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On the Picard group of the stable module category

for infinite groups

Ph.D. Thesis by

Juan Omar Gómez

Supervisor: José María Cantarero López

Abstract

We introduce the stable module ∞-category for groups of type Φ as an enhance-
ment of the stable category defined by N. Mazza and P. Symonds. For groups of type
Φ which act on a tree, we show that the stable module ∞-category decomposes in
terms of the associated graph of groups. For groups which admit a finite-dimensional
cocompact model for the classifying space for proper actions, we exhibit a decom-
position in terms of the stable module ∞-categories of their finite subgroups. We
use these decompositions to implement methods to compute the Picard group of the
stable module category. In particular, we provide a description of the Picard group
for countable locally finite p-groups. We also deal with groups arising from triangles
of groups and, in certain cases, we give a description of the modules that restrict
stably to the trivial module on each finite subgroup. In a slightly different direction,
we discuss the existence of separable commutative algebra objects of infinite degree
in the context of essentially small tensor triangulated categories.
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Introduction

In modular representation theory of finite groups, there is no hope to classify all
kG–modules, not even finitely generated ones1. As a consequence of Maschke’s the-
orem, there are non-projective modules preventing us to proceed as in ordinary rep-
resentation theory. For instance, character theory is generally not sufficient to fully
understand kG–modules. Instead, a classification up to projectives is desired, but it
remains as an ambitious task.

This motivates the philosophy of looking into certain classes of modules that are
small enough to be classified and large enough to be useful2. With this in mind, E.
Dade introduced the class of endotrivial modules as a key step to classify general
objects, the so-called endopermutation modules (see [Dad78b], [Dad78a], [Thé07]).
Endopermutation modules play an important role in the representation theory of
finite p-groups; they appear as sources of simple modules for p-solvable groups, and
in the description of the source algebra of a nilpotent block, hence the importance of
fully understanding these modules (see [Thé95, Chapter 5]).

Endotrivial modules are interesting objects in their own right (see [Car12], [Car17]).
The isomorphism classes of endotrivial modules determine an abelian group with the
multiplication given by the tensor product over the field; this group in fact, agrees
with the Picard group of the stable module category. Their classification has been
completed for finite p-groups thanks to the contributions of many authors, concluding
with the celebrated work of J. Carlson and J. Thévenaz [CT04], [CT05]. The problem
for general finite groups is still open, and it has become an active research area at-
tracting the interest of many mathematicians. Tools to deal with the classification of
endotrivial modules have been developed beyond representation theory. Notably, the
stable module category has opened a door to use machinery from homotopy theory,
which has been applied successfully in the classification of Sylow-trivial modules3 for
certain families of finite groups [Gro23], and in the classification of torsion endotrivial
modules for finite groups of Lie type (announced in [CGMN22]). Certainly, the sta-

1Except in a few exceptional cases.
2Quote by E. Dade.
3Endotrivial modules that, up to projectives, restrict to the trivial module on a p-Sylow subgroup.
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ble module category is omnipresent in modular representation theory of finite groups
and not just in the context of endotrivial modules (see [BCR97], [BIK12]), hence its
fundamental role in the theory is not surprising.

The modular representation theory of infinite groups is much less known. It is
reasonable then, to seek for a protagonist to play the role of the stable module category
for finite groups. Of course, there is an additional problem; infinite groups are too wild.
Fortunately, the class of groups of type Φ introduced by O. Talelli4 (see [Tal07]) has
convenient finiteness properties making it a suitable candidate to explore the theory
for infinite groups. In particular, this class contains all groups admitting a finite-
dimensional model for the classifying space for proper actions (see [MS19, Corollary
2.6]). For these groups, N. Mazza and P. Symonds constructed a stable category
as the largest quotient of the category of modules on which the syzygy functor is
invertible [MS19]. This stable category is equipped with a triangulated structure
compatible with the tensor product over the ground ring. In other words, it is a
tensor triangulated category in the language of Balmer [Bal10]. Naturally, we want
to investigate the Picard group of this stable category. However, for infinite groups
there are just a few available tools to compute it.

We introduce a homotopy-theoretic interpretation of the stable module category
for groups of type Φ as a symmetric monoidal stable ∞-category. For finite groups,
this interpretation agrees with the one given in [Mat15]. In particular, for groups
of type Φ acting on a tree, we exhibit a decomposition in terms of the fundamental
domain of the action and its isotropy groups. No restriction on the size of the isotropy
groups is needed for the following result (see Theorem 3.1.3).

Theorem. Let G be a group of type Φ acting on a tree. Consider the associated graph
of groups Γ(G) : Γ → Gps, that is, G is the fundamental group of Γ(G). Then there
is an equivalence of symmetric monoidal ∞-categories

StMod(kG)
≃−→ lim←−

σ∈Γop

StMod(kGσ).

This decomposition leads to a spectral sequence which computes the Picard group
of the stable module category for groups of type Φ acting on trees. In particular, we
provide a more conceptual proof of Theorem 7.1 in [MS19]. That is, we obtain a short
exact sequence of abelian groups (see Corollary 4.1.2)

0→ H1(Γ; π1 ◦ f)→ T (G)→ H0(Γ; π0 ◦ f)→ 0

where T (G) denotes the Picard group of the stable module category of G, and f is

4This class depends on a ground ring, so a fixed field of prime characteristic is understood.
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the composition of the Picard space functor Pic : Cat⊗∞ → S (see Definition 4.1.1)
and the stable module ∞-category functor Γop → Cat⊗∞ corresponding to the graph
of groups Γ(G) : Γ→ Gps (see Section 3.1 for more details about this functor).

For groups admitting a finite-dimensional cocompact model for the classifying
space for proper actions, we follow the ideas in [Mat16] to exhibit a different decom-
position of the stable module∞-category, in this case, in terms of the finite subgroups.
The following result summarizes the results in Subsection 3.2.2.

Theorem. Let G be a group admitting a finite-dimensional cocompact model X for
EG. Let F be a family of finite subgroups of G which contains the family of finite
p-subgroups of G. Then we have an equivalence of symmetric monoidal stable ∞-
categories

StMod(kG)
≃−→ lim←−

G/H∈OF (G)op

StMod(kH).

If additionally the fundamental domain of the action is homeomorphic to the standard
n-simplex, we obtain an equivalence of symmetric monoidal stable ∞-categories

StMod(kG)
≃−→ lim←−

σ∈T op

StMod(kGσ).

where T denotes the barycentric subdivision of ∆n.

