabilities of aspects. Also, if PHQ tends to
value 0, it can have two interpretations: a) that the program
has very few pieces of advice that crosscut many classes
(think the case of tracing), or b) many class crosscuttings
are due to inter-type declarations (features cluster around
the horizontal axis).

Another measurement that helps us assess the use of aspects
in features is Extension Crosscutting Degree or ECD. If the
ECD of a feature approximates its Feature Crosscutting
Degree value (FCD) then such feature most likely could be
implemented with OO extension mechanisms. We elaborate
more on this issue in Section 5.

4 AHEAD Case Study
We applied our metrics to a non-trivial product line. The
AHEAD Tool Suite (ATS) is a set of stand alone and lan-
guage-extensible tools [1] which implement Feature Ori-
ented Programming (FOP), a technology that studies
feature modularity in program synthesis for product lines
[10]. We reimplemented five core tools of ATS using
AspectJ to which we applied our metrics [24].

The core tools are formed with 48 features, implemented
with 524 standard Java classes and interfaces amounting to
38300 LOC, and 503 aspects with 18427 LOC. This gave
us a ratio of 68% to 32% of Java and aspect code respec-
tively. The total LOC generated for the five tools analyzed
are 205K+ LOC. To the best of our knowledge, we are not
aware of any product line in AspectJ of scale comparable to
this case study. Most of the aspect code ATS uses is for add-
ing fields (58) and methods (774) using ITDs and only 16
pieces of advice where utilized. In terms of LOC, these
pieces of advice account for less than 1% of the total LOC

of the product line. These statistics are summarized in
Figure 3.

The Heterogeneity Degree values computed for the 48 fea-
tures of ATS are depicted in Figure 4. As expected given
the statistics of ATS, features cluster around the horizontal
dimension. This indicates a number of inter-type declara-
tions significantly larger than the number of pieces of
advice. Furthermore the histogram of Heterogeneity Quo-
tient (HQ) values, shown in Figure 5, clearly illustrates the
fact that most of ATS features do not utilize advice, HQ
value 0. Symmetrically, four features provide only standard
classes significantly, HQ value 1. The value of the Program
Heterogeneity Quotient (PHQ) for ATS is 0.12 which in this
case corroborates that most of ATS crosscutting is due to
ITDs.

5 Collaborations and Heterogeneous Features
A collaboration is a set of objects and a protocol that deter-
mines how the objects interact. The part of an object that
enforces the protocol in a collaboration is called a role
[28][30]. Collaboration-based designs have a long history
of research [20][27][29][30]. One of their goals is to pro-
vide a more flexible modularity unit to improve reuse in
multiple configurations or compositions for the develop-
ment of different programs. Thus collaborations are mecha-
nisms to implement features for product lines [9].

Figure 3. ATS Product Line Statistics

AHEAD Product Line Statistics

1842738300LOC
503524NumFiles

AspectJJava

1842738300LOC
503524NumFiles

AspectJJava

Num Features: 48Tools: 5 LOC: 205K+Num Features: 48Tools: 5 LOC: 205K+

AdviceITDJava
0581006Fields

167742238Methods
0040Constructors

AdviceITDJava
0581006Fields

167742238Methods
0040Constructors

LOC

68%

32%

68%

32%

Java
AspectJ
Java
AspectJ

Figure 4. ATS Heterogeneity Graph

Heterogeneity Graph

0

10

20

30

40

50

0 10 20 30 40 50

FCD

N
um

 A
dv

ic
e

HD
perfect

heterogeneity

Heterogeneity Graph

0

10

20

30

40

50

0 10 20 30 40 50

FCD

N
um

 A
dv

ic
e

HD
perfect

heterogeneity

Figure 5. Heterogeneity Quotient Histogram for ATS

HQ Histogram

0
10
20
30
40

0 0.33 0.66 1

HQ Value

Fr
eq

ue
nc

y

0.83

HQ Histogram

0
10
20
30
40

0 0.33 0.66 1

HQ Value

Fr
eq

ue
nc

y

0.83
28

Collaborations can be implemented using several Object
Oriented techniques. The kinds of program increments
these techniques support are ultimately bound by the Object
Oriented ideas they rely upon (i.e. inheritance, polymor-
phism, encapsulation, etc.). A technique that implements
collaborations is FOP and its implementation in AHEAD
[10]. FOP categorizes features into base features which
contain standard classes and interfaces, and function fea-
tures which contain class extensions and interface exten-
sions. This type of extensions or refinements add new
functionality to existing classes and interfaces respectively.
Let us illustrate these concepts with the following exam-
ples. Consider class C defined as follows (where s1, and s2
stand for any statements):

class C{
int f;
void m() { s1; s2 }

}

Consider now a refinement to this class, denoted in
AHEAD with keyword refines (where s3 and s4 stand for
any statement):

refines class C {
double g;
int n() {...}
void m() { s3; Super.m(); s4; }

}

Let us analyze the structure of this extension. The first line
adds to class C new field g while the second adds new
method n. The type of program increment on the third line
is called a method extension. It extends the functionality of
method m in the following way. Note statement Super.m().
This statement has a similar effect to super in standard Java
method overriding, namely, executing the method that is
being overridden in a super class. However in this context,
it describes the execution of a method being extended that
was defined in a previous feature in a composition chain.
Thus the composition of class C and its class extension can
be conceived as:

class C{
int f;
double g;
int n() {...}
void m() { s3; s1; s2; s4}

}

The result is that field g and method n are added to class C,
and method m is extended. Notice that an execution of m
would execute first statement s3, followed by s1 and s2
which correspond to executing the original method m, and
then by s4. Extensions to constructors are handled simi-
larly. The implementation of this composition model is
described in [1][10].

A feature in FOP is a collection of classes, interfaces, and
their extensions, thus is crosscutting in nature. Notice how-

ever that a class extension only adds and extends elements
to a single class, fact which makes FOP features heteroge-
neous as they add different program fragments to different
places.

As we have shown, describing addition of new methods,
fields and constructors, method extensions, and constructor
extensions is straightforward using collaboration-based
techniques. Using our example of class C extension we now
illustrate how these program changes are implemented
using AspectJ. This is done as follows [22][24]:

aspect C_extension {
double c.g;
int c.n() {...}
void around() : execution (int C.m())) {

s3; proceed(); s4;
}

}

Adding fields and methods is implemented as inter-type
declarations, whereas method extensions and constructor
extensions rely on advice that captures the execution join
points of the methods or constructors they extend. Notice in
this example that we use proceed to mimic the semantics of
FOP’s Super.

However, there are several factors that complicate the use
of advice for the implementation of constructor and method
extensions. In the case when a method or constructor has
arguments, their values must be captured using an args
pointcut and included on the parameters list of the advice so
that it can be passed properly in a proceed call. Also, there
are subtle issues in the semantics of execution and call
join points that limit the reusability of extensions defined in
this way [24]. Another important issue for composition of
features implemented using aspects is advice precedence
management [23]. Precedence is the mechanism that
AspectJ provides to define composition order for method
and constructor extensions [22]. Unfortunately, current
rules of AspectJ advice precedence make defining composi-
tion order (in the general case) a non-trivial and error-prone
task which is exacerbated as the number of features
increases [6][23].

These are some of the arguments that have been used to
suggest that the types of increments that resemble method
and constructor extensions as well as adding new fields,
methods, and constructors can be better handled by collabo-
ration-based techniques [5]. Furthermore, it has been pro-
posed to use aspects in combination with collaboration-
based techniques to better exploit the strengths of both
approaches [4].

However, other than for the most straightforward cases:
pieces of advice associated to control-flow pointcuts, and
those that capture only execution or call join points that
do not use type patterns; it is unclear how and when to
29

argue that collaboration-based techniques or advice are bet-
ter suited for particular instances of crosscutting implemen-
tation. We believe the metrics presented in this paper can
serve as a foundation for devising a set of quantitative
guidelines and heuristics to determine which of both
approaches are better tailored to implement the different
kinds of crosscutting requirements features may have. For
instance, a feature with pieces of advice whose Heterogene-
ity Quotient HQ tends to value 1 may be better implemented
using collaboration-based techniques.

Throughout the years, in the products lines that we have
developed using different technologies, most features
appear to be inherently heterogeneous [5][24]. We frame
this empirical finding in the form of a conjecture:

Heterogeneous Nature of Features Conjecture. Most
features in feature-based programs and product lines
are of heterogeneous nature regardless of the
technology used for their implementation.

Intuitively, the reason behind this conjecture is that large
programs are not synthesized by adding the same piece of
code in different places, but rather, adding different pieces
of code in different places.

The application of our crosscutting metrics to several
aspect-based programs and product lines, developed by us
and others, would definitively provide quantitative evi-
dence to support or refute our conjecture. Incidentally, it
would strengthen or weaken the argument that Aspects Ori-
ented languages can significantly benefit from collabora-
tion-based designs techniques, as proposed by Aspectual
Mixin Layers (AML) [4], and already supported by CaesarJ
which implements a variation of mixin layers [12]. This
line of work is part of our future research.

6 Related Work

Several metrics have been proposed for aspects. Zhao and
Xu describe metrics for aspect cohesion based on aspect
dependences graphs [32]. Zhao also utilizes a similar
framework to define measurements for aspect coupling
[31]. Their metrics are formally described, however they
lack concrete architectural interpretation and, to the best of
our knowledge, have not been applied to actual case stud-
ies.

Coupling metrics have been proposed by Ceccato and
Tonella [13]. They extend and adapt to AOP some of
Chidamber and Kemerer’s metrics for Object Oriented sys-
tems [14]. This set of metrics is defined informally and it is
applied to a tiny case study (250+ LOC), Hannemann’s
implementation of the Observer Pattern [19]. However, its
is unclear how these metrics would extrapolate to larger
case studies and their architectural significance.

Bartsch and Harrison evaluate five metrics in Ceccato and
Tonella’s work [8]. They argue that only one of the evalu-
ated metrics can be considered well-defined (lacks any
interpretation ambiguities), and none of them are com-
pletely valid from a measurement theory point of view.
Along the same lines, Mehner proposes a series of steps to
validate AOP metrics and their application [26].

An extensive study on modularizing design patterns have
been performed by Garcia et al. [18]. They use Hanne-
mann’s implementation of GoF patterns to apply seven met-
rics that extend and adapt to AOP Chidamber and
Kemerer’s metrics [14]. Their metrics are informally
defined and their results are given an interpretation in terms
of improvement of separation of concerns and reuse. How-
ever, we believe that design patterns, though important and
common programming practices, offer a limited perspective
on the actual and potential use of aspects and their architec-
tural relevance. We argue that this perspective can be
broaden by applying their metrics to larger case studies.

Coupling metrics for AOP certainly depend on the crosscut-
ting capabilities of aspects. Our metrics focus only on
crosscutting relations produced by pointcut shadows and
ITD’s, and do not consider cases such as method calls or
field references which the above coupling metrics account
for.

A different approach to analyze modularity in aspect
designs is being studied by Lopes and Bajracharya [21].
They adapt the theory of modular design proposed by Bald-
win and Clark [7] to aspect orientation and report that on
certain cases AOP techniques can add value to the design.
However it is unclear how this analysis relates to crosscut-
ting and feature heterogeneity.

7 Conclusions and Future Work
In this paper we present a semi-formal description of a set
of crosscutting metrics for aspect-based features. Our met-
rics categorize features within an spectrum from heteroge-
neous to homogeneous depending on the relative type and
number of crosscuts features implement. We applied our set
of metrics to a non-trivial case study. This study supports
our conjecture that regardless of implementation techniques
most features are inherently heterogeneous.

To provide more evidence to corroborate or refute our con-
jecture, it is necessary to analyze and measure more actual
case studies. We intend to collect as many publicly avail-
able programs of significant size (1K+ LOC) as possible for
measurement and analysis. Such endeavour would provide
more arguments in the aspects vs. collaboration-based tech-
niques assessment.

We plan to extend our set of metrics to address issues such
as cohesion and coupling for features. These extended met-
30

rics could help identify opportunities for feature refactor-
ing.

Currently our measurements are gathered manually. We are
exploring different possibilities for developing tool support.
Our goal is to develop tool infrastructure that would allow
the implementation of these and other metrics in a simple
and extensible way.

Acknowledgments. We thank Sven Apel for this comments
on earlier drafts of this paper.

8 References
[1] AHEAD Tool Suite (ATS). http://www.cs.utexas.edu/users/

schwartz
[2] V. Alves, P. Matos, L. Cole, P. Borba, and G. Ramalho.

Extracting and Evolving Game Product Lines. SPLC 2005.
[3] M. Anastasopoulus, and D. Muthig. An Evaluation of

Aspect-Oriented Programming as a Product Line Implemen-
tation Technology. ICSR 2004.

[4] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers:
Aspects and Features in Concert. ICSE 2006.

[5] S. Apel and Don Batory. When to Use Features and Aspects?
A Case Study. To appear, GPCE 2006.

[6] AspectJ, http://eclipse.org/aspectj/.
[7] C.Y. Baldwin, and K.B. Clark. Design Rules vol I. The

Power of Modularity. MIT Press, 2000.
[8] M. Bartsch and R. Harrison. An Evaluation of Coupling

Measures for AspectJ. LATE Workshop AOSD 2006.
[9] D. Batory, R. Cardone, and Y. Smaragdakis. Object-Oriented

Frameworks and Product-Lines. SPLC 2000.
[10] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling Step-

Wise Refinement. IEEE TSE, June 2004
[11] R. Bird. Introduction to Functional Programming using

Haskell. Prentice Hall, 1998.
[12] CaesarJ. http://www.caesarj.org/
[13] M. Ceccato and P. Tonella. Measuring the Effects of Software

Aspectization. First Workshop on Aspect Reverse Engineer-
ing. Delft, The Netherlands, 2004.

