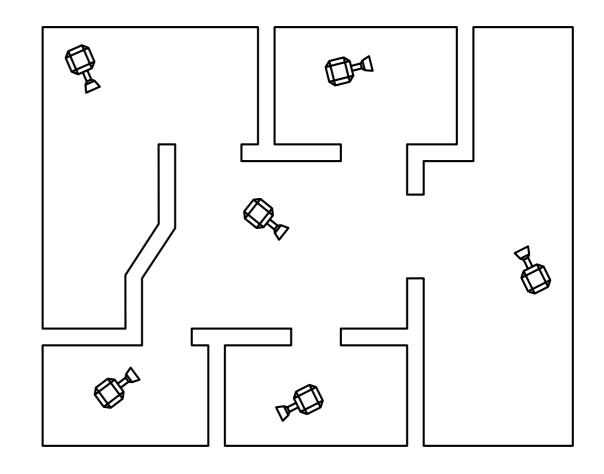
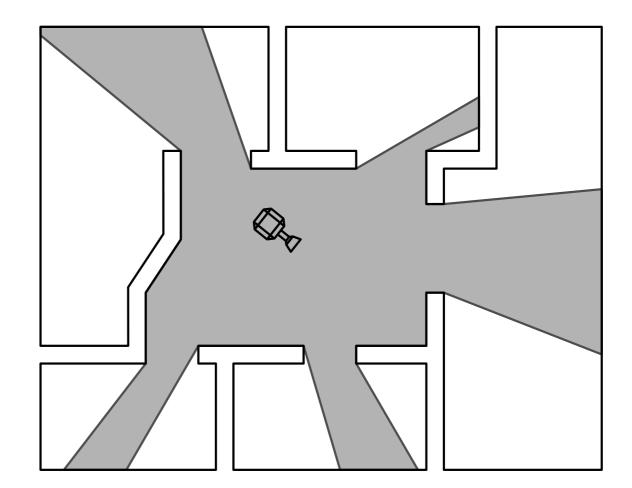
Art Gallery Problem comp-420



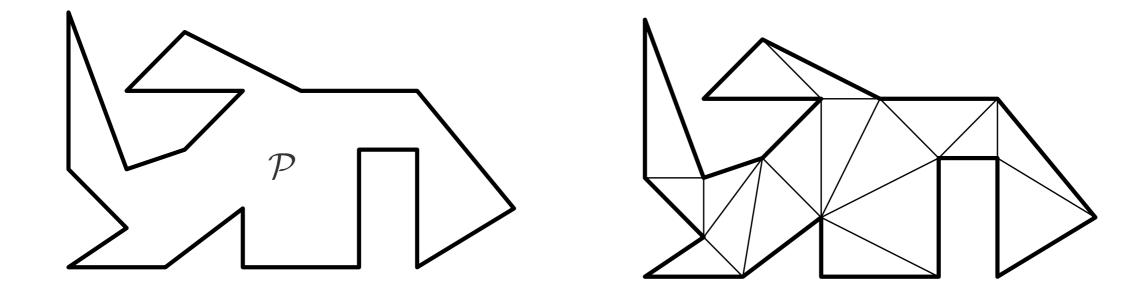
¿Cuántas cámaras se necesitan para vigilar una galería de arte y donde deben ser colocadas?

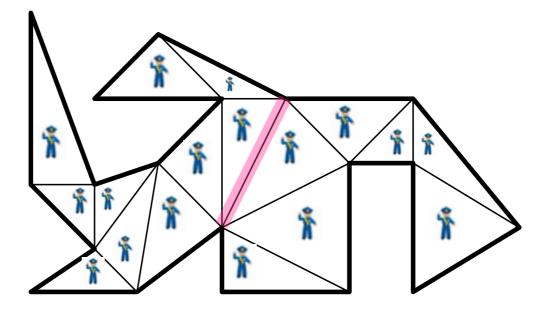
- V. Klee durante un congreso en Stanford en Agosto de 1976 hizo la pregunta:
 - ¿Cuántos guardias son siempre suficientes para vigilar cualquier polígono con n vértices?
- Poco después, V. Chvátal estableció lo que se conoce como el Teorema de la Galería de Arte de Chvátal.
 - Se necesitan

- Galería: región poligonal en el plano.
 - polígonos simples: rodeado de una cadena cerrada de segmentos que no intersectan a si mismos (sin hoyos).
- Cámara: punto dentro del polígono.
 - Ia cámara ve aquellos puntos en el polígono que se pueden conectar con un segmento abierto en el interior del polígono.
 - el número de cámaras necesarias para vigilar toda la galería estará acotada por el número n de vértices del polígono.

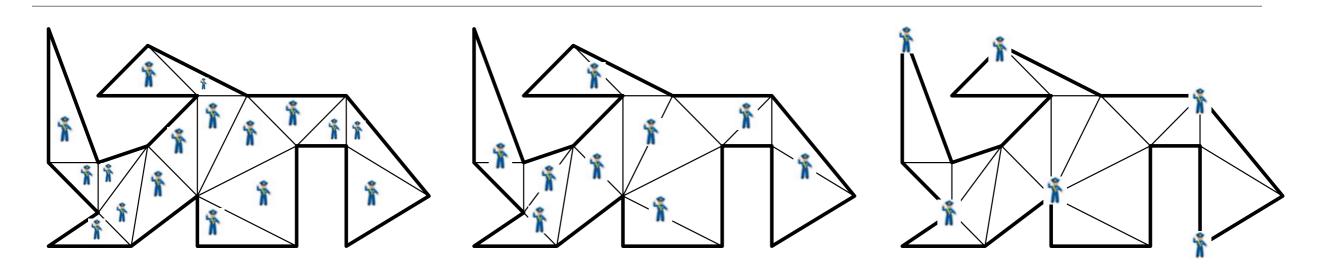


- Studiaremos el peor caso para encontrar una cota superior para cualquier polígono simple con n vértices.
- Sel problema de encontrar el número mínimo de cámaras para un polígono dado es NP-hard.
- Sea \mathcal{P} un polígono simple con *n* vértices.
- Descomponemos \mathcal{P} en partes fácilmente vigilables: triángulos