We provide computations for certain classes of groups. For instance, we use the
classification of endotrivial modules for finite p-groups [CT04], [CT05] and Corollary
4.1.2 to determine the Picard group of the stable module category for countable locally
finite p-groups. The following theorem summarizes the results of Section 4.2.

Theorem. Let P be a countable locally finite p-group. Then the following hold.

(a) If P = Z/p∞, then T (P ) ∼= Z/2.

(b) Let D2∞ =
⋃
D2n, where D2n denotes the dihedral group of order 2n. Then

T (D2∞) ∼= Z.

(c) Let Q2∞ =
⋃
Q2n, where Q2n denotes the generalized quaternion group of order

2n. Then T (Q2∞) ∼= Z/4.

(d) Suppose that P is artinian and that it admits a tower Q1 ≤ Q2 ≤ . . . whose
union is P and such that Qn is not cyclic, dihedral, semi-dihedral or generalized
quaternion for all n ≥ 1. Then

T (P ) =

{
Zr if P has p-rank at most 2
Zr+1 if P has p-rank at least 3
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where r is the number of conjugacy classes of maximal elementary abelian sub-
groups of P of rank 2.

(e) If P is not artinian, then T (P ) ∼= Z.

We provide a tool to compute the Picard group for a certain class of groups of type
Φ that we call amalgam groups (see Definition 4.4.1). These groups have geometric
dimension 2 with respect to the family of finite subgroups. In particular, for an
amalgam group G which acts on a tree, we could attempt to use Corollary 4.1.2
to compute the Picard group of G, but it will involve computing invariants of the
stable module ∞-category for infinite groups, which could be as hard to compute as
the invariants of the stable module ∞-category of G. Hence the importance of the
following result (see Theorem 4.4.2).

Theorem. Let G be a group admitting a 2-dimensional model X for EG such that
the fundamental domain of the action is homeomorphic to the standard 2-simplex.
Consider the associated triangle of groups T (G) : T → Gps (see Section 4.4), where
T denotes the barycentric subdivision of ∆2. Then there is an exact sequence of
abelian groups

0→ H1(T ; π1 ◦ f)→ T (G)→ H0(T ; π0 ◦ f)→ 0

where f is the composition of the Picard space functor and the stable module ∞-
category functor corresponding to the triangle of groups T (G). Moreover, if p divides
the order of the face group, then the map

T (G)→ H0(T ; π0 ◦ f)

is an isomorphism.

In a slightly different direction, we approach an open question in [Bal14]. This
was motivated by a talk given by Luca Pol at the Hausdorff Research Institute for
Mathematics during the author’s participation on a special trimester program. Re-
call that a tensor triangulated category is a triangulated category with a symmetric
monoidal structure such that the monoidal product is exact in each variable. In his
talk, Luca introduced a method to classify tt-rings of finite degree in certain tensor
triangulated categories, and he brought out that no tt-ring of infinite degree is known.
By a tt-ring we mean a commutative algebra object A that is separable, that is, the
multiplication A ⊗ A → A admits an (A,A)–bilinear section A → A ⊗ A. For a
tt-ring A, Balmer constructed a tower of A–algebras A := A[1] → A[2] → . . . where
each A[i+1] is characterized as the A[i]–algebra such that A[i] ⊗A[i−1] A[i] splits as the
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product of A[i] with A[i+1]. The degree of a tt-ring A is defined to be the greatest i
such that A[i] ̸= 0 [Bal14, Definition 3.4].

We construct a family of infinite degree tt-rings in Chapter 5, mainly motivated
by our study of a decomposition of the stable module category for infinite groups.
Our example is quite simple but it has led the author to many interesting research
questions. It will appear in this text as Theorem 5.3.1.

Theorem. For n ∈ N, let Kn be a non-trivial essentially small tensor triangulated
category, and let 1n denote the unit of the monoidal product in Kn. Then the tt-ring

(1×n
n )n∈N ∈

∏
n∈N

Kn

has infinite degree.

This thesis is organized as follows. Chapter 1 is focused on background about
endotrivial modules for finite groups and the stable module category for groups of
type Φ, including the finite case. In Chapter 2 we discuss a symmetric monoidal
model structure on the category of modules for groups of type Φ and define the stable
module ∞-category. In Chapter 3, we exhibit a decomposition of the stable module
∞-category for groups acting on trees and for groups admitting a finite-dimensional
cocompact model for the classifying space for proper actions. Chapter 4 is devoted
to computations of the Picard group for countable locally finite groups and amalgam
groups. Finally, in Chapter 5 we discuss our example of a tt-ring of infinite degree,
and provide some background in order to introduce the problem.

We will work in the setting of ∞-categories and, in general, we will borrow nota-
tion and terminology from [Lur17]. We include an appendix that outlines the main
concepts and facts about ∞-categories that will be used in the thesis. In particular,
when we talk about limits and colimits, we always refer to homotopy limits and ho-
motopy colimits in the ∞-categorical sense, unless we specify otherwise. Sometimes
we do not distinguish between an ordinary category and its nerve.

Remark. The results of Chapters 2-4 appear in [Góm23b], and the results of Chapter
5 appear in [Góm23a], both have been submitted for publication.



Chapter 1

Preliminaries

In this chapter we provide some background material about the stable module cate-
gory for finite groups. We also discuss some results regarding the group of endotrivial
modules for finite groups, we mainly focus on results that will be used in Section 4.2
and Section 4.3. In particular, we describe the classification of endotrivial modules
for finite p-groups. In addition, we give a short overview of the stable module cate-
gory for groups of type Φ given by Mazza and Symonds, as well as some of its basic
properties.

1.1 The stable module category

Let G be a finite group, and let k be a field of prime characteristic p, where p divides
the order ofG. Denote by Mod(kG) the category of all kG–modules, and mod(kG) the
full subcategory of finitely generated kG–modules. Recall that kG is a self-injective
ring, hence projective modules agree with injective modules.

Definition 1.1.1. Let Mod(kG) denote the category whose elements are all the kG–
modules, and with morphisms given by classes of morphisms in Mod(kG) under the
equivalence relation given by f ∼ g if and only if f − g factors through a projective
module. Let mod(kG) denote the full subcategory of Mod(kG) on the finitely gener-
ated kG–modules. We will refer to Mod(kG) as the stable module category of G, and
to mod(kG) as the small stable module category of G.