[14] S. Chidamber and C. Kemerer. A Metrics Suite for OOD
Design. IEEE Transactions on Software Engineering, 20(6),
1994

[15] A. Coyler and A. Clement. Large-scale AOSD for Middle-
ware. AOSD (2004).

[16] A. Coyler, A. Rashid and G. Blair. On the Separation of Con-
cerns in Program Families. TRCOMP-001-2004, Computing
Department, Lancaster University, UK (2004)

[17] K. Czarnecki, and U.W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[18] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C.
Lucena, and A. von Staa. Modularizing Design Patterns with
Aspects: A Quantitative Study. Transactions on TAOSD I.
LNCS 3880, 2006.

[19] J. Hannemann. AspectJ implementation of GoF patterns.
http://www.cs.ubc.ca/~jan/AODPs

[20] I. Holland. Specifying Reusable Components using Con-
tracts. ECOOP 1992.

[21] C. Lopes, and S.K. Bajracharya. An Analysis of Modularity
in Aspect Oriented Design. AOSD 2005.

[22] R.E. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating
Support for Features in Advanced Modularization Tech-
niques. ECOOP 2005.

[23] R.E. Lopez-Herrejon, D. Batory, and C. Lengauer. A disci-
plined approach to aspect composition. PEPM 2006.

[24] R.E. Lopez-Herrejon, and D. Batory. From Crosscutting
Concerns to Product Lines: A Function Composition
Approach. Tech. Report UT Austin CS TR-06-24. May 2006

[25] H. Masuhara and G. Kiczales. Modeling Crosscutting Aspect-
Oriented Mechanisms. ECOOP (2003)

[26] K. Mehner. On Using Metrics in the Evaluation of Aspect-
Oriented Programs and Designs. LATE Workshop associated
to AOSD 2006.

[27] T. Reenskaug, E. Anderson, A. Berre, A. Hurlen, A. Land-
manrk, O. Lehne, E. NOrdhagen, E. Ness-Ulseth, G. Ofdetal,
A. Skaar, and P. Stenslet. OORASS : Seamsless Support for
the Creation and Maintenance of Object-Oriented Systems.
Journal of Object Oriented Programming, 5(6): October 1992

[28] Y. Smaragdakis and B. Batory. Mixin Layers: An Object-Ori-
ented Implementation Technique for Refinements and Col-
laboration-Based Designs. ACM TOSEM April 2002.

[29] M. Van Hilst and D. Notkin. Using C++ Templates to Imple-
ment Role-Based Designs. JSSST International Symposium
on Object Technologies for Advanced Software. Springer-
Verlag, 1996.

[30] M. VanHilst and D. Notkin. Using Role Components to
Implement Collaboration-Based Designs. OOPSLA 1996.

[31] J. Zhao. Measuring Coupling in Aspect-Oriented Systems.
Technical Report SE-142-6. Information Processing Society
of Japan (IPSJ), June 2003.

[32] J. Zhao and B. Xu. Measuring Aspect Cohesion. FASE 2004.
31

The Role of Aspects in Modeling Product Line Variabilities
Jing (Janet) Liu

Department of Computer Science
Iowa State University

1-515-294-2735

janetlj@cs.iastate.edu

Robyn R. Lutz
Department of Computer Science

Iowa State University and
Jet Propulsion Laboratory/Caltech

1-515-294-3654

rlutz@cs.iastate.edu

Hridesh Rajan
Department of Computer Science

Iowa State University
1-515-294-6168

hridesh@cs.iastate.edu

ABSTRACT
As of today, it is unclear whether aspect-oriented modeling can
benefit the model-driven development of software product lines.
Although some preliminary studies exist at the requirements and
implementation level that investigate the interaction of
crosscutting behaviors and product-line variabilities, to the best of
our knowledge these interactions at the modeling level are not yet
investigated. The contribution of this work is a preliminary study
of the object-oriented and aspect-oriented approaches for handling
crosscutting variabilities. This study helps us identify desired
characteristics of aspect-oriented modeling techniques for product
lines. A pacemaker product line, extracted from the real industry
case, serves as a running example to illustrate our findings.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – Representation.

General Terms
Design, Standardization.

Keywords
Model-Driven Development, Software Product Lines, Variability,
Aspect, Aspect-Oriented Modeling.

1. INTRODUCTION
Model-driven development (MDD) [29], [30], [37] has played a
very important role in software product-line engineering [18],
[20], [26]. The executable models help exemplify the
requirements, detect design flaws, validate the effects of
variability management and help future maintenance [31].
However, the variability realization techniques in this area are
geared toward local variabilities [7], [18]. We define crosscutting
variabilities as those whose realizations are “fragmented across a
system” [36]. We define local variabilities as those that can be
captured in a modularized, object-oriented software artifact (e.g.,
a use case, an architectural block, a class, etc.) in the dominant
decomposition. The lack of designated mechanisms for handling
crosscutting variabilities in the product-line modeling level has
hindered the sufficient support of all types of variabilities in
MDD and created a void in validating design decisions regarding
them.
Aspect-Oriented Software Development (AOSD) [15], [21], [23]
has emerged as a promising solution for handling crosscutting
concerns [47] in all phases of the software development lifecycle.
Several approaches [5], [24], [25] have already extended AOSD
into product-line requirements and implementation. Thus, it is

natural to seek to combine Aspect-Oriented approaches with
MDD in software product line practice.
This paper conducts a preliminary study of the Object-Oriented
(OO) and Aspect-Oriented (AO) approaches in handling
crosscutting, behavioral variabilities. A pacemaker product line,
extracted from a real industry case, is used to illustrate our
findings. For example, we observe that in this product line the AO
approach handles variabilities that have a common mechanism but
differ in locations better than the OO approach, if an automatic
weaving mechanism is provided. However, the AO approach does
not necessarily support more variability than the OO approach.
The rest of this paper is organized as follows. Section 2 presents
needed background information. Section 3 introduces the running
example (a pacemaker product line) and reports experience in
modeling the crosscutting behavior using OO and AO techniques.
Section 4 discusses our observations to some open problems
found during the case study. Section 5 provides related work.
Finally, Section 6 concludes and describes future work.

2. BACKGROUND
Model Driven Development (MDD) [29], [30], [37] is a software
development approach that uses diagrams to communicate and
uses models to understand and validate the designs, as well as to
help software implementation, deployment and maintenance. It
often uses the Object-Oriented paradigm [28] to abstract the
system functionality into models.
A software product line is a set of software systems developed by
a single company that share a common set of core requirements
yet differ amongst each other according to a set of allowable
variations [12], [49]. The product-line engineering concept is
advantageous in that it exploits the potential for reusability in the
analysis and development of the core and variable requirements in
each member of the product line. Variability is the part of the
software artifact that makes a product line member differ from
others [49]. Four main approaches used to model variability in
product lines are [48]: parameterization, information hiding,
inheritance, and variation points. These approaches can be readily
integrated with component engineering [34] and MDD [18].
However, none of them is designed to address those variabilities
that crosscut multiple software artifacts. (See Sect. 3 for an
example.)
AOSD [15], [21], [23] is emerging as a way to complement the
traditional Object-Oriented Software Development by
modularizing crosscutting concerns in a new software artifact
called an aspect [23]. The places where an aspect crosscuts a
software system are called join points [23].

32

Existing work in this area has covered a broad spectrum of the
software development processes for single systems, from
requirements analysis [8], [11], [25], [32], [38], architectural
design [22], [40], modeling [1], [6], [45], coding [5], [24], and
testing [50], [51]. Because of its ability in handling crosscutting
concerns, AOSD is a natural candidate to manage crosscutting
variabilities in a product line setting.

3. CASE STUDY
In this section we first present the running example, then give
some concrete crosscutting variabilities and describe the modeling
process using the OO and the AO approaches. Some findings are
provided at the end.

3.1 Pacemaker Product Line
We use a pacemaker product line to evaluate different techniques
for modeling crosscutting variabilities. These are real-time,
embedded, and safety critical systems, that have been successfully
developed in industry using MDD and software product line
practices [26]. Studying the modeling techniques used for its
variabilities can not only help enhance the safety assurance level
of such systems, but may also yield observations that raise our
confidence in other similar systems.
A pacemaker is an embedded medical device designed to monitor
and regulate the beating of the heart when it is not beating at a
normal rate. It consists of a monitoring device embedded in the
chest area as well as a set of pacing leads (wires) from the
monitoring device into the chambers of the heart [14]. In our
simplified example, the monitoring device has three basic parts: a
sensing part (sensor) that senses heart beat, a stimulation part
(pulse generator) that generates pulses to the heart, and a
controlling part (controller) that configures different pacing and
sensing algorithms and issues commands.
In this example, we only consider a single-chambered product
line of pacemakers that does pacing and sensing in the heart's
ventricles. More advanced pacemakers can be dual-chamber, and
the pacing or sensing algorithms applied to each chamber can be
different although highly coordinated. In our case study, we
consider three different products within this product line:

BasePapcemaker: A BasePacemaker has the basic functionality
shared by all pacemakers: generating a pulse whenever no heart
beat is sensed during the sensing interval.

ModeTransitivePacemaker: A ModeTransitivePacemaker can
switch between Inhibited Mode and Triggered Mode during
runtime. In the Inhibited Mode, the pacemaker acts exactly like a
BasePacemaker. In the Triggered Mode, a pulse follows every
heartbeat. (Triggered Mode is mainly used in therapies for dual-
chamber pacemakers.)

RateResponsivePacemaker: A RateResponsivePacemaker acts
similarly to the BasePacemaker but can adjust its sensing interval
according to the patient’s current activity level: LRLrate,
denoting the Lower Rate level for a patient’s normal activities and
URL rate, denoting the Upper Rate Level when a patient is
exercising.

3.2 An Example of Crosscutting Variability
Many of the major components in a pacemaker have to log their
critical events into an EventRecorder component for use in

making therapy decisions either by the pacemaker or by the
doctors [14]. However, different pacemakers log different events
at different relative or absolute times. Event Logging is a
crosscutting variability whose functionality is shared among
different components in each pacemaker system. Requirements
and features for this product line are specified in [27] using a
Commonality and Variability Analysis (CVA), as part of the
FAST approach [49]. The excerption of CVA for the event
logging is presented in Table 1. The variabilities and
commonalities are detailed in Table 2.

Table 1. Excerpts from pacemaker product line
Commonality & Variability Analysis

Commonality 1. A pacemaker shall log average heart rate sensed
every fixed recording interval at the BaseSensor component.

Commonality 2. A pacemaker operating in Inhibited mode shall
record the pulse width of every pulse being generated at the
PulseGenerator component.

Variability 1. A pacemaker operating in Triggered mode shall
record the average number of pulses generated every fixed
recording interval at the PulseGenerator component.

Variability 2. A pacemaker with an extra sensor shall record the
percentage of the pacemaker sensing at LRLrate every fixed
recording interval at the ExtraSensor component.

Table 2. Event Logging Variability & Commonality

Product
Name

Component
Name Events to Log

Base Sensor Average heart rate sensed every
fixed recording interval Base

Pacemaker Pulse
Generator

The pulse width of every pulse
being made

Base
Sensor

Average heart rate sensed every
fixed recording interval

Mode
Transitive
Pacemaker Pulse

Generator

1) In the Triggered mode, the
average number of pulses
generated every fixed recording
interval
2) In the Inhibited mode, the
pulse width of every pulse being
generated

Base
Sensor

Average heart rate sensed every
fixed recording interval

Pulse
Generator

The pulse width of every pulse
being made

Rate
Responsive
Pacemaker

Extra
Sensor

The percentage of the
pacemaker sensing at LRLrate
every fixed recording interval

3.3 Modeling using OO techniques
The Object Management Group (OMG) [33] uses UML [10] as a
standard language for the Model-Driven Architecture [30]. In this

33

section, we are using the UML 2.0 statechart [10] to model
crosscutting variabilities. Statechart was preferred over other
modeling artifacts for two reasons. First, it is particular suitable
for detailed behavioral modeling. Second, it is close to
implementation and is crucial in generating executable models to
validate the design. The successful modeling in statecharts not
only guides the implementation, but also provides assurance for
later stages.
The following subsections describe the process of incremental
modeling [27] of the crosscutting variabilities in different
products. It is supported by the Rhapsody software modeling
environment [13] from I-Logix. We start from the product that
has the fewest variations (i.e., the BasePacemaker), and then
incrementally build the model with variations of other products in
the product line.

3.3.1 BasePacemaker
Based on the UML statechart model for the pacemaker product
lines described in our previous work [27], we add the behavior of
the EventRecorder of the BasePacemaker using the statechart
shown in Fig. 1. It is composed of three orthogonal statecharts
[10]: the BaseSensorCounting and BaseSensorRecording
subcharts for recording the average heart rate at every
recordingInterval, and the PulseGeneratorRecording subchart for
recording the pulse width every time a pulse is generated.
In order to get the pulse width value (denoting how long the pulse
lasts), which is a private attribute of the PulseGenerator Class, the
PulseGenerator has to send this value explicitly as a parameter of
the evPulseDone message (Fig. 2). The “show(params->width)”
in Fig. 1 is a function that prints the value of the parameter named
“width” (which is the parameter of “evPulseDone”).

