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Intersección de 
Segmentos de 
Recta



Dados dos conjuntos de segmentos de recta, calcular 
todas las intersecciones entre los segmentos de un 
conjunto y los segmentos del otro conjunto. 

intersección



Dado un conjunto S de n segmentos de recta cerrados 
en el plano, reportar todos los puntos de intersección 
en S. 

¿Algoritmo de fuerza bruta? 
¿Complejidad? 

O(n2) 
Óptimo cuando hay intersección entre todos los 
pares. S



Queremos un algoritmo cuyo tiempo de cálculo 
dependa no solo del número de segmentos en la 
entrada sino también del número de puntos de 
intersección. 

¿Cómo podemos evitar probar todos los segmentos? 
Segmentos cercanos son candidatos, lejanos no. 

Output-Sensitive Algorithm

Idea 1:

S1

S2

S3

S4

S5

Si el intervalo-y de los segmentos no traslapa no hay 
intersección.  
Barrer una línea horizontal de arriba hacia abajo y 
mantener una lista de segmentos que la intersecan. 

Sweepline algorithm



El estado de la línea de barrido es el conjunto de 
segmentos que la intersecan en ese momento.  

El estado cambia mientras la línea avanza hacia 
abajo pero no de forma continua.  

¿Cuando cambia el estado? 

puntos evento 
en este caso, puntos extremo de cada segmento.  

¿Qué pasa en el punto evento? 

Solo probar segmentos que están simultáneamente 
en el estado de la línea de barrido. 

sweepline - l



¿Suficiente para que el algoritmo sea sensible al número de intersecciones?

s1 s2 s3 s4 s5 s6 s7



¿Cuándo cambia la adyacencia de dos segmentos en el estado de la línea de barrido?

l

Nuevo punto evento: ¡Puntos de intersección!

¿ y cómo sabemos si dos segmentos de recta intersecan o no?
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¿Estámos seguros que vamos a encontrar todas las intersecciones? 
Si dos segmentos si y sj intersecan, ¿existe siempre una posición en la línea de barrido donde si 
y sj sean adyacentes?

Evitamos por el momento casos degenerados:

¿Encontramos todas las intersecciones inferiores?



Evento Acción Ejemplo

extremo 
superior 

alcanzado

probar el segmento contra sus dos 
vecinos sobre la línea de barrido.

cambio de 
adyacencia 

entre 
segmentos

cada segmento toma un nuevo 
vecino a lo más contra quién debera 

ser probado.

extremo 
inferior 

alcanzado

sus dos vecinos se hacen 
adyacentes y deben ser probados.
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reaches the endpoint. So the only question is whether intersections between the
interiors of segments are always detected.

Lemma 2.1 Let si and s j be two non-horizontal segments whose interiors
intersect in a single point p, and assume there is no third segment passing
through p. Then there is an event point above p where si and s j become
adjacent and are tested for intersection.

Proof. Let ℓ be a horizontal line slightly above p. If ℓ is close enough to p then

p
ℓ

si s jsi and s j must be adjacent along ℓ. (To be precise, we should take ℓ such that
there is no event point on ℓ, nor in between ℓ and the horizontal line through
p.) In other words, there is a position of the sweep line where si and s j are
adjacent. On the other hand, si and s j are not yet adjacent when the algorithm
starts, because the sweep line starts above all line segments and the status is
empty. Hence, there must be an event point q where si and s j become adjacent
and are tested for intersection.

So our approach is correct, at least when we forget about the nasty cases
mentioned earlier. Now we can proceed with the development of the plane
sweep algorithm. Let’s briefly recap the overall approach. We imagine moving
a horizontal sweep line ℓ downwards over the plane. The sweep line halts at
certain event points; in our case these are the endpoints of the segments, which
we know beforehand, and the intersection points, which are computed on the
fly. While the sweep line moves we maintain the ordered sequence of segments
intersected by it. When the sweep line halts at an event point the sequence of
segments changes and, depending on the type of event point, we have to take
several actions to update the status and detect intersections.

When the event point is the upper endpoint of a segment, there is a new segment
intersecting the sweep line. This segment must be tested for intersection against
its two neighbors along the sweep line. Only intersection points below the
sweep line are important; the ones above the sweep line have been detected
already. For example, if segments si and sk are adjacent on the sweep line, and
a new upper endpoint of a segment s j appears in between, then we have to test
s j for intersection with si and sk. If we find an intersection below the sweep
line, we have found a new event point. After the upper endpoint is handled we