Remark 1.1.2. Any projective kG–module P is isomorphic to 0 in the stable module
category. The morphism P → 0 is an isomorphism with inverse given by 0→ P .

Fix a kG–module M . Let Ω(M) be the kernel of a surjection P →M , where P is
projective. By Schanuel’s lemma Ω(M) is well-defined up to projectives. Let Ω−1(M)

denote the cokernel of a monomorphism M → I, where I is injective. Then Ω−1(M)

6
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is well-defined up to injectives. Consider a morphism f : M → N of kG–modules.
Then we have a commutative diagram

Ω(M) //

Ω(f)
��

P //

��

M

f

��
Ω(N) // P ′ // N

Hence Ω defines an endofunctor of Mod(kG). Dually, Ω−1 defines an endofunctor of
Mod(kG). Since projective is equivalent to injective, we obtain self-equivalences

Ω−1,Ω: Mod(kG)→ Mod(kG).

They restrict to self-equivalences of the small stable module category.

Remark 1.1.3. A slightly different way to think about the functor Ω: Mod(kG)→
Mod(kG) that, hopefully, clarifies that it is well-defined is as follows. Fix a surjection
P

α−→ k, with P a projective module. Let Ω(k) denote the kernel of α. Then the
functor Ω(k)⊗− : Mod(kG) → Mod(kG) induces a functor Ω(k)⊗− : Mod(kG) →
Mod(kG). Note that for a different choice of P and the surjection α, we obtain
naturally isomorphic functors. Moreover, for any kG–module M we have that Ωk⊗M
is isomorphic to Ω(M) up to projectives. Hence we can define Ω(−) as the functor
Ω(k)⊗−.

We will use the symbol “≃” to refer to an isomorphism in the stable module
category. We will say that f is a stable isomorphism if f is an isomorphism in the
stable module category.

Proposition 1.1.4. Let M,N be two kG–modules. Then M ≃ N in Mod(kG) if and
only if there exist projective kG–modules P,Q such that M ⊕ P ∼= N ⊕Q.

Proof. Suppose that M ≃ N in the stable module category. Then there are homo-
morphisms f : M → N and g : N →M such that f ◦g−1 and g◦f−1 factor through
a projective, that is, there are commutative triangles

P
α2

  
M

g◦f−1 //

α1

>>

M

Q
β2

��
N

f◦g−1 //

β1

??

N
with P and Q projectives. Note that the homomorphism f ′ = (f, α1) : M → N ⊕ P
has a retract given by g′ = g − α2 : N ⊕ P →M . Then M ⊕Ker(g′) ∼= N ⊕ P . Note
that f ′ ◦ g′ − 1 factors through the projective Q⊕ P ⊕ P . A factorization is given by

(
β2 0 fα2

0 1 α1α2

)
◦

 β1 0

α1g −1
0 −1

 .
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Hence we obtain a commutative diagram

Q⊕ P ⊕ P

&&
Ker(g′) i // N ⊕ P f ′◦g′−1 //

88

N ⊕ P p // Ker(g′)

where i and p denote the inclusion and the projection, respectively. Since

p ◦ (f ′ ◦ g′ − 1) ◦ i = 1

we deduce that Ker(g′) is a retract of Q⊕ P ⊕ P . Thus Ker(g′) is projective.

We refer to [BCR95, Section 2] for more details about the following proposition.

Proposition 1.1.5. The stable module category Mod(kG) admits a triangulated struc-
ture where the shift functor is given by Ω−1, and the distinguished triangles are induced
by short exact sequences of kG–modules. The same holds for mod(kG).

Also, we can identify the stable module category with the homotopy category of
Mod(kG) equipped with a certain model structure. Explicitly, this structure is given
as follows (see [Hov99, Section 2.2]):

(1) The cofibrations are the monomorphisms.

(2) The fibrations are the epimorphisms.

(3) The weak equivalences are the stable equivalences, that is, a morphism is a weak
equivalence if and only if the induced map in Mod(kG) is an isomorphism.

The stable module category Mod(kG) inherits a symmetric monoidal structure
from the one on Mod(kG) given by the tensor product ⊗k over the ground field with
the diagonal action of G. In fact, Mod(kG) is a tensor-triangulated category in the
language of Balmer [Bal10].

1.2 Endotrivial modules for finite groups

Endotrivial modules were introduced by Dade [Dad78b], [Dad78a] in the context
of finite p-groups as a fundamental step to classify general objects, the so-called
endopermutation modules.

Definition 1.2.1. Let G be a finite group. A kG–module M is endotrivial if there
exists a kG–module N such that M ⊗ N is equivalent to the trivial module k up to
projectives, that is, M ⊗N ≃ k in the stable module category.
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If M is finitely generated, then M ⊗ M∗ ∼= End(M). In particular, a finitely
generated kG–module M is endotrivial if and only if End(M) ∼= k up to projectives.
Actually, this is the original motivation for the terminology endotrivial. Some of the
basic properties of endotrivial modules are given in the following proposition (see
[Maz19, Section 2.2]).

Proposition 1.2.2. Let M be an endotrivial module. Then the following properties
hold.

(i) There exists an indecomposable endotrivial module M0 so that M ≃ M0 in the
stable module category.

(ii) If M,N are endotrivial modules, then M ⊗N is endotrivial as well.

Example 1.2.3. Consider a short exact sequence of kG–modules

0→ M → P → N → 0

with P projective. Then M is endotrivial if and only if N is endotrivial. Therefore,
if M is endotrivial, then Ωn(M) is endotrivial for any integer n. In particular, Ωnk is
endotrivial for any integer n, since k is endotrivial.

Definition 1.2.4. Let G be a finite group. We define the group of endotrivial kG–
modules T (G) as the set

{[M ] ∈ Mod(kG) |M is endotrivial}

of isomorphism classes of endotrivial modules in the stable module category equipped
with the tensor product over the ground field k.

Definition 1.2.5. The Picard group PicGp(C) of a symmetric monoidal category
(C,⊗,1) is defined as the group of isomorphism classes of objects which are invertible
with respect to the tensor product ⊗.

Proposition 1.2.6. The group of endotrivial modules T (G) agrees with the Picard
group of the stable module category with the symmetric monoidal structure discussed
above.