Figure 1. BasePacemaker’s EventRecorder

Figure 2. BasePacemaker’s PulseGenerator

3.3.2 ModeTransitivePacemaker
The statechart of EventRecorder in the
ModeTransitivePacemaker, shown in Fig. 3, is created by
inheriting [18] the EventRecorder’s statechart from the
BasePacemaker. Variability 1 in Table 1 (mode transitive) is
modeled by adding a condition connector [10] (the symbol of a
circle with a “C” inside) in the sub-chart for pulse recording, and
by adding a new subchart of pulse counting. The sub-chart of

mode transitions (InhibitedMode and TriggeredMode) is created
due to the need to keep the mode attributes local (as a private
member, required by the modeling tool Rhapsody [13], as well as
a common practice in Object- Oriented software development).

Figure 3. ModeTransitivePacemaker’s EventRecorder

Figure 4. RateResponsivePacemaker’s EventRecorder

3.3.3 RateResponsivePacemaker
There are two ways to implement the statechart for the
EventRecorder in the RateResponsivePacemaker. The first is to
create an EventRecorder statechart for the whole product line (we
call it PL_EventRecorder) by introducing the Variability 2 in
Table 1 (the rate responsive variability) into the EventRecorder
statechart of ModeTransitivePacemaker via transitions with
condition connectors. This way the PL_EventRecorder becomes a
parameterized state model [18] for the whole product line. This
method is described in detail in our previous work [27]. The
second way is to inherit the statechart of EventRecorder in
BasePacemaker. As a result, each product member has its own
statechart deriving from a base statechart (the BasePacemaker’s).
These two ways are the common choices in modeling variabilities
using statecharts in a software product line [18]. For ease of
illustration of the variability we show the statechart generated
using the second method in Fig. 4.
As seen in Fig. 4, Variability 2 in Table 1 is modeled by adding a
sub-chart for ExtraSensor counting and recording separately. As
in the ModeTransitivePacemaker, a sub-chart of activity level
(URL and LRL) is created.

34

Thus, in the OO approach, the EventRecorder component acts
similarly to an Observer Pattern [16]: it monitors all the triggering
events and then dispatches them to their separate handlers
(orthogonal sub-charts).

3.4 Modeling using AO techniques
Due to the lack of standard AO modeling techniques and support
for weaving mechanism, we use UML sequence diagrams
together with textual descriptions to demonstrate the behavior of
an aspect. Sequence diagrams [10] capture the dynamic view of a
system. They show a set of roles and the messages that are passed
between instances of the roles. Sequence diagrams have been used
before to demonstrate the behavior of aspects [6], [11], [43]. In
this case, the sequence diagram serves as an abstraction to
demonstrate the characteristics of common AO techniques.

Figure 5. Generic Scenario of the EventRecorder Aspect

The EventRecorder component in our example system
encapsulates the crosscutting variability of event logging.
Therefore, we choose to model this component as an aspect. The
generic scenario of the EventRecorder aspect is depicted in Fig. 5.
It is composed of two parts: the triggering event, which is the

location where the aspect crosscuts (call it “location”), and the
action, which is the behavior of the aspect after being triggered
(call it “mechanism”). Table 3 illustrates the different locations
and mechanisms for the EventRecorder aspect in the product line
(the events and action names are the abstraction of their
counterparts in Fig. 1, 2 and 3). Table 3 shows that several
locations share similar mechanisms. Table 4 helps demonstrate
this in a clearer fashion.
We make the following observations by comparing Table 3 and
Table 4:
1) Each group of locations that share a similar mechanism can be
modeled as a “pointcut” [23], while the similar mechanism can be
modeled as an “advice” [23]. By “similar” we mean that they
behave the same except for the context to which they apply. For
example, the counter incrementing behavior in different
components is similar, except for the variable it increments.
In some cases, mechanisms differ significantly at different
locations. For example, the mechanism for the location
“RateResponsivePacemaker -> ExtraSensor -> recording interval
timeout” differs from the second mechanism in Table 4 because
the first takes the sum and the second takes the average. These
mechanisms cannot be modeled as a single advice.
2) Here, where there is only a single crosscutting variability, the
mechanisms do not overlap. This is because, even if two
mechanisms apply to the same locations, they happen under
different conditions. Thus, it does not make much difference
whether we model each of the matching pointcut and advice pairs
(as described above) in a separate aspect or model all of them in
one aspect.

Table 3. Aspect Specification

Aspect Product
Name Component Name

Join Point Advice

Sensed counter increases by one
Base Sensor

recording interval timeout record the average counter value during the recording interval, then
reset the counter

Base
Pacemaker

Pulse Generator Pulse record the pulse width

Base Sensor Same as in BasePacemaker

Pulse
1) if in Inhibited mode, same as BasePacemaker
2) if in Triggered mode, counter increases by one Mode

Transitive
Pacemaker Pulse Generator

recording interval timeout
1) if in Inhibited mode, do nothing
2) if in Triggered mode, record the average counter value during the
recording interval, then reset the counter

Base Sensor Same as in BasePacemaker

Pulse Generator Same as in BasePacemaker

1 msec timeout
1) if in LRLrate, LRLrate counter increases by one
2) if in URLrate, URLrate counter increases by one

Rate
Responsive
Pacemaker Extra Sensor

recording interval timeout Record the ratio of the LRLrate counter value to the sum of the
LRLrate and URLrate counter values, then reset the counters

35

Table 4. Mechanism Classification

Mechanism Location Condition

Counter residing in the
same component as the
location increases by one

1) BasePacemaker->BaseSensor->sensed event
2) ModeTransitivePacemaker->BaseSensor->sensed event
3) ModeTransitivePacemaker->PulseGenerator->sensed event
4) RateResponsivePacemaker -> BaseSensor ->sensed event
5) RateResponsivePacemaker -> ExtraSensor -> 1 msec timeout

3) if in Inhibited Mode
5) if in LRLrate, increase
LRLrate counter; if in
URLrate, increase
URLrate counter

Record the average counter
value during the recording
interval, then reset the
counter

1) BasePacemaker -> BaseSensor -> recording interval timeout
2) ModeTransitivePacemaker -> PulseGenerator -> recording interval timeout
3) RateResponsivePacemaker ->BaseSensor -> recording interval timeout

2) if in Triggered Mode

Record the pulse width
1) BasePacemaker -> PulseGenerator -> pulse event
2) ModeTransitivePacemaker -> PulseGenerator -> pulse event
3) ModeTransitivePacemaker -> PulseGenerator -> pulse event

2) if in Triggered Mode

However, if we introduce another crosscutting variability into the
product line, it is likely that the mechanisms from the two
variabilities will overlap in locations. In that case, conflict
resolving techniques are needed. These could be similar to the
feature interaction handling mechanisms [35] for local
variabilities, but we have to bear in mind that such conflict
resolution will apply invasively in the AO setting (rather than
locally as in the OO setting). In fact, the tool support for aspect
interaction at the programming level [3], [39] may be migrated to
the modeling level.
3) The locations to which a crosscutting variability applies to can
be fragmented within and across a product. For example,
locations that share a similar mechanism can reside in different
components of the same product, or in components from different
products. This means that the scope of the join point (as well as
the weaving) needs to be extended to the product-line level, rather
than the product level as in traditional AOSD.
4) There are two ways that a condition can affect the mechanism.
In the first way (seen in the first condition in the first mechanism
group in Table 4) the condition serves as a switch to decide
whether an event is able to trigger the action. In the second way
(seen in the second condition in the same group) the condition
uses context information passed to tell where the action should
apply. Consequently, these two types of conditions need to be
modeled differently. This remains an open problem for our future
work.

3.5 Findings
Some similarities and differences between the OO approach and
AO approach are observed as follows:
1. Both approaches handle the crosscutting variability in a
centralized manner. The OO approach invokes the methods
explicitly while the AO approach handles it implicitly [17], [44].
2. The OO approach requires each component being monitored to
send its local variable values explicitly via messages, since the
local variables are private in the OO paradigm. However, in the
AO approach, the aspects are allowed reflective access to certain
variables at the join points, such as the executing object, the target

of a call, arguments of a method, etc. Explicitly sending these
variables is not necessary in the AO approach.
3. In the OO approach, the location where the handling
mechanism takes place (after the triggering event) must involve a
component other than the component that sends the triggering
event. However in the AO approach, there is no such restriction.
This is due to the similar reason as above.
4. In the AO approach, if we treat different locations that share a
similar mechanism as join points for the same aspect, modeling
variabilities that have a common mechanism but differ in
locations will be easier than in the OO approach, assuming
automatic weaving mechanisms are provided. This is because in
the OO approach, users have to manually adapt the variability
into the local context, while in the AO approach users simply
need to add some new join points. This is true for variabilities
both within a product and across several products. In this
situation, the AO approach makes the modeling of crosscutting
features more reusable across the software product line.
5. The AO approach does not support more variability than the
OO approach, since each different handling mechanism requires a
separate advice. With many variations in the handling
mechanism, both the AO approach and the OO approach incur
significant overhead. Creating aspect templates or generic aspects
helps reuse, but does not accommodate more variabilities.

4. DISCUSSION
In this section we give some suggestions for the weaving
mechanism in the modeling level, as well as two open problems
confronted in this work. Finally, a set of criteria for future
empirical studies is proposed.

4.1 Weaving Mechanism
Without concrete weaving mechanisms, no executable models can
be generated from the AO modeling. Weaving at the modeling
level also provides a way to generate models independent of
implementation languages. Based on our experiences using
Rhapsody [13] as an OO modeling tool, we propose some
suggestions for the weaving mechanism at the modeling level.

36

1. The effect of the aspect should be able to be demonstrated in
the animation of the executable model. In other words, users
should be able to model the aspect and the rest of the system
separately and see the effect of weaving in the animation.
2. Users should be able to choose to implement the aspect weaver
themselves by building it in the models, or to choose an existing
weaver. For the latter, users should be able to turn it on or off.
3. Users should be able to view the marked join point, attributes
and methods (advices) introduced by aspects statically in the
system model, even though they cannot use them other than in the
aspect.

4.2 Open Problems
The first open problem is about whether to model local features
(e.g., switching to Inhibited Mode during runtime) at the product-
line level using the AO approach. As suggested in Section 3.5, if
we extend the scope of weaving and join point to the product line
level, e.g., advising several product members using one aspect,
we can achieve greater reuse of the crosscutting features. That
raises the question of whether we can and should do the same for
those local features. Some preliminary case studies can be found
at [2] and [4].
The second problem is how much obliviousness a modeler should
have about the weaving process. Unlike the coding stage, the
modeling stage calls for exemplification of the design intent.
Therefore we expect more knowledge about the weaving process
to be exposed in the modeling level than in the AOP level.
However, how much is enough remains a problem for future
research.

4.3 Evaluation Criteria
In this section we propose the criteria for comparing the
capability of different modeling techniques for crosscutting
variabilities. The metrics introduced here, while preliminary and
partial, identify some criteria that may be useful in subsequent,
more empirical evaluations.

Feasibility
This criterion evaluates if it is easy or possible to model all types
of crosscutting variabilities. In order to do this, a taxonomy of
crosscutting variabilities needs to be provided. Anastasopoulos
and Muthig [3] have done an initial step by classifying variations
into two types: “positive” and “negative”, denoting the effect of
variability on the system (i.e., adding vs. removing
functionalities).

Degrees of variability
This denotes how flexible the modeling technique is for modeling
the variability. Note that the OO and AO approaches can have
different notions of “flexibility”. For instance, in the OO
approach, binding time [46] is used to describe how late
developers are able to change a variability (or select a variant at a
specific variation point). However, this notion is not very
meaningful for the AO approach as most aspects are bound at
compilation time and the rest at load time or run time.
Therefore, we propose to measure the degree of crosscutting
variability by evaluating the limitation of mechanisms and
diversity of locations where variability can occur. (Point 4 of
Section 3.5 provided such an example.)

Evolution
This is an important issue in software product lines. Specifically,
we need to evaluate if an approach supports changing
requirements and the addition of new product-line members. This
can be done by checking the likely impact introduced by a
change.

Executable model
As stated at the beginning of this paper, executable models are
very important in clarifying the design intent and validating
design logics. This is an indispensable part in MDD. We examine
this criterion by checking if the modeling language provides
sufficient support for describing behaviors and if code generation
(for both the system and environment) is available.

Tool support
Tool support is crucial in making an approach scalable, especially
in a product line setting. With sufficient tool support, the code
generation should be automatically done. Moreover, users should
be able to run the executable model and check it against the
requirements scenarios [13].

Cost
Just as in product-line engineering, where too few products do not
provide a gain via reuse [49], a new modeling technique for the
crosscutting features does not necessarily always save time and
money. We need to identify the situations when it will receive the
biggest gain and maybe provide a pay-off model for such a
technique.

5. RELATED WORK
Existing work that introduced the concept of aspects into software
product-line development include [3], [5], [9], [19], [24], [25],
and [39].
The work by Apel et. al. [5] combines the force of Feature
Oriented Programming (FOP) and Aspect Oriented Programming
(AOP) in the code level. Loughran and Rashid [24] propose
‘framed aspects’ as a technique combining AOP, frame
technology and Feature-Oriented Domain Analysis (FODA). Both
[5] and [24] compare the aspect-oriented approach with the
approach they propose to combine with (mixin layers and frame
respectively) and conclude that they complement each other. This
also backs up our findings that OO and AO variability modeling
techniques complement each other, such as AOP and OOP.