ℓsi
s j

sk

intersection
detected

continue to the next event point.
When the event point is an intersection, the two segments that intersect

change their order. Each of them gets (at most) one new neighbor against which
it is tested for intersection. Again, only intersections below the sweep line are
still interesting. Suppose that four segments s j, sk, sl , and sm appear in this
order on the sweep line when the intersection point of sk and sl is reached. Then
sk and sl switch position and we must test sl and s j for intersection below the
sweep line, and also sk and sm. The new intersections that we find are, of course,

s j sk sl sm ℓ

also event points for the algorithm. Note, however, that it is possible that these
events have already been detected earlier, namely if a pair becoming adjacent
has been adjacent before. 23
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When the event point is the lower endpoint of a segment, its two neighbors
now become adjacent and must be tested for intersection. If they intersect below
the sweep line, then their intersection point is an event point. (Again, this event
could have been detected already.) Assume three segments sk, sl , and sm appear
in this order on the sweep line when the lower endpoint of sl is encountered.
Then sk and sm will become adjacent and we test them for intersection.

sk sl sm ℓ

After we have swept the whole plane—more precisely, after we have treated
the last event point—we have computed all intersection points. This is guaran-
teed by the following invariant, which holds at any time during the plane sweep:
all intersection points above the sweep line have been computed correctly.

After this sketch of the algorithm, it’s time to go into more detail. It’s also
time to look at the degenerate cases that can arise, like three or more segments
meeting in a point. We should first specify what we expect from the algorithm
in these cases. We could require the algorithm to simply report each intersection
point once, but it seems more useful if it reports for each intersection point a
list of segments that pass through it or have it as an endpoint. There is another
special case for which we should define the required output more carefully,
namely that of two partially overlapping segments, but for simplicity we shall
ignore this case in the rest of this section.

We start by describing the data structures the algorithm uses.
First of all we need a data structure—called the event queue—that stores the

events. We denote the event queue by Q. We need an operation that removes the
next event that will occur from Q, and returns it so that it can be treated. This
event is the highest event below the sweep line. If two event points have the same
y-coordinate, then the one with smaller x-coordinate will be returned. In other
words, event points on the same horizontal line are treated from left to right.
This implies that we should consider the left endpoint of a horizontal segment
to be its upper endpoint, and its right endpoint to be its lower endpoint. You
can also think about our convention as follows: instead of having a horizontal
sweep line, imagine it is sloping just a tiny bit upward. As a result the sweep
line reaches the left endpoint of a horizontal segment just before reaching the
right endpoint. The event queue must allow insertions, because new events will

ℓ

be computed on the fly. Notice that two event points can coincide. For example,
the upper endpoints of two distinct segments may coincide. It is convenient to
treat this as one event point. Hence, an insertion must be able to check whether
an event is already present in Q.

We implement the event queue as follows. Define an order ≺ on the event
points that represents the order in which they will be handled. Hence, if p and q
are two event points then we have p ≺ q if and only if py > qy holds or py = qy
and px < qx holds. We store the event points in a balanced binary search tree,
ordered according to ≺. With each event point p in Q we will store the segments
starting at p, that is, the segments whose upper endpoint is p. This information
will be needed to handle the event. Both operations—fetching the next event
and inserting an event—take O(logm) time, where m is the number of events24



¿Qué estructuras de datos necesitamos para implementar este algoritmo? 

cola de eventos Q.  
Operaciones: 

Eliminar el próximo evento (el más alto abajo de la línea de barrido) en Q y regresar el 
punto evento.  
Si dos puntos evento tienen la misma coordenada y, regresar aquel con la coordenada x 
más pequeña.  
En una línea horizontal el punto más a la izquierda será el evento superior. 
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Insertar un evento. 

Verificar si un segmento está dentro de Q. 

Definir un orden      en los puntos evento. 

Si p y q son puntos evento,              si y solo si py > qy o si py = qy, px < qx. 

Guardar los puntos evento en un árbol binario balanceado, ordenado de acuerdo a    . 

Con cada punto evento p en Q se deben almacenar también los segmentos que 
empiecen en p. 

Ambas operaciones toman O(log m) donde m es el número de eventos en Q. 

No se utiliza un montículo porque hay que verificar si un evento ya está presente en Q.

≺

p ≺ q

≺



• Se debe mantener un estado del algoritmo,: una secuencia de segmentos 
ordenados que intersequen la línea de barrido. 

• La estructura del estado T, se usa para acceder a los vecinos de un segmento  
dado s, de tal manera que se pueda probar si intersecta con s. 

• La estructura debe ser dinámica ya que los segmentos empiezan o terminan de 
intersectar a la línea de barrido (se añaden y eliminan). 

• Como hay un orden bien definido en los segmentos dentro de la estructura de 
estado, se puede usar un árbol binario de búsqueda balanceado. 

• Los segmentos que intersecan la línea de barrido se encuentran en el mismo 
orden en las hojas del árbol binario de búsqueda.



• El orden de izquierda a derecha sobre la línea de barrido corresponde al orden 
de izquierda a derecha de las hojas de T.  