One of the earliest related results given by Dade was the classification for abelian
p-groups [Dad78a, Theorem 10.1], which motivated the idea that the class of endotriv-
ial modules can be classified.
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Theorem 1.2.7. Let G be an abelian p-group. Then T (G) is cyclic generated by the
class of Ω(k). Explicitly,

T (G) ∼=


0 if G has order at most 2,
Z/2 if G is cyclic of order at least 3,
Z otherwise.

A key step toward the classification of endotrivial modules for finite p-groups is
the result given by Puig [Pui90] that asserts that the restriction map

Res: T (G)→
∏
E

T (E)

has finite kernel, where E runs through all the elementary abelian subgroups of G.
Thus the group T (G) is finitely generated. Carlson, Mazza and Nakano proved that
T (G) is finitely generated for arbitrary finite groups (see [CMN06, Section 3]). As a
consequence we can write

T (G) = TT (G)⊕ TF (G)

where TT (G) and TF (G) denote the torsion part and the free part of T (G), respec-
tively.

The hard work of several authors, including Alperin, Carlson, Dade, Mazza, Puig,
Thévenaz, and others (see [Maz19]), led to perhaps the biggest achievement so far
concerning this problem: the classification of endotrivial modules for finite p-groups.
The description of the group of endotrivial modules for p-groups was completed by
Carlson and Thévenaz [CT04], [CT05].

For finite p-groups, the rank of the free part TF (G) was determined by Alperin
[Alp01] in terms of the number of conjugacy classes of maximal elementary abelian
subgroups of rank at least 2. Thus the main object of study remained the torsion part,
TT (G), that turns out to be trivial almost always. The cases where TT (G) is non-
trivial occur just for cyclic, quaternion or semi-dihedral groups, and are particularly
tricky. Besides those cases, the idea was to find a suitable “detection” family H of
subgroups of G, i.e. a family for which the restriction map

Res: T (G)→
∏
E∈H

T (E)

is injective. Carlson and Thévenaz proved that the collection of elementary abelian p-
subgroups of rank at least 2 and additionally, if p = 2, the subgroups of G isomorphic
to the quaternion group of order 8, is a desired detection family (see [CT00]).
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Theorem 1.2.8. Let G be a finite p-group. If G is not cyclic of order at least 3,
quaternion or semidihedral, then TT (G) is trivial.

The rank of the free part TF (G) as a free Z–module is given as the number of
conjugacy classes of maximal elementary abelian subgroups of rank 2 if the rank
of G is 2, or this number plus one if the rank of G is at least 3. Alperin used
relative syzygys to provide a construction of endotrivial modules such that the image
through the restriction map determines a subgroup of finite index in

∏
E T (E) where

E runs through a set of representatives of the conjugacy classes of maximal elementary
abelian subgroups (see [Alp01, Theorem 4]).

Theorem 1.2.9. Let G be a p-group. If G is not cyclic, quaternion, dihedral or
semi-dihedral, then

TF (G) =

{
Zn if G has rank at most 2
Zn+1 if G has rank at least 3

where n is the number of conjugacy classes of maximal elementary abelian subgroups
of G of rank 2.

Actually, Carlson and Thévenaz proved that the modules given by Alperin deter-
mine a Z–basis for TF (G). For convenience we shall give the construction and the
basic properties satisfied by those modules.

Let E≥2(G) be the poset whose elements are the elementary abelian p-subgroups of
G of rank at least 2, with order relation given by inclusion of subgroups. The action of
the group G by conjugation on the elements of E≥2(G) determines a poset E≥2(G)/G

whose objects are the G–orbits, with order relation induced by subconjugation ≤G.
The elements [E], [F ] ∈ E≥2(G)/G are called connected if there exists subgroups
E1, . . . , En in E≥2(G) such that E ≤G E1≥G . . .≥GEn ≤G F . A connected component
is an isolated vertex if it has no elementary abelian subgroups of p-rank greater that
2. Some useful properties of this poset are summarized in the following theorem (see
[Maz19, Section 3.2]).

Theorem 1.2.10. Let G be a finite group and let S be a p-Sylow subgroup of G.

(1) If S has p-rank 2, then each connected component of E≥2(G)/G is an isolated
vertex.

(2) If S has p-rank at least 3, then E≥2(G)/G contains a unique connected component
containing all the conjugacy classes of elementary abelian p-subgroups of rank at
least 3 and all the other components are isolated vertices.
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(3) Suppose that E≥2(G)/G is disconnected. Then a maximal elementary abelian
subgroup of S of rank 2 has the form ⟨u⟩ × Z, where u is a noncentral element
of S of order p, and Z is the unique central subgroup of S of order p. Moreover,
CS(⟨u⟩ × Z) = CS(u) = ⟨u⟩ × Q, where Q is cyclic, or possibly quaternion if
p = 2.

(4) If E≥2(G)/G is disconnected, then G has rank at most p if p is odd, and at most
4 if p = 2.

(5) E≥2(G)/G has at most p+ 1 connected components if p is odd, and at most 5 if
p = 2.

Definition 1.2.11. Let G be a finite group and let X be a G–set. The relative syzygy
ΩX(k) is the kernel of the augmentation map kX → k. In particular, ΩG(k) is just
Ω(k) in the stable module category.

Suppose that G is a nonabelian finite p-group, and if p = 2, assume that G is not
dihedral, semi-dihedral or generalized quaternion. Let E0, . . . , En be representatives
of the G–orbits of E≥2(G)/G with E0 a normal elementary abelian subgroup of G of
rank 2, where Ei = Z ×⟨ui⟩ for a non-central subgroup ⟨ui⟩ of order p, for 1 ≤ i ≤ n,
and Z the unique central subgroup of G of order p. Recall that CG(⟨ui⟩) is of the
form ⟨ui⟩ × Qi, where Qi is cyclic, or possibly quaternion if p = 2. Define Ni as the
module:

• (Ω−1
G (ΩG/⟨ui⟩(k)))

⊗2 if Qi is cyclic of order at least 3.

• Ω−1
G (ΩG/⟨ui⟩(k)) if p = 2 and |Qi| = 2.

• (Ω−1
G (ΩG/⟨ui⟩(k)))

⊗4 if p = 2 and Qi is quaternion.

These modules are endotrivial and satisfy

ResGEj
(Ni) ∼=



k if i ̸= j,

Ω−2p
Ej

(k) if i = j and Qi is cyclic of order at least 3,

Ω−2
Ej
(k) if i = j and Qi has order 2,

Ω−8
Ej
(k) if i = j and Qi is quaternion,

up to projectives (see [Maz19, Proposition 3.2]). The following theorem corresponds
to [CT04, Theorem 7.1].