Anastasopoulos and Muthig [3], as well as Saleh and Gomaa [39],
present evaluations of the use of AOP in the implementation of
software product lines. Concrete tool support is provided for
automatic weaving [39] or configuration [3].

Griss [19] proposes a feature-driven analysis to find aspects as
crosscutting features at the high level and map them into code
fragments in the components in the low level. The feature analysis
provides the traceability document through the development
cycle.

Loughran et. al. [25] introduce NAPLES, a tool that uses natural
language processing and aspect-oriented techniques to derive
feature-oriented models (including features, aspects, variabilities
and commonalities in a given domain) from requirements.

37

Batory et. al. [9] models the components of distributed
simulations as aspects, via the help of DSLs and GenVoca PLAs.

A significant amount of work has been devoted to aspect-oriented
modeling for single systems, e.g., [6], [21], [41], [42], [43], and
[51].

However, none of the above work addresses the role of aspects in
the model-driven development of product lines in contrast to the
traditional OO approach, as we do here.

6. CONCLUSION
The work described here provides a preliminary comparison of
the OO and AO approaches in modeling crosscutting variabilities,
based on experience with a product line case study. Several
observations are made that may be helpful for future research.
Possible future work includes tools for resolving aspect conflicts,
more empirical evaluations of the two approaches, a rigid
weaving mechanism, and its implementation in an existing MDD
tool.

7. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under grants 0204139, 0205588 and 0541163.

8. REFERENCES
[1] Aldawud, O., Bader, A., and Elrad T. Weaving with

Statecharts. in the Aspect-Oriented Modeling with UML
workshop at the 1st Int’l Conf. on Aspect-Oriented Software
Development (Enschede, The Netherlands, 2002).

[2] Alves, V., Matos, P. Jr., and Borba, P. An Incremental
Aspect-Oriented Product Line Method for J2ME Game
Development in the Workshop on Managing Variabilities
Consistently in Design and Code at the 19th OOPSLA,
(Vancouver, Canada, 2004).

[3] Anastasopoulos, M., and Muthig, D., An Evaluation of
Aspect-Oriented Programming as a Product Line
Implementation Technology. in Software Reuse: Methods,
Techniques and Tools: 8th Int’l Conf., ICSR 2004 (Madrid,
Spain, 2004), Springer Berlin / Heidelberg, 141-156.

[4] Apel, S., and Batory, D.,When to Use Features and Aspects?
A Case Study. In Proc. GPCE 2006 (Portland, USA, 2006).

[5] Apel, S., Leich, T., and Saake, G., Aspectual Mixin Layers:
Aspects and Features in Concert. in the 27th ICSE.
(Shanghai, China, 2006), ACM Press, 122 – 131.

[6] Araújo, J., Whittle, J., and Kim, D. Modeling and
Composing Scenario-based Requirements with Aspects. in
the 12th IEEE International Requirements Engineering
Conference (Kyoto, Japan, 2004), IEEE Press, 58-67.

[7] Atkinson, C. et. al. Component-based Product Line
Engineering with UML. Addison-Wesley Professional, 2001.

[8] Baniassad, E. et. al. Discovering Early Aspects. IEEE
Software, 23, 1 (Jan. 2006), 61-70.

[9] Batory, D., et. al.. Achieving extensibility through product-
lines and domain-specific languages: a case study. ACM
Transactions on Software Engineering and Methodology, 11,
2 (April 2002), 191-214.

[10] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified
Modeling Language User Guide. Addison-Wesley
Professional, 2005.

[11] Clarke, S., and Baniassad, E. Aspect-oriented Analysis and
Design: The Theme Approach, Addison-Wesley, Upper
Saddle River, 2005.

[12] Clements, P., and Northrop, L. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[13] Douglass, B. P. Doing Hard Time Developing Real-Time
Systems with UML, Objects, Frameworks and Patterns.
Addison-Wesley, 1999.

[14] Ellenbogen, K.A., and Wood M.A. Cardiac Pacing and
ICDs. Blackwell Publishing, Malden, 2005.

[15] Filman R. E., Elrad, T., Clarke, S., and Aksit, M. et. Aspect-
Oriented Software Development. Addison-Wesley
Professional, 2004.

[16] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1995.

[17] Garlan, D., and Notkin, D. Formalizing Design Spaces:
Implicit Invocation Mechanisms. in VDM '91: Formal
Software Development Methods, (Noordwijkerhout, The
Netherlands, 1991), Springer-Verlag, 31-44.

[18] Gomaa, H. Designing Software Product Lines with UML:
From Uses Cases to Pattern-Based Software Architectures.
Addison-Wesley, Boston, 2005.

[19] Griss, M. L., Implementing Product-line Features By
Composing Component Aspects. in the First International
Software Product Line Conference (Denver, USA, 2000).
Kluwer 2000, 271-289.

[20] Guidant Corporation Keeps Its Rhythm With Statement
MAGNUM, I-Logix, 2002. Retrieved August 7, 2006, from
Iowa State University: http://www.ilogix.com/pdf/success/
Statemate_GuidantCorporationKeepsItsRhythm.pdf.

[21] Jacobson, I., and Ng, P. Aspect-Oriented Software
Development with Use Cases. Addison-Wesley Professional,
Upper Saddle River, 2004.

[22] Katara, M., and Katz, S. Architectural Views of Aspects. in
the 2nd Int’l Conf. on Aspect-oriented Software Development
(Boston, USA, 2003), ACM Press, 1-10.

[23] Kiczales, G. et. al., Aspect-Oriented Programming. in the
11th European Conference on Object-Oriented
Programming (Jyväskylä, Finland, 1997), Springer-Verlag,
220-242.

[24] Loughran, N., and Rashid, A., Framed Aspects: Supporting
Variability and Configurability for AOP. in the 8th
International Conference on Software Reuse (Madrid, Spain,
2004), Springer, 127-140.

[25] Loughran, N., Sampaio, A., and Rashid A., From
Requirements Documents to Feature Models for Aspect
Oriented Product Line Implementation. MoDELS 2005
International Workshop on MDD in Product Lines (Montego
Bay, Jamaica, 2005), Springer, 262-271.

[26] Liu, J., Lutz, R., and Thompson J, Mapping Concern Space
to Software Architecture: A Connector-Based Approach. in

38

ICSE 2005 Workshop on Modeling and Analysis of Concerns
in Software (St. Louis, USA, 2005), ACM SIGSOFT
Software Engineering Notes (Volume 30, Issue 4), 1 – 5.

[27] Liu, J., Dehlinger, J., and Lutz, R. Safety Analysis of
Software Product Lines using State-based Modeling. in the
16th IEEE International Symposium on Software Reliability
Engineering (Chicago, USA, 2005), IEEE Press, 21-35.

[28] McgGregor, J. and Korson, T. Understanding Object-
Oriented: A Unifying Paradigm. Communication of the
ACM, 33, 9 (Sept. 1990), 40-60.

[29] Model-Driven Software Development, May 2006.
Retrieved August 7, 2006, from Iowa State University:
http://www.mdsd.info/mdsd_cm/page.php?page=intro&id=5.

[30] Mukerji, J., and Miller, J. The MDA Guide v1.0.1. OMG
Papers on the MDA, June 2003. Retrieved August 7,
2006, from Iowa State University:
http://www.omg.org/docs/omg/03-06-01.pdf.

[31] Niemann, S. Executable Systems Design with UML 2.0.
OMG Whitepapers on UML, I-Logix, August 2004.
Retrieved August 7, 2006, from Iowa State University:
http://www.omg.org/news/whitepapers/
Executable_System_Design_UML.pdf

[32] Nuseibeh, B., Crosscutting Requirements. in the 3rd
International Conference on Aspect-oriented Software
Development (Lancaster, UK, 2004), ACM Press, 3-4.

[33] The Object Management Group (OMG), August 2006.
Retrieved August 8, 2006, from Iowa State University:
http://www.omg.org/.

[34] Pohl, K., Böckle, G., and van der Linden, F. J. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer, Berlin, 2005.

[35] Prehofer, C. An Object-Oriented Approach to Feature
Interaction. in the 4th IEEE Workshop on Feature
Interactions in Telecommunications Networks and
Distributed Systems (Montréal, Canada, 1997), IOS Press,
313-325.

[36] Rajan, H. and Sullivan, K, Classpects: Unifying Aspect- and
Object-Oriented Language Design. in the 27th International
Conference on Software Engineering1(St. Louis, USA,
2005), The ACM Digital Library, 59 – 68.

[37] Schmidt, D. C. Guest Editor's Introduction: Model-Driven
Engineering. IEEE Computer 39, 2 (Feb. 2006), 25-31.

[38] Rashid, A. et. al. Modularization and Composition of
Aspectual Requirements. in the 2nd International Conference
on Aspect-oriented Software Development (Boston, USA,
2003), ACM Press, 11-20.

[39] Saleh, M., and Gomaa, H., Separation of concerns in
software product line engineering. in ICSE 2005 Workshop

on Modeling and Analysis of Concerns in Software (St.
Louis, USA, 2005), ACM SIGSOFT Software Engineering
Notes (Volume 30, Issue 4), 1 – 5.

[40] Shomrat, M., and Yehudai, A. Obvious or not? Regulating
architectural decisions using aspect-oriented programming.
in the 1st International Conference on Aspect-oriented
Software Development (Enschede, The Netherlands, 2002),
ACM Press, 3-9.

[41] Sillito, J., Dutchyn, C., Eisenberg, A., and K. DeVolder. Use
case level pointcuts. In Proc. ECOOP 2004, (Oslo, Norway,
2004).

[42] Stein, D., Hanenberg, S., and Unland, R., Position Paper on
Aspect-Oriented Modeling: Issues on Representing
Crosscutting Features. in the 3rd International Workshop on
Aspect-Oriented Modeling (Boston, USA, 2003).

[43] Stein, D., Hanenberg, S., and Unland, R., On Representing
Join Points in the UML. in the 2nd International Workshop
on Aspect-Oriented Modeling with UML (Dresden, Germany,
2002).

[44] Sullivan, K., and Notkin, D. Reconciling Environment
Integration and Software Evolution. ACM Transaction on
Software Engineering and Methodology, 1, 3 (July 1992),
229-268.

[45] Sutton, S.M., and Rouvellou, I. Modeling of Software
Concerns in Cosmos. in the 1st International Conference on
Aspect-oriented Software Development (Enschede, The
Netherlands, 2002), ACM Press, 127-133.

[46] Svahnberg, M., van Gurp, J., and Bosch, J. A taxonomy of
variability realization techniques: Research Articles.
Software-Practice & Experience, 35, 8 (July 2005), 705-754.

[47] Tarr, P., Ossher, H., Harrison, W., and Sutton, S. M. Jr., N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. in 21st Int’l Conf. on Software Engineering (Los
Angeles, USA, 1999), ACM Press, 107-119.

[48] Webber, D., and Gomaa, H. Modeling Variability in
Software Product Lines with the Variation Point Model.
Science of Computer Programming, 53, 3 (Dec. 2004), 305-
331.

[49] Weiss, D. M., and Lai, C. T. R. Software Product Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[50] Xie, T., and Zhao, J. A Framework and Tool Supports for
Generating Test Inputs of AspectJ Programs. in the 5th
International Conference on Aspect-oriented Software
Development (Bonn, Germany, 2006), ACM Press, 190-201.

[51] Xu, D., and Xu, W. State-based Incremental Testing of
Aspect-oriented Programs. in the 5th International
Conference on Aspect-oriented Software Development
(Bonn, Germany, 2006), ACM Press, 180-189.

39

Using Graph-Rewriting for Model Weaving in the context of
Aspect-Oriented Product Line Engineering

Florian Heidenreich
Dresden University of Technology

Software Technology Group
01062 Dresden, Germany

florian.heidenreich@inf.tu-dresden.de

Henrik Lochmann
SAP Research CEC Dresden

Chemnitzer Str. 48
01187 Dresden, Germany

henrik.lochmann@sap.com

ABSTRACT
In this paper we present the concept of combining feature
models and solution models through aspect-oriented graph
rewriting systems (AO-GRS) in the context of product-line
engineering (PLE). Variable parts of software systems are
often modelled by feature models in PLE. In Model Driven
Development a feature is represented by means of model
elements in a solution model, e.g. classes, methods or at-
tributes in the context of UML models. The inclusion of
a feature in the resulting software system may change the
solution model of the product on multiple points and thereby
crosscut the solution model. We use GRS-based model weav-
ing to include specific features in a solution model based on
the presence or absence of the feature in the variant model.
We demonstrate the feasibility of our approach in a case
study, which uses story diagrams as GRS.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided
software engineering (CASE); D.2.2 [Design Tools and
Techniques]: Object-oriented design methods

General Terms
Design, Languages

Keywords
AOSD, Product Line Engineering, Feature Models, Graph
Rewriting

1. INTRODUCTION
Variable parts of software systems in PLE are often modelled
by feature models [14], which describe the variabilities of the
products in a product line. Enabling a feature often has a
direct impact on the resulting solution model of the soft-
ware product, because it may require including new model
elements in the solution model. These changes are often not
localised to one specific part of the model but are scattered

over different packages or classes and thereby crosscut the
solution model. For example, including a new attribute in
a business class may also require changes on the graphical
user interface of the application. This brings up the need for
defining the necessary changes on the model as pluggable,
traceable and well localised transformation aspects on model
level.