• Los nodos internos mantienen la información necesaria para guiar la búsqueda 
hacia abajo. 

• En cada nodo interno, almacenamos el segmento más a la derecha en el subárbol 
izquierdo.
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in Q. (We do not use a heap to implement the event queue, because we have to
be able to test whether a given event is already present in Q.)

Second, we need to maintain the status of the algorithm. This is the ordered
sequence of segments intersecting the sweep line. The status structure, denoted
by T, is used to access the neighbors of a given segment s, so that they can be
tested for intersection with s. The status structure must be dynamic: as segments
start or stop to intersect the sweep line, they must be inserted into or deleted
from the structure. Because there is a well-defined order on the segments in
the status structure we can use a balanced binary search tree as status structure.
When you are only used to binary search trees that store numbers, this may be
surprising. But binary search trees can store any set of elements, as long as
there is an order on the elements.

ℓsi sk sl sm

si

s j sk

sl sm

sk

si sl

s j

s j

T

In more detail, we store the segments intersecting the sweep line ordered
in the leaves of a balanced binary search tree T. The left-to-right order of
the segments along the sweep line corresponds to the left-to-right order of the
leaves in T. We must also store information in the internal nodes to guide the
search down the tree to the leaves. At each internal node, we store the segment
from the rightmost leaf in its left subtree. (Alternatively, we could store the
segments only in interior nodes. This will save some storage. However, it is
conceptually simpler to think about the segments in interior nodes as values
to guide the search, not as data items. Storing the segments in the leaves also
makes some algorithms simpler to describe.) Suppose we search in T for the
segment immediately to the left of some point p that lies on the sweep line. At
each internal node ν we test whether p lies left or right of the segment stored
at ν . Depending on the outcome we descend to the left or right subtree of ν ,
eventually ending up in a leaf. Either this leaf, or the leaf immediately to the left
of it, stores the segment we are searching for. In a similar way we can find the
segment immediately to the right of p, or the segments containing p. It follows
that each update and neighbor search operation takes O(logn) time.

The event queue Q and the status structure T are the only two data structures
we need. The global algorithm can now be described as follows.

Algorithm FINDINTERSECTIONS(S)
Input. A set S of line segments in the plane.
Output. The set of intersection points among the segments in S, with for each

intersection point the segments that contain it.
1. Initialize an empty event queue Q. Next, insert the segment endpoints into

Q; when an upper endpoint is inserted, the corresponding segment should
be stored with it.

2. Initialize an empty status structure T.
3. while Q is not empty
4. do Determine the next event point p in Q and delete it.
5. HANDLEEVENTPOINT(p)

We have already seen how events are handled: at endpoints of segments we
have to insert or delete segments from the status structure T, and at intersection
points we have to change the order of two segments. In both cases we also
have to do intersection tests between segments that become neighbors after the 25
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• Supongamos que buscamos en T al segmento inmediatamente a la izquierda de 
un punto p sobre la línea de barrido. 

• En cada nodo interno v, probamos si p se encuentra a la izquierda o a la derecha 
del segmento almacenado en v. 

• Dependiendo de estas prueba bajamos hacia el subárbol izquierdo o al derecho 
hasta llegar a una hoja.  

• El segmento buscado estará almacenado en esta hoja o en la inmediata izquierda.  

• Cada actualización y búsqueda de vecino toma O(log n). 

• Las únicas estructuras que necesitamos entonces son: 

• La cola de eventos Q. 

• El estado de la línea de barrido T.
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event. In degenerate cases—where several segments are involved in one event
point—the details are a little bit more tricky. The next procedure describes how
to handle event points correctly; it is illustrated in Figure 2.2.

Figure 2.2
An event point and the changes in the

status structure
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HANDLEEVENTPOINT(p)
1. Let U(p) be the set of segments whose upper endpoint is p; these segments

are stored with the event point p. (For horizontal segments, the upper
endpoint is by definition the left endpoint.)

2. Find all segments stored in T that contain p; they are adjacent in T. Let
L(p) denote the subset of segments found whose lower endpoint is p, and
let C(p) denote the subset of segments found that contain p in their interior.

3. if L(p)∪U(p)∪C(p) contains more than one segment
4. then Report p as an intersection, together with L(p), U(p), and C(p).
5. Delete the segments in L(p)∪C(p) from T.
6. Insert the segments in U(p)∪C(p) into T. The order of the segments in T

should correspond to the order in which they are intersected by a sweep
line just below p. If there is a horizontal segment, it comes last among all
segments containing p.