Theorem 1.2.12. Let G be a finite p-group that is not cyclic, quaternion, dihedral
or semi-dihedral. Then the classes of the kG–modules ΩG(k), N1, . . . , Nn determine a
Z–basis for TF (G).
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We will give now details about the remaining cases and some of the properties of
the generators that will be useful in Chapter 4. The only case where T (G) depends
on the field k is if G is the quaternion group

Q8 = ⟨x, y | x2 = y2 = (xy)2, x4 = 1⟩

of order 8. For an arbitrary field we have that the class of ΩQ8k has order 4. If k
contains a cubic root ω of the unit, we can construct a 3-dimensional module L where
the action is given by

x =

 1 0 0

1 1 0

0 1 1

 y =

 1 0 0

ω 1 0

0 ω2 1


which is an endotrivial kQ8–module. In fact, we can prove that Ω1

Q8
(L) has order

2. The restriction map T (Q8) → T (⟨x⟩) is surjective and the kernel consists of the
classes of the modules

k, Ω2
Q8
(k), Ω−1

Q8
(L), and Ω−1

Q8
(L∗).

Since L ̸∼= L∗, the kernel is a four-Klein group. The following corresponds to [CT00,
Theorem 6.3].

Theorem 1.2.13. If k contains cubic roots of unity, then T (Q8) ∼= Z/4⊕Z/2 gener-
ated by the classes of ΩQ8(k) and ΩQ8(L). If k does not contain cubic roots of unity,
then T (Q8) ∼= Z/4 generated by the class of ΩQ8(k).

Convention 1.2.14. For the rest of this section, we refer to the pair in T (H)⊕T (H ′)

given by the class of M in T (H) and the class of N in T (H ′) just as the class of (M,N)

in T (H)⊕ T (H ′).

Let Q2n+1 = ⟨x, y | x2n = 1, y2 = x2
n−1
, yxy = x−1⟩ be the quaternion group of

order 2n, for n ≥ 4. There is a (2n − 1)-dimensional endotrivial module L such that

ResG⟨x⟩(L) = Ω⟨x⟩(L).

The only subgroups of Q2n+1 in the detection family are quaternion groups of order 8.
The conjugacy classes of those subgroups are represented by H = ⟨x2n−2

, y⟩ and H ′ =

⟨x2n−2
, xy⟩. The restriction map Res: T (Q2n+1) → T (H) ⊕ T (H ′) is injective. The

class of L restricts to the class of ±(ΩH(k),ΩH′(k)). Moreover, Ω1
Q2n

(L) restricts to
either the class of (2ΩH(k), k) or the class of (k, 2ΩH′(k)). The following corresponds
to [CT00, Theorem 6.5].
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Theorem 1.2.15. Let n ≥ 4. Then T (Q2n) ∼= Z/4⊕ Z/2 generated by the classes of
ΩQ2n

(k) and ΩQ2n
(L).

Let D2n = ⟨r, s | r2n−1
= s2 = (sr)2 = 1⟩ be the dihedral group of order 2n, for n ≥

3. The group D2n has two conjugacy classes of elementary abelian groups of rank 2.
Consider the representatives E = ⟨rs, r2n−2⟩ and E ′ = ⟨s, r2n−2⟩. Then the restriction
map Res: T (D2n) → T (E) ⊕ T (E ′) is injective. The module ΩD2n/⟨y⟩(k) restricts to
the class of (ΩE(k),−ΩE′(k)). In this case, the group of endotrivial modules can be
described as follows (see [CT00, Theorem 5.4]).

Theorem 1.2.16. Let n ≥ 3. Then T (D2n) ∼= Z2 generated by the classes of ΩD2n
(k)

and ΩD2n/⟨y⟩(k).

Consider the semidihedral group SD2n = ⟨x, y | x2n−1
= y2 = 1, yxy = x2

n−2−1⟩,
for a fixed n ≥ 4. The subgroup E = ⟨y, x2n−2⟩ is the only elementary abelian
subgroup of rank 2 up to conjugacy and H = ⟨yx, x2n−2⟩ is the only quaternion
subgroup of order 8 up to conjugacy. The restriction map Res: T (SD2n) → T (E)⊕
T (H) is injective. The class of the module L := ΩSD2n/⟨y⟩(k) restricts to the class of
(Ω−1

E (k),Ω1
H(k)). Hence Ω1

SD2n
(L) restricts to the class of (k, 2ΩH(k)). In particular,

the classes of ΩSD2n
(k) and Ω1

SD2n
(L) determine a Z–basis for the group of endotrivial

modules T (SD2n) (see [CT00, Theorem 7.1]).

Theorem 1.2.17. Let n ≥ 4. Then T (SD2n) ∼= Z⊕ Z/2 generated by the classes of
ΩSD2n

(k) and Ω1
SD2n

(L).

The classification of endotrivial modules for finite groups is still an open problem.
The general strategy consists in the study of the restriction map Res: T (G)→ T (S),
where S is a p-Sylow subgroup of G. The restriction determines a split exact se-
quence, except in well known cases. The free part TF (G) is determined by the
number of connected components of E≥2(G)/G. The problem has been reduced to
computing the kernel T (G,S) of the restriction map, at least to determine T (G) as
an abstract abelian group. In fact, T (G,S) is a finite p′-group1 containing the group
of 1-dimensional kG–modules. If S is a normal subgroup of G, then T (G) can be
described as follows (see [Maz19, Theorem 3.10]).

Theorem 1.2.18. Let G be a finite group with a normal p-Sylow subgroup S. Then
there is an exact sequence

0→ Hom(G, k×)→ T (G)→ T (S)G/S → 0

where T (S)G/S is the subgroup of T (S) generated by the classes of the G–stable en-
dotrivial kS–modules, i.e. kS–modules M such that gM ∼= M for all g ∈ G.

1A finite group that does not contain p-torsion.
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In this case, we can construct a basis for TF (G) from a basis for TF (S) using
tensor induction (see [Maz19, Definition 1.3]). Moreover, if T (S) has no torsion,
then TT (G) ∼= Hom(G, k×). Thus we have to deal with the cases where S is cyclic,
semi-dihedral or generalized quaternion separately.