Models, e.g. UML class diagrams, are graphs describing
software systems. These models can be manipulated by
graph rewrite systems (GRS) which have a strong formal
background, such as criteria for termination, confluence and
unique normal forms. GRS have been recognised as a pow-
erful technique for specifying complex transformations that
can be used in various stages of the software development
process. Aßmann uses GRS for program optimisation [5],
Radermacher for application of design patterns [30] while
Christoph does transformation of software designs in the
context of the Model Driven Architecture (MDA) via GRS
[11]. Aßmann and Ludwig are using GRS for constructing
aspect weavers that work on implementation level [7]. We
use GRS to construct weavers to integrate aspectual features
chosen from the feature model to the core solution model of
a software system to build products in a product line.

We start with a simple example, which demonstrates that
graph rewrite rules can construct model weavers. After an
introduction to feature modelling and model-driven software
engineering in Section 3, we present our idea of model weav-
ing with GRS in Section 4. We explain the usefulness of our
approach with a case study on using GRS for model weav-
ing within the Fujaba tool suite [18] in Section 5. Section 6
presents some related work, before we draw our conclusion
and discuss future work in Section 7.

2. INFORMAL EXAMPLE
Before we explain our approach in detail, we describe the
idea of model weaving via GRS by means of a small example.

Assuming that a feature from a feature model requires the
inclusion of a new method in a specific class of the solution
model. For example, in a banking system, implementing a
minimum balance rule may require a method for calculat-
ing the available balance in addition to extra attributes for
representing the minimum balance. A model weaver should
be able to find the specific class, create the required method
and insert this method in the class. Figure 1 depicts a simple
weaver, consisting of a graph rewrite system with only one

40

rule. The graph rewrite rule is composed of a pattern, which
matches a class with a specific name, and a pattern for creat-
ing a new method. Hence, it represents the concrete aspec-
tual feature from the feature model. Whenever a class in the
underlying model is found, whose class name corresponds to
the name mentioned in the pattern, the method from the as-
pect pattern is linked to the methods of the matched class.
The underlying graph is shown in Figure 2. We can use the
graph rewrite rules to automatically generate model weavers
as described in detail in Section 4.

Figure 1: Graph rewrite rule for weaving a method
into a class

Figure 2: Graph visualisation of the weaving process

3. FEATURE AND SOLUTION MODELS
Product-line engineering in a software intensive context fo-
cuses on software engineering by developing and using core
assets rather than creating products from scratch [24, 25].
To develop such assets, it is necessary to define and de-
scribe commonalities and variabilities in product lines. Af-
ter the introduction of the Feature-Oriented Domain Anal-
ysis (FODA) [23] these product line variations were often
expressed by feature models.

3.1 Feature models
A feature model, as the result of domain analysis, contains
information about mandatory and optional parts of software
and provides an abstract, concise and explicit representation
of variability in a product line [14]. Feature models con-
sist of concrete features, which are of certain feature types.
The FODA feature types are: mandatory, alternative, op-
tional and or-features. While mandatory features represent
required parts of products in a product line, the remaining
feature types describe variable ones. The interactions and
dependencies between features are described in a hierarchi-
cal manner. With the help of Kang’s graphical notation
[23], feature models are shown as unranked trees, where the
connection between parent and child features illustrates the
type and relationship of child features in the same hierarchy
level.

Figure 3 shows the very simple feature model we use in
the case study described in Section 5. It consists of one
mandatory root feature communication, followed by three
or-features email, postcard and SMS. The or-feature in fea-
ture models establishes a dependency between parent and
children in a [1-n] manner. That means at least one feature
of a group of or-features must be included, while the other
features of the group remain optional. Applied to the ex-
ample in Figure 3, a certain product that follows the shown
feature model has to implement at least one communica-
tion feature (e.g. email) and is allowed to implement other
communication features as well, while this is not obligatory.

While a feature model describes the variability of a com-
plete product line, a variant model can be understood as an
instance of a feature model. Hence, variant models describe
concrete products of a product line. Applied to the example
above, a possible variant model would be one which includes
the communication features email and SMS but does not in-
clude support for regular mail communication.

3.2 Solution models
In the last few years, omnipresent problems such as het-
erogenous platforms, code duplication, and insufficient doc-
umentation led to the idea of model-driven software engi-
neering. The key idea is to develop solutions for a gen-
eral problem domain instead of concrete, context specific
scenarios that depend on underlying technologies. There-
fore, abstract solution models of software systems are cre-
ated for a certain problem domain. These models represent
technology-independent systems, which form the basis for
code generation and enable developers to understand un-
known software systems more quickly. Different approaches
have implemented this concept, the Model Driven Architec-
ture [28] and Model Driven Software Development [33] in
general along with supporting frameworks like the Eclipse
Modeling Framework [15].

Figure 3: Example feature model in FODA feature
diagram notation

In these approaches, system development starts with the
creation of a model for a problem domain1. This model is
either a meta-model or an instance of another meta-model.
Meta-models form the basis for the creation of solution mod-
els by defining syntactic and semantic modelling constraints.

1As mentioned by Czarnecki in [12] regarding problem and
solution space, the terms problem and solution domain are
relative terms. A solution domain can be treated as prob-
lem domain on another stage of the software development
process.

41

UML, as an example for a general purpose modelling lan-
guage, defines the UML meta-model, which constrains the
creation of domain specific models that may be instances of
class, sequence or collaboration diagrams [29].

3.3 Need for integration
The abstract level of model-driven software engineering suits
for an application to PLE because it allows a technology
independent and high level way of developing software sys-
tems, which is demanded by feature models that describe
variability in PLE. The realisation of products in a prod-
uct line postulates the implementation of certain features in
designed solution models and thus the combination of both
feature models and solution models.

4. MODEL WEAVING WITH GRS
The main motivation behind weaving on the model level
in the context of product-line engineering is combining the
feature model and the solution model. The feature model
thereby parameterises the core solution model, the variant-
independent model (VIM), with features and extends the
variability points of the model to form a variant-specific
model (VSM) as shown in Figure 4. We use GRS for weav-
ing aspectual features into the solution model. Before we
describe our approach in detail, some basic graph rewriting
terminology is presented in the next section.

4.1 Basic terminology
We choose relational graph rewriting as our graph rewrite
system, in which graphs represent both entities of the solu-
tion model and aspects [4]. Nodes represent these entities
and aspects and are linked by multiple relations, where a
context-free pattern is a finite connected graph. A context-
sensitive pattern is a graph of at least two disconnected sub-
graphs. For example matching a specific pattern in a graph
may require the existence of another pattern. A host graph
is the graph to be rewritten by a GRS. A redex is a subgraph
of the host graph injectively homomorphic to a pattern. A
graph rewrite rule r = (L,R) consists of a left-hand side pat-
tern L and a right-hand side graph R. L is matched against
the host graph, i.e. its redex located in the host graph. In a
rewriting step, a redex is replaced by the parts specified in
the right-hand side of the rule.

4.2 Model Weaving
As explained in [7], GRS can be used to construct aspect
weavers. Model-based AO-GRS provide a simple formalism
for weaving aspects, which rely on properties directly recog-
nisable from the structure of the aspect specifications and
the entities from the model. All nodes and edges as well
as their properties form the join-point model of AO-GRS.
These join points are addressable through the redexes of a
context-free or context-sensitive pattern in the host graph.
A graph rewrite rule can be considered as an aspect weaver.
Most often, the left-hand pattern of a graph rewrite rule
contains at least one pattern addressing join points in the
host graph and one pattern describing the aspectual part
of the graph rewrite rule, the aspect pattern. The weaving
operation attaches the aspect pattern to the redexes of the
host graph.

To combine the feature model and the solution model, we

express each feature from the feature model as an aspect of
the solution model. Since we use GRS, each aspect is repre-
sented by a graph rewrite rule. These rules are formulated
on the meta-model level of the solution model, because we
need access to the language constructs used to form the so-
lution model. The graph rewrite rules can be just textual
representations or built of graphical languages and modelled
right beside the core solution model of the product line. We
use the latter in our case study, which we describe in Section
5.

In model weaving for PLE, each aspect is woven according
to the presence or absence of a feature in the variant model.
If a feature is enabled and thereby present in the variant
model, the corresponding graph rewrite rule is applied to
the solution model. The graph rewrite rule can introduce
new model elements by creating the representations of these
new elements on meta-model level. This concept can be par-
tially compared to the inter-type declarations of the AspectJ
language [1], but furthermore it allows introducing all kinds
of elements defined by the target model’s meta-model.

We use the UML meta-model for class diagrams [29] as the
graph model for our solution, but it is possible to exchange
this by any other meta-model, e.g. the Ecore meta-model
[15]. GRS are also not limited to models describing static be-
haviour of a system like class diagrams. Graph-rewriting can
be applied to UML state, activity or sequence diagrams and
even to the diagrams of domain specific languages (DSLs),
which are based on a meta-model known by the software
architect.

Figure 4: Parameterising the variant independent
model (VIM) by features from a feature model to
build a variant specific model (VSM)

5. CASE STUDY
We use the Fujaba Tool Suite [18] for building a small case
study on using GRS for model weaving. Fujaba is a graph-
based tool which uses UML for design and realisation of
software projects. In the next section, we shortly introduce
the concepts of Fujaba and especially its technique to define
behavioural software parts with so called story diagrams.
We demonstrate the feasibility of our approach by a small
sample application.

42

5.1 The Fujaba Tool Suite
Fujaba, which means “From UML to Java and back again”,
was developed by the software engineering group of the Uni-
versity of Paderborn [2] and is supported by other German
universities. It offers forward engineering as well as reengi-
neering techniques, and code generation and was developed
with the aim of helping non-professionals to develop software
applications. The main concept, which shall help to reach
this aim, is the concept of Story-Driven Modelling (SDM)
[17]. With an extended type of UML collaboration diagrams
combined with activity diagrams, the behaviour of methods
can be defined by modelling complete method bodies, which
are used for source code generation. With story diagrams, a
UML-based graph rewrite language was supplied that should
enable mainly students in an educational context to familiar
with the paradigm of object-oriented software development
more quickly and easily.

5.2 Sample application
To demonstrate our GRS-based approach, we created a short
sample application, which implements the core concepts of
communication systems. Our example focuses on the struc-
tural changes needed on the model level. Behavioural mod-
elling can be done with appropriate models but is not cov-
ered by the example. The main idea is to realise several
communication technologies which can be used by communi-
cation partners to exchange messages with each other. Fig-
ure 3 illustrates the feature model for this example, which
contains only several communication features. As described
above, the semantics of the feature model dictates at least
one communication type but also allows the implementa-
tion of additional ones. According to the correspondent fea-
ture, the communication partners can exchange messages
via email, SMS or regular mail. The latter can be under-
stood as a kind of automatic submission of postcards in this
software intensive context. A corresponding core solution
model for a software system which covers these tasks, could
look like the one depicted in Figure 5.

Figure 5: Core solution model before weaving

Besides the enumeration CommunicationType, the core solu-
tion model accomodates basically two classes, which shall be
used for message exchange. The first one is the class Com-
municationPartner which represents a communication party
and contains information that is necessary to send messages
according to a certain communication type. The message ex-
change via email for example needs information about the
recipient’s email address, while for SMS-based communica-

tion a mobile phone number has to be supplied. The only
behavioural part in the class CommunicationPartner is cov-
ered by the sendMessage() method. This method triggers
the message submission according to a certain communica-
tion type, which could be supplied e.g. by user interaction.

Due to the fact, that the solution model in Figure 5 illus-
trates just the core model of the system, the communication
details for the class CommunicationPartner are not yet in-
cluded. The same applies to the class CommunicationHan-
dler and the enumeration CommunicationType, which are
discussed below after showing the solution model as a result
of a weaving transformation, as described above.

Figure 6: Solution model after weaving

Figure 6 depicts the solution model woven according to a cer-
tain variant model, assuming that the correspondent variant
model for the shown solution model includes the communi-
cation types email and SMS but does not include regular
mail sending. Hence, each aspect corresponding to the in-
cluded features was introduced into the solution model. Now
the necessary communication details are modelled in form
of attributes in the class CommunicationPartner (e.g. pho-
neNumber). The class CommunicationHandler now con-
tains methods to send messages via email or SMS. Addi-
tionaly, the enumeration CommunicationType contains con-
stants that refer to all communication types that are possible
and hence supported by the system.

The weaving applied to the core model was defined by cor-
respondent graph rewrite rules, according to each included
feature, as described in Section 4. In this case study we used
the visual graph rewrite language of story diagrams, which
was introduced in Section 5.1, to define the rewrite rules.
Figure 7 shows the rule for including the email aspect.

As described in Section 4, the aspect-weaving behaviour has
to be modelled on meta-model level, to be able to mani-
pulate the underlying solution model which just instantiates
the meta-model. Hence, the referenced classes in the story
diagrams of our example refer to the UML meta-model.
Based on the semantics of story diagrams, the upper part
of Figure 7 defines the selection of the UMLClass with the
name “CommunicationPartner”, which is contained in the
given solution model. This pattern defines the left-hand
side of a graph rewrite rule. The connection between the ob-
jects clazz and attribute is stereotyped with the value create,
which means, that a new attribute named “eMailAddress”
has to be created for the selected class. This short story

43

forms a rewrite rule that is sufficient to add the necessary
details for email communication to the CommunicationPart-
ner class. The story below implements the addition of the
“sendMail” method to the class CommunicationHandler.