7. (∗ Deleting and re-inserting the segments of C(p) reverses their order. ∗)
8. if U(p)∪C(p) = /0
9. then Let sl and sr be the left and right neighbors of p in T.
10. FINDNEWEVENT(sl ,sr, p)
11. else Let s′ be the leftmost segment of U(p)∪C(p) in T.
12. Let sl be the left neighbor of s′ in T.
13. FINDNEWEVENT(sl ,s′, p)
14. Let s′′ be the rightmost segment of U(p)∪C(p) in T.
15. Let sr be the right neighbor of s′′ in T.
16. FINDNEWEVENT(s′′,sr, p)

Note that in lines 8–16 we assume that sl and sr actually exist. If they do not
exist the corresponding steps should obviously not be performed.26
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The procedures for finding the new intersections are easy: they simply test
two segments for intersection. The only thing we need to be careful about is,
when we find an intersection, whether this intersection has already been handled
earlier or not. When there are no horizontal segments, then the intersection
has not been handled yet when the intersection point lies below the sweep line.
But how should we deal with horizontal segments? Recall our convention that
events with the same y-coordinate are treated from left to right. This implies
that we are still interested in intersection points lying to the right of the current
event point. Hence, the procedure FINDNEWEVENT is defined as follows.

FINDNEWEVENT(sl ,sr, p)
1. if sl and sr intersect below the sweep line, or on it and to the right of the

current event point p, and the intersection is not yet present as an
event in Q

2. then Insert the intersection point as an event into Q.

What about the correctness of our algorithm? It is clear that FINDINTERSEC-
TIONS only reports true intersection points, but does it find all of them? The
next lemma states that this is indeed the case.

Lemma 2.2 Algorithm FINDINTERSECTIONS computes all intersection points
and the segments that contain it correctly.

Proof. Recall that the priority of an event is given by its y-coordinate, and that
when two events have the same y-coordinate the one with smaller x-coordinate
is given higher priority. We shall prove the lemma by induction on the priority
of the event points.

Let p be an intersection point and assume that all intersection points q with
a higher priority have been computed correctly. We shall prove that p and
the segments that contain p are computed correctly. Let U(p) be the set of
segments that have p as their upper endpoint (or, for horizontal segments, their
left endpoint), let L(p) be the set of segments having p as their lower endpoint
(or, for horizontal segments, their right endpoint), and let C(p) be the set of
segments having p in their interior.

First, assume that p is an endpoint of one or more of the segments. In that
case p is stored in the event queue Q at the start of the algorithm. The segments
from U(p) are stored with p, so they will be found. The segments from L(p)
and C(p) are stored in T when p is handled, so they will be found in line 2 of
HANDLEEVENTPOINT. Hence, p and all the segments involved are determined
correctly when p is an endpoint of one or more of the segments.

Now assume that p is not an endpoint of a segment. All we need to show is
that p will be inserted into Q at some moment. Note that all segments that are
involved have p in their interior. Order these segments by angle around p, and
let si and s j be two neighboring segments. Following the proof of Lemma 2.1
we see that there is an event point with a higher priority than p such that si and
s j become adjacent when q is passed. In Lemma 2.1 we assumed for simplicity
that si and s j are non-horizontal, but it is straightforward to adapt the proof for 27
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event. In degenerate cases—where several segments are involved in one event
point—the details are a little bit more tricky. The next procedure describes how
to handle event points correctly; it is illustrated in Figure 2.2.

Figure 2.2
An event point and the changes in the

status structure
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HANDLEEVENTPOINT(p)
1. Let U(p) be the set of segments whose upper endpoint is p; these segments

are stored with the event point p. (For horizontal segments, the upper
endpoint is by definition the left endpoint.)

2. Find all segments stored in T that contain p; they are adjacent in T. Let
L(p) denote the subset of segments found whose lower endpoint is p, and
let C(p) denote the subset of segments found that contain p in their interior.

3. if L(p)∪U(p)∪C(p) contains more than one segment
4. then Report p as an intersection, together with L(p), U(p), and C(p).
5. Delete the segments in L(p)∪C(p) from T.
6. Insert the segments in U(p)∪C(p) into T. The order of the segments in T

should correspond to the order in which they are intersected by a sweep
line just below p. If there is a horizontal segment, it comes last among all
segments containing p.

7. (∗ Deleting and re-inserting the segments of C(p) reverses their order. ∗)
8. if U(p)∪C(p) = /0
9. then Let sl and sr be the left and right neighbors of p in T.
10. FINDNEWEVENT(sl ,sr, p)
11. else Let s′ be the leftmost segment of U(p)∪C(p) in T.
12. Let sl be the left neighbor of s′ in T.
13. FINDNEWEVENT(sl ,s′, p)
14. Let s′′ be the rightmost segment of U(p)∪C(p) in T.
15. Let sr be the right neighbor of s′′ in T.
16. FINDNEWEVENT(s′′,sr, p)

Note that in lines 8–16 we assume that sl and sr actually exist. If they do not
exist the corresponding steps should obviously not be performed.26