For a general finite group, the restriction map ResGNG(S) : T (G) → T (NG(S)) re-
stricts to an injective group homomorphism ResGNG(S) : T (G,S)→ T (NG(S), S). Since
T (NG(S), S) = Hom(NG(S), k

×) we have

Hom(G, k×) ↪→ T (G,S) ↪→ Hom(NG(S), k
×).

For instance, if S ∩ gS ̸= 1 for all g ∈ G, then T (G,S) ∼= Hom(G, k×).
There are different methods to investigate T (G,S). For instance, character the-

ory (see [Maz19, Section 5.1]), weak homomorphisms [Bal13], and homotopy theory
[Gro23]. We will not describe these methods, but we want to highlight Grodal’s work
since it has been a source of motivation for this work. He identifies the group T (G,S)
with the first cohomology group of the p-orbit category with coefficients in the units
of the field k.

The p-orbit category of G is the category with objects G/P , for P a non-trivial
p-subgroup, and G–maps as morphisms. This category is denoted by O∗

p(G). The
following theorem corresponds to [Gro23, Theorem A].

Theorem 1.2.19. There exists a group isomorphism

Ψ: T (G,S)→ H1(O∗
p(G); k

∗)

with Ψ(M) = φM , where φM : O∗
p(G) → k∗ maps G/P to the 1-dimensional kG–

module MP/uPM , and uP =
∑
u∈P

u is the norm element.

1.3 Stable categories for groups of type Φ

Let projdimkGM denote the projective dimension of the kG–module M , that is, the
shortest possible length of a projective resolution of the module or ∞ if there is no
finite resolution.

Definition 1.3.1. Let G be a group. If any kG–module M satisfies that projdimkGM

is finite if and only if projdimkFM is finite for any finite subgroup F of G, then we
say that G is a group of type Φ (or Φk if we need to emphasize the role of k).

The following result gives us a large collection of groups of type Φ (see [MS19,
Proposition 2.5]. In particular, groups of finite virtual cohomological dimension are
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groups of type Φ, as well as groups that admit a finite-dimensional model for the
classifying space for proper actions. Recall that the finitistic dimension of the group
ring kG is given by

sup{projdimkGM | projdimkGM <∞}.

Proposition 1.3.2. Let G be a group. If there exists an exact complex of kG–modules

0→ Cn → . . .→ C0 → k → 0

such that each Ci is a summand of a sum of modules of the form k↑GH with H of type
Φ and findim(kH) ≤ m for a fixed m, then G is of type Φ.

The finitistic dimension of kG is finite if G is a group of type Φ. As a consequence,
a free abelian group of infinite rank2 is not of type Φ.

Let G be a group. The projective stable module category Mod(kG) is the category
whose objects are kG–modules and morphisms are equivalence classes of homomor-
phisms under the relation f ∼ g if and only if f−g factors through a projective. Note
that if G is finite, then this construction is just the stable module category described
in Definition 1.1.1.

We have an endofunctor Ω: Mod(kG) → Mod(kG) given by taking the kernel
of a surjection P → M , where P is projective. In particular, for any pair M,N of
kG–modules there is a natural map

Ω: HomkG(M,N)→ HomkG(ΩM,ΩN).

In general, the functor Ω does not induce a self-equivalence of categories; for infinite
groups, projectives rarely agree with injectives.

Definition 1.3.3. Let M,N be kG–modules. The complete cohomology is defined
via

Êxt
r

kG(M,N) := lim−→
n

HomMod(kG)(Ω
n+rM,ΩnN).

In particular, a kG–module M has finite projective dimension if and only if
Êxt

0

kG(M,M) = 0 (see [Ben97, Lemma 3.1]).

Definition 1.3.4. Let StMod(kG) be the category whose objects are all the kG–
modules and the morphisms between two objects M,N are given by complete coho-
mology

HomStMod(kG)(M,N) = Êxt
0

kG(M,N).

2The rank of an abelian group is just the rank as a Z–module.
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Remark 1.3.5. For groups of type Φ, let Ĥ i(G;N) denote Êxt
i

kG(k,N) for all i ∈ Z.
This coincides with generalized Tate-Farrell cohomology defined by Ikenaga [Ike84]
when the group has finite generalized cohomological dimension. In particular, for
finite groups it coincides with Tate cohomology.

A totally acyclic complex of projectives is an unbounded exact complex of projec-
tives P∗ such that HomkG(P∗, Q) is acyclic for any projective module Q. Let Ktac(kG)

denote the category of totally acyclic complexes of projective kG–modules and chain
maps up to homotopy. Let GP(kG) (resp. GP(kG)) denote the full subcategory of
Mod(kG) (resp. Mod(kG)) on the Gorenstein projective modules, i.e. the modules
that are isomorphic to a kernel in a totally acyclic complex of projectives.

For groups of type Φ, any complex with finitely many non-zero homology groups
has a complete resolution. Then we have a functor

CompRes : Db(Mod(kG))→ Ktac(kG)

where Db(Mod(kG)) is the derived category of complexes of kG–modules with only
finitely many nonzero homology groups. The kernel of this functor contains the
homotopy category of bounded complexes of projective kG–modules which is denoted
byKb(Proj(kG)). Recall that the kernel of a triangulated functor F : C → D is the full
subcategory of C whose objects map to zero objects in D. In particular, the kernel of
a triangulated functor is a thick subcategory of C, i.e. a triangulated subcategory that
is closed under retracts (see [Nee01, Lemma 2.1.5]). Let Db(Mod(kG))/Kb(Proj(kG))
denote the Verdier quotient.

The categories GP(kG), Db(Mod(kG))/Kb(Proj(kG)) and Ktac(kG) are equiva-
lent as triangulated categories (this holds for more general rings, see [Bel00], [Buc87]).
For groups of type Φ, Mazza and Symonds prove that these equivalences factor
through StMod(kG) (see [MS19, Theorem 3.9]), and use these equivalences to de-
fine a triangulated structure on StMod(kG).

Theorem 1.3.6. For groups of type Φ, the following categories are equivalent.

• StMod(kG).

• Db(Mod(kG))/Kb(Proj(kG)).

• Ktac(kG).

• GP(kG).

They are equivalent as triangulated categories, except for StMod(kG).
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These equivalences define a triangulated structure on StMod(kG). The distin-
guished triangles are all the triangles isomorphic to a short exact sequence of modules
and the shift Ω−1 of M is obtained by taking the kernel in degree -1 of a complete
resolution of the module M . In the following theorem, we summarize some of the
results of Section 4 and Section 5 in [MS19].