Figure 7: Partial story diagram for the email aspect

The story diagrams described above are now used to gener-
ate the actual aspect weaver, which transforms the solution
model and thereby weaves the aspectual features. The weav-
ing code is compiled on the fly and loaded into the Fujaba
tool suite. Our solution also covers the integration of feature
models by using a UML-based feature notation. Based on
a specific variant model, the aspect weaver can be triggered
via menu item and directly updates the solution model in
the CASE tool. The whole solution is deployable as Fujaba
plugin.

6. RELATED WORK
Many researchers applied aspect-oriented techniques to non-
code artifacts, reaching from aspect-oriented requirements
engineering (AORE) [32, 31] to aspect-oriented domain mod-
elling (AODM) [20]. They invented methods to use and ex-
press AO concepts in the context of the UML [16] [9] and
thereby raised the level of abstraction in AOSD.

It is well known that variabilities in product lines can be

realised with aspect-oriented techniques. [19] analyzes dif-
ferent practices for implementing variabilities in PLE and
also considers AOP as one possible solution. [26] uses fea-
ture oriented programming with collaborations in CaesarJ
[27] while [22] introduces UML for Aspects, which supports
aspectual collaborations as described in [21].

With AHEAD a more generalised approach is presented by
Batory et al. [10] by introducing an equation-based model
for refinement of code and non-code artifacts based on fea-
ture inclusion. The work on mapping features to models of
Czarnecki et al. [13] is also related to our work, whereby
the presented superimposition of variants requires all possi-
ble features - also conflicting ones - being modelled in the
model.

In the domain of GRS, [7] describes the usage of GRS for
aspect weaving and gives an overview of different GRS-
based weaver classes. The research results presented in [8]
are pointing towards integrating GRS tools in the standard
software development tools using sublanguage projection.
This refers to our work in terms of the integration of the
GRS in the software tool as seen with Fujaba and our plu-
gin. [3] uses graph-rewriting for applying transformation
rules on domain-specific models defined in an UML-based
meta-modelling language. [11] uses OPTIMIX [6] as GRS
for the transformation of software designs in the context
of the Model Driven Architecture, especially for transfor-
mation of platform independent models (PIM) to platform
specific models (PSM). This approach has probably the clos-
est relation to our work, because it also uses GRS for model
transformation. It differs in regard to the amalgamation of
feature models in PLE with solution models through gener-
ated GRS-based aspect weavers.

7. CONCLUSION AND FUTURE WORK
In this paper we showed that GRS can be used to weave
aspectual features on model level. We explained AO-GRS
and described the semantics of joint point, pointcut and
advice to terms of graph rewriting. We pointed out, that
our approach is not limited to models based on UML class
diagrams, but can be used for UML state and sequence di-
agrams as well as for DSLs with an accessible meta-model.
The usefulness of AO-GRS on the model-level was shown by
a case study in the context of the Fujaba tool suite. We de-
veloped a plugin for Fujaba, which constructs model weavers
based on story driven graph rewrite rules and applies them
to solution models.

Our future work in this area will address the dependency
between model-level aspects and implementation-level as-
pects in model weaving. Therefore, we plan to extend our
approach to models describing dynamic behaviour of soft-
ware systems and want to demonstrate the usefulness of our
contribution in this area too.

Another possible research area is the integration of GRS in
repositories, where both feature models and solution mod-
els reside together and are accessible to the GRS. This will
reduce the effort in mapping the different model types, like
feature models and solution models to graph models under-
standable by the GRS.

44

8. ACKNOWLEDGEMENTS
This work is supported by the feasiPLe project financed by
the German Ministry of Education and Research (BMBF).
We would like to thank Falk Hartmann, Steffen Zschaler,
and the anonymous reviewers for their very valuable com-
ments on previous versions of this paper.

9. REFERENCES
[1] AspectJ. http://www.eclipse.org/aspectj/.

[2] University of Paderborn, Germany.
http://www.uni-paderborn.de/home/en/.

[3] A. Agrawal, G. Karsai, and A. Ledeczi. An end-to-end
domain-driven software development framework. In
OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 8–15, New
York, NY, USA, 2003. ACM Press.

[4] U. Aßmann. Graph rewrite systems for program
optimization. Technical Report RR-2955, INRIA
Rocquencourt, 1996.

[5] U. Aßmann. How to uniformly specify program analysis
and transformation with graph rewrite systems. In CC ’96:
Proceedings of the 6th International Conference on
Compiler Construction, pages 121–135, London, UK, 1996.
Springer.

[6] U. Aßmann, A. Christoph, and J. Lövdahl. Optimix.
http://optimix.sf.net.

[7] U. Aßmann and A. Ludwig. Aspect weaving with graph
rewriting. In GCSE ’99: Proceedings of the First
International Symposium on Generative and
Component-Based Software Engineering, pages 24–36,
London, UK, 2000. Springer.

[8] U. Aßmann and J. Lövdahl. Integrating graph rewriting
and standard software tools. In J. L. Pfaltz, M. Nagl, and
B. Böhlen, editors, AGTIVE, volume 3062 of Lecture Notes
in Computer Science, pages 134–148. Springer, 2003.

[9] E. Baniassad and S. Clarke. Theme: An approach for
aspect-oriented analysis and design. In ICSE ’04:
Proceedings of the 26th International Conference on
Software Engineering, pages 158–167, Washington, DC,
USA, 2004. IEEE Computer Society.

[10] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages
187–197, Washington, DC, USA, 2003. IEEE Computer
Society.

[11] A. Christoph. Graph rewrite systems for software design
transformations. In NODe ’02: Revised Papers from the
International Conference NetObjectDays on Objects,
Components, Architectures, Services, and Applications for
a Networked World, pages 76–86, London, UK, 2003.
Springer.

[12] K. Czarnecki. Overview of generative software
development. In J.-P. Banâtre et al., editor, UPP ’04:
Unconventional Programming Paradigms, volume 3566 of
Lecture Notes in Computer Science, pages 313–328, 2005.

[13] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. In R. Glück and M. R. Lowry, editors, GPCE,
volume 3676 of Lecture Notes in Computer Science, pages
422–437. Springer, 2005.

[14] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley
Professional, June 2000.

[15] Eclipse Foundation. Eclipse Modeling Framework Ecore
meta-model. http://www.eclipse.org/emf/.

[16] T. Elrad, O. Aldawud, and A. Bader. Aspect-oriented
modeling: Bridging the gap between implementation and
design. In GPCE ’02: The ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component
Engineering, pages 189–201, London, UK, 2002. Springer.

[17] T. Fischer, J. Niere, L. Torunski, and A. Zuendorf. Story
diagrams: A new graph rewrite language based on the
unified modeling language. In Proceedings of the 6th
International Workshop on Theory and Application of
Graph Transformation (TAGT), 1998.

[18] Fujaba Tool Suite Developer Team, University of
Paderborn. Fujaba tool suite. http://www.fujaba.de/.

[19] C. Gacek and M. Anastasopoules. Implementing product
line variabilities. In SSR ’01: Proceedings of the 2001
symposium on Software reusability, pages 109–117, New
York, NY, USA, 2001. ACM Press.

[20] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. Gokhale,
and B. Natarajan. An approach for supporting
aspect-oriented domain modeling. In GPCE ’03:
Proceedings of the second international conference on
Generative programming and component engineering, pages
151–168, New York, NY, USA, 2003. Springer.

[21] I. Groher, S. Bleicher, and C. Schwanninger. Model-driven
development for pluggable collaborations. In O. Aldawud,
T. Elrad, J. Gray, M. K. J. Kienzle, and D. Stein, editors,
7th International Workshop on Aspect-Oriented Modeling,
Oct. 2005.

[22] S. Herrmann. Composable designs with UFA. In Workshop
on Aspect-Oriented Modeling with UML at 1st Intl.
Conference on Aspect Oriented Software Development,
2002.

[23] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-oriented domain analysis (foda) feasibility study.
Technical report, Software Engineering Institute, Carnegie
Mellon University Pittsburgh, Pennsylvania 15213, 1990.

[24] K. Kang, J. Lee, and P. Donohoe. Feature-oriented product
line engineering. Software, IEEE, 19:58– 65, Jul/Aug 2002.

[25] K. Lee, K. C. Kang, and J. Lee. Concepts and guidelines of
feature modeling for product line software engineering. In
Lecture Notes in Computer Science, volume Volume 2319,
page Page 62, Januar 2002.

[26] M. Mezini and K. Ostermann. Variability management
with feature-oriented programming and aspects. In
SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM
SIGSOFT twelfth international symposium on Foundations
of software engineering, pages 127–136, New York, NY,
USA, 2004. ACM Press.

[27] M. Mezini, K. Ostermann, and et al. CaesarJ.
http://caesarj.org.

[28] Object Management Group. Model Driven Architecture.
http://www.omg.org/mda/.

[29] Object Management Group. Unified Modeling Language
2.0. http://www.uml.org/.

[30] A. Radermacher. Support for design patterns through
graph transformation tools. In AGTIVE ’99: Proceedings
of the International Workshop on Applications of Graph
Transformations with Industrial Relevance, pages 111–126,
London, UK, 2000. Springer.

[31] A. Rashid, A. Moreira, J. Araujo, P. Clements,
E. Baniassad, and B. Tekinerdogan. Early aspects portal.
http://www.early-aspects.net/.

[32] A. Rashid, A. Moreira, and B. Tekinerdogan. Special issue
on early aspects: aspect-oriented requirements engineering
and architecture design. IEE Proceedings - Software,
151(4):153–156, 2004.

[33] M. Völter and T. Stahl. Model-Driven Software
Development. John Wiley & Sons, June 2006.

45

From Conditional Compilation to Aspects:
A Case Study in Software Product Lines Migration

Vander Alves
∗

Informatics Center, UFPE
vander@acm.org

Gustavo Santos
Meantime Mobile Creations

gustavo.santos@cesar.org.br

Davi Pires
Meantime Mobile Creations

davi.pires@cesar.org.br

Alberto Costa Neto
∗

Informatics Center, UFPE
acn@cin.ufpe.br

Fernando Calheiros
Meantime Mobile Creations

fernando.calheiros@cesar.org.br

Jorge Leal
Meantime Mobile Creations

jorge.leal@cesar.org.br

Sérgio Soares
∗

Computing Systems Department, UPE
sergio@dsc.upe.br

Vilmar Nepomuceno
Meantime Mobile Creations

vsn@cesar.org.br

Paulo Borba
∗

Informatics Center, UFPE
phmb@cin.ufpe.br

ABSTRACT
Apart from adoption strategies, an existing Software Prod-
uct Line (SPL) implemented using some variability mecha-
nisms can be migrated to use another variability mechanism.
In this paper, we present some migration strategies from
one SPL implemented with conditional compilation to one
using Aspect-Oriented Programming (AOP). The strategies
present a variability pattern handled by the first mechanism
and shows how it can be translated into a pattern using AOP
constructs. We also show and discuss that some variability
patterns cannot be migrated into AOP. The discussion cen-
ters around a commercial SPL in the mobile games domain.

1. INTRODUCTION
Adoption strategies for Software Product Lines (SPL) fre-

quently involve bootstrapping existing products into a SPL
(extractive approach) and extending an existing SPL to en-
compass another product (reactive approach), or their com-
bination [8, 4]. The proactive approach, in which SPL design
and implementation is accomplished for all products in the
foreseeable horizon, may be less frequent in practice than
the former approaches due to its incurred high upfront in-
vestment and risks. Extractive and reactive approaches can
be enacted by the application of program refactorings.

Apart from adoption strategies, there may be a case when
there is an existing SPL already implemented using some
variability mechanisms and we would like to implement it
using another variability mechanism. We refer to the pro-
cess of accomplishing this as migration strategy, and reasons
for accomplishing it include moving to a mechanism that
better supports understandability, traceability, and further
evolution of the SPL in the reactive scenario.

In this paper, we present some migration strategies from
one SPL implemented with conditional compilation to one
using Aspect-Oriented Programming (AOP) [7]. The strate-
gies present a variability pattern handled by the first mecha-

∗Software Productivity Group http://www.cin.ufpe.br/spg.

nism and shows how it can be translated into a pattern using
AOP constructs. We also show and discuss that some vari-
ability patterns cannot be migrated into AOP. The discus-
sion centers around a commercial SPL in the mobile games
domain.

Section 2 presents the case study used throughout the
rest of the paper, motivating the need for migration strate-
gies. Next, Section 3 presents migration strategies. Sec-
tion 4 then addresses some mappings not possible in this
migration strategy. Related work is considered in Section 5,
and concluding remarks offered in Section 6.

2. THE CASE STUDY
The goal of the case study was to define and evaluate

migration strategies for a mobile game SPL. The SPL con-
sidered was Ronaldinho Total Control1, where player con-
trols a soccer player in order to get the timing to keep the
ball bouncing, make sequences of perfect hits to get bonuses,
and get items to make his task easier and achieve the highest
score. The game is running in a number of different devices.
Devices differ in issues such as memory, screen sizes, addi-
tional keys, processing power, which ultimately constrains
the features available in each of them. Thus, there are
a number of versions of the game running in each device,
where each version has slightly different features. The num-
ber of instances of this SPL is 16. Figure 1 illustrates the
game screen of the game running in two of these different
devices.