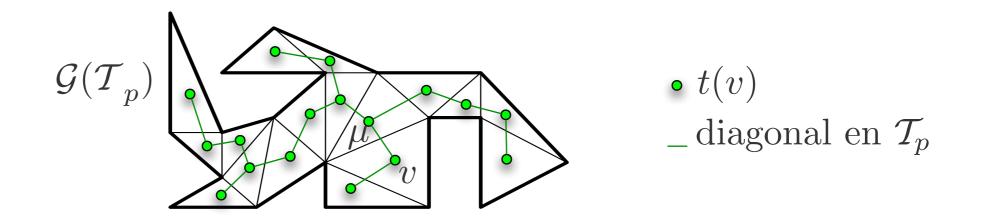
- Ina diagonal es un segmento de recta abierto que conecta a dos vértices de \mathcal{P} y está en el interior de \mathcal{P} .
- Seconda Podemos vigilar enteramente \mathcal{P} poniendo un guardia o cámara en cada triángulo de la triangulación $\mathcal{T}_{\mathcal{P}}$ de \mathcal{P} .
- Series Siempre una triangulación para \mathcal{P} ?
- $\mathcal{O}_{\mathcal{O}}$ ¿Cuántos triángulos pueden haber en una triangulación $\mathcal{T}_{\mathcal{P}}$ de \mathcal{P} ?



- ullet Sea \mathcal{T}_p una triangulación de \mathcal{P} .
- Selegir un subconjunto de vértices de \mathcal{P} tal que cualquier triángulo de \mathcal{T}_p tenga al menos un vértice seleccionado. Los guardias serán puestos en estos vértices.
- Para encontrar estos vértices asignamos a cada vértice de \mathcal{P} un color: gris, blanco o negro.
- Sel color es asignado de tal manera que dos vértices conectados por una arista o una diagonal tendrán diferente color.

Coloreado de un polígono triangulado

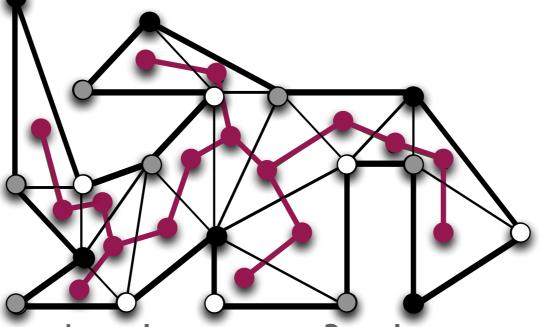
- Cada vértice del triángulo tiene un color diferente.
- Seligiendo el conjunto más pequeño de vértices del mismo color podemos vigilar \mathcal{P} usando a lo más $\lfloor n/3 \rfloor$ guardias.
- ¿Existe siempre tal coloración?
- Para probar esto miramos la estructura llamada grafo dual (dual graph) de T_p



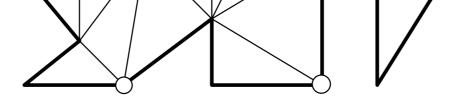
Survey Cualquier diagonal corta a \mathcal{P} en dos, entonces la eliminación de una arista de $\mathcal{G}(\mathcal{T}_p)$ divide el grafo en dos: es un árbol.

Coloreado de un polígono triangulado

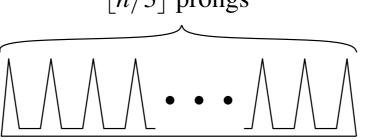
- Sto significa que podemos encontrar una coloración usando un recorrido simple en un grafo, tal como depth-first search.
- Mientras hacemos el recorrido se mantiene la siguiente invariante:
 - todos los vértices visitados tienen un color (blanco, gris o negro) asignado.
 - ningún par de vértices conectados ha recibido el mismo color.



 \sim Un poligono simple se puede colorear con 3 colores: se puede vigilar con $\lfloor n/3 \rfloor$ guardias. 9



Sel coloreado de polígonos da el resultado óptimo de guardias en el peor caso.
[n/3] prongs



Teorema 2 (de la galería de arte)

Para un polígono simple con *n* vértices, $\lfloor n/3 \rfloor$ guardias son ocasionalmente necesarios y siempre suficientes para poder ver cualquier punto del polígono por al menos unos de los guardias.

Para implementar un algoritmo eficiente necesitamos:

- método para calcular la triangulación de un polígono simple O(n log n).
- uso de depth-first search en el grafo dual para calcular la coloración.
- encontrar el conjunto más pequeño con vértices del mismo color.
- poner un guardia en cada uno de estos vértices.

Teorema 3:

Sea \mathcal{P} un polígono simple con n vértices. Se puede calcular un conjunto de $\lfloor n/3 \rfloor$ posiciones de guardias en \mathcal{P} tal que cualquier punto dentro de \mathcal{P} sea visible por al menos un guardia en un tiempo $O(n \log n)$.