Theorem 1.3.7. Let G be a group of type Φ. The following properties hold.

(1) −⊗kM and Homk(M,−) induce triangulated functors from StMod(kG) to itself,
for any module M .

(2) The category StMod(kG) has products and coproducts.

(3) The ring of stable endomorphisms ÊndkG(k) and the group of stable automor-
phisms ÂutkG(k) are commutative.

(4) Let f : M → N be a morphism in StMod(kG). Then f is a stable isomorphism
if and only if f↓F is a stable isomorphism for any finite subgroup F of G.

1.4 The Picard group of StMod(kG)

Recall that the Picard Group PicGp(C) of a symmetric monoidal category (C,⊗,1)
is the group of isomorphism classes of objects which are invertible with respect to the
tensor product ⊗.

We will consider StMod(kG) with the symmetric monoidal structure inherited
from the symmetric monoidal structure on Mod(kG) given by the tensor product
over k. In fact, this structure turns StMod(kG) into a tensor triangulated category in
the sense of Balmer. In particular, we will write T (G) to denote the Picard group of
StMod(kG). Note that if G is finite, this group corresponds to the so-called group of
endotrivial modules (see Proposition 1.2.6). In this context, we say that a kG–module
is invertible, or endotrivial, if [M ] belongs to T (G).

Proposition 1.4.1. Let G be a group of type Φ. Let M be a kG–module. Then M

is invertible if and only if its restriction to any finite subgroup is invertible.

Proof. Let f : M → N be a homomorphism of kG–modules. Consider the distin-
guished triangle

M
f−→ N → C(f)→ Ω−1M.

Then f is an isomorphism in StMod(kG) if and only if its cone C(f) is trivial, that is,
if it has finite projective dimension. Since G is of type Φ, finite projective dimension
is detected by the family of finite subgroups, and we have that f is an isomorphism in
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StMod(kG) if and only if f↓H induces an isomorphism in StMod(kH) for any finite
subgroup H of G. In fact, this proves (4) in Theorem 1.3.7.

Consider the evaluation map ev : M ⊗M∗ → k. If M↓H is invertible, it is well
known that ev↓H induces an isomorphism in StMod(kH) (for instance, see [MS19,
Theorem 6.4]), and then it follows that M is invertible.



Chapter 2

Stable module ∞-categories

In this chapter we show that the category of kG–modules admits a combinatorial
symmetric monoidal model structure, for any group G of type Φ. We will use this
model structure on Mod(kG) to define the stable module ∞-category StMod(kG).

For a given group G, we let Mod(kG) denote the category of all kG–modules,
and let ⊗ denote ⊗k equipped with the diagonal action of G, unless it is specified
otherwise.

2.1 Model categories

Definition 2.1.1. Let B be the set of functions from G to k which take only finitely
many different values in k, with the kG–structure given by pointwise scalar multipli-
cation and addition, and G–action given by g(φ)(h) = φ(g−1h). A kG–module M is
said to be cofibrant if B ⊗k M is a projective module.

Example 2.1.2. Let G be a group of type Φ. Then the following statements hold.

(i) Any projective kG–module is cofibrant.

(ii) If G is finite, then B is isomorphic to kG. In particular, B is free. Therefore
any kG–module is cofibrant.

(iii) If M is a cofibrant kG–module, then ΩM is cofibrant.

Definition 2.1.3. Note that B is a commutative k–algebra with pointwise multi-
plication. Let µ : B ⊗ B → B denote the multiplication map, and let ι : k → B

denote the inclusion of the constant functions. For a kG–module M , let Ω−1M de-
note Coker(ι)⊗M , that is, the cokernel of the injective map

M
∼=−→ k ⊗M ι⊗1−−→ B ⊗M.

20
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Remark 2.1.4. Note that if M is a cofibrant kG–module, then Ω−1M is cofibrant
as well.

Lemma 2.1.5. Let G be a group of type Φ. Let M , N be cofibrant kG–modules, then
the natural map

HomkG(M,N)→ Êxt
0

kG(M,N)

is an isomorphism.

Proof. Note that for any cofibrant module M , we have a short exact sequence

0→ Ω−1ΩM → Ω−1P → Ω−1M → 0

obtained from the short exact sequence 0 → ΩM → P → M → 0 by tensoring with
Coker(ι), where P is projective. Note that Ω−1P is projective. Moreover, consider a
projective module Q mapping onto Ω−1M . Then there is a short exact sequence

0→ ΩΩ−1M → Q→ Ω−1M → 0

By Schanuel’s Lemma we obtain isomorphisms

M ≃ ΩΩ−1M ≃ Ω−1ΩM

up to projectives. Hence the result follows.

Lemma 2.1.6. Let M be a cofibrant kG–module. If M has finite projective dimen-
sion, then M is projective.

Proof. Since M is cofibrant, by Schanuel’s lemma we have

M ⊕ P ∼= ΩΩ−1M ⊕Q

for some projective modules P,Q. Note that the exact sequence obtained by tensoring
with B

0→ B ⊗M → B ⊗B ⊗M → B ⊗ Ω−1M → 0

has a splitting given by µ ⊗ 1M , hence Ω−1M is cofibrant. We define inductively
Ω−nM by Ω−1Ω−n+1M , for n ≥ 2. In particular, Ω−nM is cofibrant for all n ≥ 1.

Suppose that M has finite projective dimension at most r > 0. Then ΩrM is
projective. On the other hand, note that Ω−rM has projective dimension at most r.
Consider a projective resolution of Ω−rM

0→ Ωr(Ω−rM)→ Pr−1 → . . .→ P0 → Ω−rM
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By definition of Ω−rM , we can construct an exact sequence

0→M → Qr−1 → . . .→ Q0 → Ω−rM

with Qi projective, for i ∈ {0, . . . , r − 1}. By the extended version of Schanuel’s
Lemma we have that ΩrΩ−rM ≃M up to projectives, thusM is projective as well.

The following definition corresponds to [Ben98, Definition 10.1].

Definition 2.1.7. Let G be a group of type Φ, and f : M → N a homomorphism of
kG–modules. We say that f is:

(i) a fibration if it is surjective,

(ii) a cofibration if it is injective with cofibrant cokernel,

(iii) a weak equivalence if it is a stable isomorphism, that is, if it is an isomorphism
in StMod(kG).