In Figure 1, the screen on the right is from a power end
device, whereas the screen on the left is from a resource-
constrained device. Apart from screen dimensions, we can
also notice the existence of a bird and a cloud on the right.
These are actually scenery objects that move in the back-
ground, called croma feature. This feature is optional in the
SPL and is not present in the device on the left, since due
to its constraint on bytecode size.

In terms of implementation, the variabilities involved have
different granularity: some relate to the existence or not of
particular proprietary drawing API, whereas others happen

1Access provided by our industrial partner

46

Figure 1: Game screen of the game in different de-
vices.

within classes involving addition/removal of fields and code
blocks inside methods.

The original variability mechanism of the SPL is condi-
tional compilation, which is still largely used in the indus-
try, especially in the mobile games domain. Nevertheless,
this mechanism is not an appropriate substitute for proper
programming language support. Also, such mechanism has
poor legibility and leads to lower maintainability.

The variability of this domain shows considerable tangling
and crosscutting. Therefore, it is worth investigating the
usefulness of AOP mechanism in handling them. In this
context, we propose a number of migration strategies dis-
cussed in the next section.

3. MIGRATION STRATEGIES
In this section, we present some migration strategies. They

were adopted in our case study to migrate from a mobile
game SPL implemented using conditional compilation to
AspectJ constructs. Some kinds of variations could not be
solved using the current version of AspectJ (1.5) and are
presented later in Section 4. Each strategy is first described
in the context of a concrete example; then it is generalized in
a template form, so that it can support automation, which
is reagarded as future work.

3.1 Super Class Variation
In the case study, there were variations in the super class

of some classes. These variations occur, for example, when
defining a Canvas class that is used to draw shapes and
images on the screen. For Nokia devices, it is required that
these classes extend the Nokia API class com.nokia.mid.ui-
.FullCanvas instead of MIDP [12] class javax.microedition-
.lcdui.Canvas. If the device supports MIDP 2.0 or is a
Siemens mobile device, Canvas super classes are also differ-
ent, called respectively javax.microedition2.lcdui.game.-

GameCanvas and com.siemens.mp.color game.GameCanvas.
As a consequence, dealing with this variation requires chang-
ing an import declaration and the corresponding super class
name in the extends clause. Using conditional compilation
tags, it is possible to define a different import and extends
declaration for each of those variations. The following piece
of code shows how this variability mechanism is employed
to address such variations for configurations corresponding

to Nokia and MIDP devices.

//#ifdef nokia_device
//# import com.nokia.mid.ui.FullCanvas;
//#else
//# import javax.microedition.lcdui.Canvas;
//#endif
...
//#ifdef nokia_device
//# public class MainCanvas extends FullCanvas {
//#else
//# public class MainCanvas extends Canvas {
//#endif
...

Using AspectJ, such variability can be addressed by declar-
ing an aspect for each possible super class alternative, cor-
responding to a different configuration. A declare parents

clause with the required class name is defined in the aspect.
Additionally, the corresponding import declaration is trans-
ferred to the aspect. The piece of code below shows the
result of applying this strategy to the example above.

//core
public class MainCanvas {...}

//Nokia configuration
import com.nokia.mid.ui.FullCanvas;
public aspect NokiaCanvasAspect {

declare parents: MainCanvas extends FullCanvas;
...

}

//MIDP configuration
import javax.microedition.lcdui.Canvas;
public aspect MIDPCanvasAspect {

declare parents: MainCanvas extends Canvas;
...

}

The approach presented above only works because Full-

Canvas is a subclass of Canvas, which is a precondition of
declare parents. The classes GameCanvas (MIDP 2.0 and
Siemens) also respect this rule.

This strategy can be generalized by a pair of source and
target templates specifying a transformation on code assets
of the SPL. The source template is as follows:

//#ifdef TAG
//# ts’
//#else
//# ts’’
//#endif

//#ifdef TAG
//# public class C extends C’ {
//#else
//# public class C extends C’’ {
//#endif

fs
ms

}

Where TAG is a conditional compilation tag, whose selec-
tion in the SPL configuration binds the superclass of C to
C’, including the corresponding import. When not selected
in the SPL configuration, the superclass of C is bound to
C’’, also including its corresponding import. We denote the
set of type declarations by ts’ and ts’’. Also, fs and ms

47

denote field declarations and method declarations, respec-
tively.

Code assets matching the source template are transformed
according to the following target template, where aspect A

binds the superclass of C to C’. The import required by C’

is in ts’ and is moved aspect A.

//core
public class C {

fs
ms

}

//configuration 1
ts’
public aspect A {

declare parents: C extends C’;
}

//configuration 2
ts’’
public aspect B {

declare parents: C extends C’’;
}

3.2 Interface Implementation Variation
Another kind of variation in hierarchy addressed in the

case study was to make a class implement a different inter-
face. It usually happens due to the use of different APIs
requiring the implementation of specific interfaces. This
variability issue is similar to the one presented in the previ-
ous subsection and can be handled similarly in the migration
strategy. The main difference is that it uses declare imple-

ments instead of declare parents.

3.3 If Condition Variation
A common variation in mobile devices is the number and

type of keys in the keypad. Additionally, the values that rep-
resent key pressing events differ between mobile devices fam-
ilies. This latter variability is usually implemented through
blocks of constant definitions with different values subject
to conditional compilation. Other possible implementations
include macro and configuration files.

When migrating to AspectJ, it is possible to introduce
constants via inter-type declarations with the appropriated
values. Additionally, there are variations in if conditions
responsible for checking whether an specific key has been
pressed and launch the code that treats the event. These
variations usually required to add more or-conditions to
treat the additional keys. The following code shows an ex-
ample of this situation.

public class MainCanvas extends Canvas {
protected void keyPressed(int keyCode) {...

if (keyCode == LEFT_SOFT_KEY
//#ifdef device_keys_motorola
//# || keyCode == -softKey
//#endif

) {
// handle key event

}
...

}
}

The previous example shows that an additional or-condi-
tion can activate the code inside if command for Motorola
mobile devices. With conditional compilation, using one or
more ifdef’s addresses this variability issue.

We defined a migration strategy that involved 1) the ex-
traction of if-condition to a new method defined in the
class containing the base condition; 2) the use of an around
advice in an aspect to enhance the base condition. The re-
sult is as follows:

public class MainCanvas extends Canvas {
protected void keyPressed(int keyCode) {...

if(compareEquals(keyCode, softkey)) {
// handle key event

}
}
private boolean compareEquals(int keyCode,

int softKey) {
return keyCode == softKey;

}...
}

//Motorola device configuration
public privileged aspect DeviceKeysMotorola {

boolean around(int keyCode, int softKey) :
execution(private boolean MainCanvas.compareEquals(..))
&& args(keyCode, softKey)

{
return keyCode == softKey || keyCode == -softKey;

}
...

}

The source template of the migration strategy is shown
next:

ts
public class C {
fs
ms
T m(ps) {

body
if (cond

//#ifdef TAG
//# op cond’
//#endif

) {
body’

}
body’’

}
}

where cond represents the base condition and the varia-
tion is an additional expression op cond’. The expression
op represents binary operators and cond’, any boolean ex-
pression. Also, body, body’, and body’’ denote blocks of
statements in a method. The target template of this strat-
egy is presented next:

48

ts
public class C
fs
ms
T m(ps) {

body
if (getCond(ps’)) {

body’
}
body’’

}
boolean getCond(ps’) {

return cond;
}

}

//SPL configuration handling variability issue
public aspect A {...

boolean around(ps’) :
execution(boolean C.getCond(..))
&& args(ps’)

{
return cond || cond’;

}
}

It is important to notice that using an around-advice

allows substituting or complementing the original condition
specified in the if statement, by executing or not a proceed

statement.

3.4 Feature Dependency
This section presents the strategy employed to migrate

a feature depending on others features. In the case study,
there is a feature called Arena, that allows posting game
results to a public server for ranking purposes. This feature
also presents results on the device screen. Since screen size is
variable across devices, it would be necessary to develop an
Arena feature to each appropriated screen size. Using con-
ditional compilation, this feature implementation is spread
in many classes and tangled with other functionalities.

In the following code, if the tag feature arena enabled

is enabled during SPL instantiation, some common con-
stants to paint the scroll bar are defined, but the constants
ARENA SCROLL HEIGHT and ARENA SCROLL POS Y have differ-
ent values depending on the device’s screen size.

public class MainScreen {
//#if feature_arena_enabled

/** Constants to paint the scroll bar */
//#if device_screen_128x128
//# public static final int ARENA_SCROLL_HEIGHT = 92;
//# public static final int ARENA_SCROLL_POS_Y = 17;
//#elif device_screen_128x117
//# public static final int ARENA_SCROLL_HEIGHT = 81;
//# public static final int ARENA_SCROLL_POS_Y = 16;
//#endif

//#endif
...
}

The strategy adopted to implement this feature depen-
dency was to define an aspect called ArenaAspect to handle
the core of the feature and, for each screen size variation in-
side Arena, define others aspects, ArenaScreen128x128 and
ArenaScreen128x117. Additionally, there is the following
constraint on the SPL configuration knowledge: when the
optional feature Arena is enabled, one of the aspects Arena-
ScreenWxH is automatically selected depending on the screen

size of the device. The piece of code below shows the result
of applying this strategy to the class MainScreen mentioned
previously.

public class MainScreen {... }

public aspect ArenaAspect {
/** Constants to paint the scroll bar */

}

public aspect ArenaScreen128x128 {
public static final int

MainScreen.ARENA_SCROLL_HEIGHT = 92;
public static final int

MainScreen.ARENA_SCROLL_POS_Y = 17;
}

public aspect ArenaScreen128x117
public static final int

MainScreen.ARENA_SCROLL_HEIGHT = 81;
public static final int

MainScreen.ARENA_SCROLL_POS_Y = 16;
}

The template generalizing this migration strategy is pre-
sented next. It is important to notice that TAG A represents
an optional feature and tags TAG B1 and TAG B2 represent
features depending on TAG A.

public class C {
fs
ms

...
//#if TAG_A
//# fs’
//# ms’

//#if TAG_B1
//# fs’’
//# ms’’
//#elif TAG_B2
//# fs’’’
//# ms’’’
//#endif

//#endif
}

The target template of this strategy is presented next,
where C.fs’, C.fs’’ and C.fs’’’ are the sets of fields intro-
duced via inter-type declaration into class C by the aspects
composed with C. The same pattern is used for methods,
but they are named C.ms’, C.ms’’ and C.ms’’’ instead.
Aspect A is included in the SPL instance iff feature A is se-
lected; aspects AB1 and AB2 are present in the SPL instance
iff their corresponding features are present and feature A is
also selected.

public class C {
fs
ms

}
public aspect A {

C.fs’
C.ms’

}
public aspect AB1 {

C.fs’’
C.ms’’

}
public aspect AB2 {

C.fs’’’
C.ms’’’

}

49

3.5 Discussion
Some of the strategies presented previously could benefit

from general OO techniques (e.g. using abstract methods
and subclassing, patterns and so forth), but this would imply
having a subclass for each possible device, thus leading to
complex class hierarchies. Additionally, many more classes
would be involved, thus incurring into a penalty in terms
of bytecode size, a critical issue in the mobile application
domain.

The strategies replace the scattered ifdefs by a number of
aspects, which have to be managed. This is addressed by
a configuration knowledge, relating device configurations to
configurations involving sets of aspects and core classes. The
AO advantage lies in the fact that the extracted variability
can be used elsewhere without replicating code, whereas the
ifdef variability can only be used in that context.

Although some variabilities addressed are very fine-grained,
they are crosscutting, because they can be logically grouped
together with other fine-grained variability affectting other
join points, such that this unit–the aspect–implements a fea-
ture. More generally, we could further cluster crosscutting
variability so that it can be more broad in a module-classes
and aspects–implementing a given feature. This is regarded
as future work.

Some strategies not shown involved handling variability
in the definition and usage of constants. The usage of con-
stants can certainly benefit from using final static variables,
an appraoch we have used; however, variability in the def-
inition constants themselves was addressed by a migration
strategy to use inter-type declaration. On the other hand,
mode-driven approach is not appropriate in this domain be-
cause device constraints such as memory imply constraints
on game features, thus preventing the definition of a pure
platform independent model.

4. OPEN ISSUES
In addition to the migration strategies already presented,

there are some variations for which we could not define a
migration strategy using AspectJ. In this section, we ad-
dress those by showing how AspectJ’s current implemen-
tation does not support them. In some cases, we provide
alternative solution using other approaches; in others, we
present candidate extensions to the AspectJ language.

4.1 Import Variation
In the performed case study, there are variations between

device families that use different APIs. These APIs define
types with the same name and the same interfaces to facil-
itate the porting task. However, those types are defined in
different name spaces, since each API has its own package
name. For instance, the following piece of code depicts an
example of such variation. The code originally written with
conditional compilation tags imports a Sprite type from
javax.microedition.lcdui.game package or from com.me-

antime.j2me.util.game depending on the MIDP version it
uses. The latter is used when generating a release to device
families that use MIDP 2.0, and the former otherwise.

//#ifdef game_sprite_api_midp2
//# import javax.microedition.lcdui.game.Sprite;
//#elif
//# import com.meantime.j2me.util.game.Sprite;
//#endif
...

Since the AspectJ language in its current version (1.5)
does not handle variability at the import clauses granularity,
there is not a solution to migrate this conditional compila-
tion code to AspectJ code. One alternative for such kind of
variations would be extending AspectJ with inter-type dec-
larations that insert an import clause in a type. Another
possibility would be using a transformation system [3] that
uses generative techniques allowing to control such kind of
elements in the source code.

This concrete example can be generalized to variations
that demand different imports clauses, regardless of the types’
name. The form of such problem is presented in the follow-
ing piece of code.

...
//#if TAG_1
//# import I_1;
//#elif TAG2
//# import I_2;
...
//#elif TAG_n

import I_n;
//#endif
...

where TAG 1, TAG 2, and TAG n are conditional compilation
tags that define variation code and I 1, I 2, and I n are the
imports expressions.

4.2 Superclass Constructor Call
Another example of conditional compilation code that

could not be migrated to AspectJ is a call to a superclass
constructor. In this example, two variants demands calling
the superclass constructor with the parameter false if the
device uses MIDP 2.0 or if it is a Siemens device; otherwise,
no explicit super call is needed, thus implying an implicit to
the empty superclass constructor.

...
public MainCanvas() {

//#if device_graphics_canvas_midp2 ||
//# device_graphics_canvas_siemens
//# super(false);
//#endif

...
}

...

AspectJ does not support such migration since an advice
cannot call a constructor using neither super nor this. In
fact, it is possible to write a code that prevents the super-
class constructor to execute, but not a code that executes
one constructor instead of another.

A possible solution would be extending AspectJ to allow
writing an advice that executes first in a constructor call
and can call the superclass constructor or another construc-
tor in the same class, or using the transformation system
mentioned before to add such constructor call.

This issue can be generalized to any variation that de-
mands a different superclass constructor call:

50

...
CONSTRUCTOR(PARS) {

//#if TAG
//# super(ARGS);
//#endif

...
}

or a change in the inline calls of class constructors.

...
CONSTRUCTOR(PARS) {

//#if TAG
//# this(ARGS);
//#endif

...
}

where PARS is the constructor parameter list, which can be
empty, and ARGS is the argument list, possible empty, of the
class or superclass constructor call.

4.3 Adding an else-if Block
Another migration issue occurs when a variation demands

the insertion of new else-if blocks in a conditional state-
ment. This case is common with feature variations that add
new screens to the game. The code that paints the current
screen must check the type of the current screen in a long
if-else-if structure; therefore, new screen type checks are
added as else-if’s to the end of this structure.

...
if (this.screenMode ==

Resources.MAIN_SCREEN_MODE_SPLASH) {
//code

} else if (this.screenMode ==
Resources.MAIN_SCREEN_MODE_LOGO) {

//code
}

//#ifdef feature_arena_enabled
//# else if (this.screenMode ==
//# Resources.MAIN_SCREEN_MODE_ARENA_WELCOME) {
//# //code
//# } else if (this.screenMode ==
//# Resources.MAIN_SCREEN_MODE_ARENA_LOGIN) {
//# //code
//# }
//#endif

There is no construction in AspectJ that deals with con-
ditional statements or any similar that would address this
issue. The alternative would be again using the transforma-
tion system to generate the code to be added. An AspectJ
extension that intercepts conditional statements does not
seam very useful, since the conditional statements are not
named, which leads to ambiguity when a method has more
than one conditional statement.

This issue can be generalized by the following form:

...
if(EXP_1) {

// code
} else if (EXP_2) {

// code
}
...

//#ifdef TAG
else if(EXP_n) {

// variation
}

//#endif

where EXP 1, EXP 2, and EXP n are boolean expressions.

5. RELATED WORK
We have previously explored SPL adoption strategies at

the implementation level [2] and at the feature model level [1].
In this work, instead of adoption strategies, we address mi-
gration of variability mechanism in an existing SPL.

Lopez-Herrejon et al [10] have evaluated the use of differ-
ent variability mechanisms in providing support for modu-
larization of features. Differently, our work focuses on the
migration of one technique to another by providing strate-
gies specified by means of templates. Our work could benefit
from theirs by considering migration strategies to other tar-
get variability mechanisms in cases where AspectJ does not
have appropriate constructs.

Another work [6] explores the application of refactoring
to SPL Architectures. They present metrics for diagnosing
structural problems in a SPL Architecture, and introduce a
set of architectural refactorings that can be used to resolve
those problems. These metrics could be useful for detect-
ing bad smells and guiding the application of our migration
strategies.

Monteiro et al [11], Laddad [9], and Cole et al [5] discuss
refactoring from Java to AspectJ programs. Although these
works are not directly related to SPLs, we can use several
OO to AO refactorings to extract variations of a mobile ap-
plication in a extractive approach to define a SPL. In the
particular example addressed in this paper, we worked on an
SPL that was already implemented using conditional compi-
lation and extracted the variations to use aspects, following
an approach which was neither extractive, nor proactive nor
reactive.

6. CONCLUSION AND FUTURE WORK
We have presented migration strategies from one SPL im-

plemented with conditional compilation to one using AOP.
The strategies present a variability pattern handled by the
first mechanism and shows how it can be translated into
a pattern using AOP constructs. We also show and dis-
cuss that some variability patterns cannot be migrated into
AOP. The discussion centers around a commercial SPL in
the mobile games domain.

As future work, we intend to explore other target variabil-
ity mechanisms and also to enhance AspectJ to overcome the
mappings not currently possible in our migration strategy.
We also plan provide automation support for the templates
and to asses them in different product lines. Finally, we will
explore clustering the variability into a broader context.

7. ACKNOWLEDGMENTS
We gratefully acknowledge our industrial partner, Mean-

time Mobile Creations, for granting us access to the game
in this case study. This research was partially sponsored by
CNPq (grants 481575/2004-9, 141247/2003-7, 552068/2002-
0) and MCT/FINEP/CT-INFO (grant 01/2005 0105089400).

8. REFERENCES
[1] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá

Kulesza, Paulo Borba, and Carlos Lucena. Refactoring
product lines. In Proceedings of the 5th ACM
International Conference on Generative Programming
and Component Engineering (GPCE’06). ACM Press,
Oct 2006. To appear.

51

[2] Vander Alves, Pedro Matos Jr., Leonardo Cole, Paulo
Borba, and Geber Ramalho. Extracting and evolving
mobile games product lines. In Proceedings of the 9th
International Software Product Line Conference
(SPLC’05), volume 3714 of Lecture Notes in Computer
Science, pages 70–81. Springer-Verlag, Sep 2005.

[3] Fernando Castor, Kellen Oliveira, Adeline Souza,
Gustavo Santos, and Paulo Borba. JaTS: A Java
transformation system. In XV Brazilian Symposium
on Software Engineering, pages 374–379, Rio de
Janeiro, Brazil, October 2001.

[4] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[5] Leonardo Cole and Paulo Borba. Deriving refactorings
for aspectj. In Proceedings of the 4th International
Conference on Aspect-Oriented Software Development
- AOSD’05. ACM press, March 2005.

[6] Matt Critchlow, Kevin Dodd, Jessica Chou, and
André van der Hoek. Refactoring product line
architectures. In IWR: Achievements, Challenges, and
Effects, pages 23–26, 2003.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect–Oriented
Programming. In European Conference on
Object–Oriented Programming, ECOOP’97, LNCS
1241, pages 220–242, 1997.

[8] Charles Krueger. Easing the transition to software
mass customization. In Proceedings of the 4th
Workshop on Software Product-Family Engineering,
pages 282–293, 2001.

[9] Ramnivas Laddad. Aspect oriented refactoring series.
In TheServerSide.com, December 2003.

[10] Roberto E. Lopez-Herrejon, Don S. Batory, and
William R. Cook. Evaluating support for features in
advanced modularization technologies. In ECOOP,
pages 169–194, 2005.

[11] M. P. Monteiro and J. M. Fernandes. Object-to-aspect
refactorings for feature extraction. In Proceedings of
the 3rd International Conference on Aspect-Oriented
Software Development - AOSD’04. ACM press, March
2004.

[12] Java Community Process. Mobile Information Device
Profile 2.0.
http://jcp.org/aboutJava/communityprocess/-
final/jsr118/index.html, 2004.

52

	Introduction
	Functional Hierarchies
	The FamOS Structure
	The Pure Structure
	Lessons Learned

	The Concern Hierarchy Model
	Sub-Concern Modeling
	Crosscutting Concern Modeling
	Relations Between Crosscutting Concerns and Ordinary Concerns
	Relations Among Crosscutting Concerns

	Towards a Domain Design
	Ordinary Concern Modeling
	Crosscutting Concern Modeling
	Sub-Concern Modeling
	Derivation of a Dependency Model and Tailoring

	Related Work
	Conclusions and Future Work
	REFERENCES
	Towards Crosscutting Metrics for Aspect-Based Features
	Roberto E. Lopez-Herrejon Computing Laboratory
	Oxford University
	Oxford, England, OX1 3QD rlopez@comlab.ox.ac.uk

	Abstract
	1 Introduction
	2 Crosscutting Feature Metrics
	2.1 Abstract Program Structure
	Figure 1. Abstract Program Representation

	2.2 Auxiliary Functions
	2.3 Feature Crosscutting Metrics

	3 Homogeneous vs. Heterogeneous Features
	Figure 2. Heterogeneity Graph

	4 AHEAD Case Study
	Figure 3. ATS Product Line Statistics
	Figure 4. ATS Heterogeneity Graph
	Figure 5. Heterogeneity Quotient Histogram for ATS

	5 Collaborations and Heterogeneous Features
	6 Related Work
	7 Conclusions and Future Work
	8 References
	[1] AHEAD Tool Suite (ATS). http://www.cs.utexas.edu/users/ schwartz
	[2] V. Alves, P. Matos, L. Cole, P. Borba, and G. Ramalho. Extracting and Evolving Game Product L...
	[3] M. Anastasopoulus, and D. Muthig. An Evaluation of Aspect-Oriented Programming as a Product L...
	[4] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects and Features in Concert. ICS...
	[5] S. Apel and Don Batory. When to Use Features and Aspects? A Case Study. To appear, GPCE 2006.
	[6] AspectJ, http://eclipse.org/aspectj/.
	[7] C.Y. Baldwin, and K.B. Clark. Design Rules vol I. The Power of Modularity. MIT Press, 2000.
	[8] M. Bartsch and R. Harrison. An Evaluation of Coupling Measures for AspectJ. LATE Workshop AOS...
	[9] D. Batory, R. Cardone, and Y. Smaragdakis. Object-Oriented Frameworks and Product-Lines. SPLC...
	[10] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling Step- Wise Refinement. IEEE TSE, June 2004
	[11] R. Bird. Introduction to Functional Programming using Haskell. Prentice Hall, 1998.
	[12] CaesarJ. http://www.caesarj.org/
	[13] M. Ceccato and P. Tonella. Measuring the Effects of Software Aspectization. First Workshop o...
	[14] S. Chidamber and C. Kemerer. A Metrics Suite for OOD Design. IEEE Transactions on Software E...
	[15] A. Coyler and A. Clement. Large-scale AOSD for Middleware. AOSD (2004).
	[16] A. Coyler, A. Rashid and G. Blair. On the Separation of Concerns in Program Families. TRCOMP...
	[17] K. Czarnecki, and U.W. Eisenecker. Generative Programming: Methods, Tools, and Applications....
	[18] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von Staa. Modularizing...
	[19] J. Hannemann. AspectJ implementation of GoF patterns. http://www.cs.ubc.ca/~jan/AODPs
	[20] I. Holland. Specifying Reusable Components using Contracts. ECOOP 1992.
	[21] C. Lopes, and S.K. Bajracharya. An Analysis of Modularity in Aspect Oriented Design. AOSD 2005.
	[22] R.E. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in Advanced Mod...
	[23] R.E. Lopez-Herrejon, D. Batory, and C. Lengauer. A disciplined approach to aspect compositio...
	[24] R.E. Lopez-Herrejon, and D. Batory. From Crosscutting Concerns to Product Lines: A Function ...
	[25] H. Masuhara and G. Kiczales. Modeling Crosscutting Aspect- Oriented Mechanisms. ECOOP (2003)
	[26] K. Mehner. On Using Metrics in the Evaluation of Aspect- Oriented Programs and Designs. LATE...
	[27] T. Reenskaug, E. Anderson, A. Berre, A. Hurlen, A. Landmanrk, O. Lehne, E. NOrdhagen, E. Nes...
	[28] Y. Smaragdakis and B. Batory. Mixin Layers: An Object-Oriented Implementation Technique for ...
	[29] M. Van Hilst and D. Notkin. Using C++ Templates to Implement Role-Based Designs. JSSST Inter...
	[30] M. VanHilst and D. Notkin. Using Role Components to Implement Collaboration-Based Designs. O...
	[31] J. Zhao. Measuring Coupling in Aspect-Oriented Systems. Technical Report SE-142-6. Informati...
	[32] J. Zhao and B. Xu. Measuring Aspect Cohesion. FASE 2004.

	Introduction
	The Case Study
	Migration Strategies
	Super Class Variation
	Interface Implementation Variation
	If Condition Variation
	Feature Dependency
	Discussion

	Open Issues
	Import Variation
	Superclass Constructor Call
	Adding an else-if Block

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