Recall that if G is finite, then any kG–module is cofibrant (see Example 2.1.2).
Moreover, by Lemma 2.1.5 we have that Êxt

0

kG(M,N) is just HomkG(M,N). Hence
Definition 2.1.7 coincides with the model structure on Mod(kG) given in [Hov99,
Section 2.2].

Lemma 2.1.8. The following properties hold for a map f of kG–modules.

(i) f is a trivial cofibration if and only if f is injective with projective cokernel.

(ii) f is a trivial fibration if and only if f is surjective and the kernel has finite
projective dimension.

Proof. (i) Assume that f is injective. Consider the exact sequence

0→M
f−→ N → L→ 0.

It defines a distinguished triangle in the stable module category. If f is a trivial
cofibration, then the cofibrant module L is trivial in the stable module category,
hence it has finite projective dimension. Thus L is projective by Lemma 2.1.6. On
the other hand, if f has projective cokernel, then it is clear that f induces a stable
isomorphism. Moreover, any projective is cofibrant, hence f is a trivial cofibration.
(ii) It follows in a similar fashion.

Convention 2.1.9. For the rest of this section, we will use the same notation as in
[Hov99, Section 2.1]. Moreover, we say that a commutative square
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M
f //

i
��

M ′

p
��

N
g // N ′

has a filling if there is a map h : N →M ′ such that h ◦ i = f and p ◦ h = g.

Definition 2.1.10. Let G be a group of type Φ. Let J be the set consisting of the
inclusion 0 → kG, and let I be the set containing all the induced maps I↑GF → kG,
where I → kF is the inclusion of a left ideal I of kF , and F is a finite subgroup of G.

Proposition 2.1.11. The class J -inj is given by the class of fibrations.

Proof. Let f : M → N be a map in Mod(kG). Suppose that f has the right lifting
property with respect to the inclusion 0 → kG. For each n ∈ N , there exists an
homomorphism αn : kG→ N whose image contains n. Thus we have a commutative
diagram

0 //

��

M

f
��

kG
αn // N

and let γ : kG → M be a filling. It follows that the image of f ◦ γ contains n,
hence f is surjective. Conversely, if f is surjective, then the result follows since kG is
projective.

Proposition 2.1.12. The class I-inj agrees with the class of trivial fibrations.

Proof. Let f : M → N be a map in Mod(kG). Suppose that f is in I-inj. Then f

must be a surjection since 0→ kG is in I. Since G is of type Φ, it is enough to prove
that Ker(f) is projective on the restriction to any finite subgroup F of G. Hence it
is enough to prove that f↓F is a trivial fibration on Mod(kF ), which is equivalent to
proving that f↓F has the left lifting property respect to all the inclusions I → kF

where I is a left ideal of kF . Suppose that we have a commutative diagram

I //

��

M↓F
f↓F
��

kF // N↓F
By the restriction-induction adjunction we have a commutative diagram

I↑GF //

��

M

f

��
kG // N

Since I↑GF → kG is in I, there is a filling for this diagram. Hence by the adjunction
there is a filling for the former diagram. The converse follows in a similar fashion.
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Remark 2.1.13. Given a pullback square

M
f //

i
��

M ′

p
��

N
g // N ′

we claim that i is surjective if p is surjective. Recall that the pullback has the form
{(n,m) ∈ N ⊕M ′ | g(n) = p(m)}. Let n ∈ N . Since p is surjective, there is m ∈M ′

such that g(n) = p(m). It follows that (n,m) ∈ L and i(n,m) = n, hence i is
surjective.

Let f : M → N be a homomorphism of kG–modules. Recall that f is left split if
there is a homomorphism g : N → M such that g ◦ f = 1M , and f is right split if
there is a homomorphism h : N → M such that f ◦ h = 1N . If the context is clear,
we just say that f is split, and we will refer to g (resp. h) as a splitting for f .

Lemma 2.1.14. Any short exact sequence of kG–modules

0→ K
α−→M

β−→ N → 0

is split if K has finite projective dimension and N is cofibrant.

Proof. We will prove this lemma by induction on the projective dimension of K.
Suppose that K is projective. Consider the following commutative diagram

K
α //

i
��

M

��
B ⊗K 1⊗α // B ⊗M

Note that Ω−1K is projective. Hence i splits. On the other hand, the cokernel of the
injective map 1⊗ α corresponds to B ⊗N which is projective by Lemma 2.1.6 since
N is cofibrant, thus 1⊗α splits. It follows that α splits as well. For the general case,
let PK and PN be projectives mapping onto K and N , respectively. The projective
module PM = PK ⊕ PN maps onto M , thus we have an induced exact sequence

0→ ΩK
Ωα−→ ΩM

Ωβ−→ ΩN → 0.

It splits by the inductive hypothesis. Recall that Ω−1X denotes the module Coker(ι)⊗
X for a cofibrant module X, where ι denotes the inclusion of the constant functions
from k to B. In order to simplify notation, let B denote Coker(ι). Since B ⊗ PN is
projective, we can construct a commutative diagram

Ω−1ΩN //

γ

��

B ⊗ PN
//

��

B ⊗N

1
��

N // B ⊗N // B ⊗N
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where the rows are short exact sequences. Since Ω−1ΩN is isomorphic to N up to
projectives, we can assume that PN is large enough so the map γ : Ω−1ΩN → N is
split surjective. We claim that there is a map Ω−1ΩM → M making the following
diagram commutative.

Ω−1ΩM //

1⊗Ωβ
��

M

β
��

Ω−1ΩN
γ // N

Note that if this square is commutative, then we obtain a splitting for β, which com-
pletes the result. We will construct such a map. Consider the following commutative
diagram.

Ω−1ΩM //

1⊗Ωβ

��

B ⊗ PM
//

��

B ⊗M

��

1

%%

M //

β

��

B ⊗M //

��

B ⊗M

1⊗β

��

Ω−1ΩN //

γ

##

B ⊗ PN
//

%%

B ⊗N
1

%%

N // B ⊗N // B ⊗N
where all the rows are short exact sequences, and PM is a projective mapping onto
M . Construct the pullback square

L //

��

B ⊗M
1⊗β
��

B ⊗N // B ⊗N
Since the map B⊗N → B⊗N is surjective, by Remark 2.1.13 the map L→ B⊗M
is surjective as well. Moreover, the kernel of L → B ⊗M agrees with N . Then we
can construct a commutative diagram

0 //M

β

��

// B ⊗M //

��

B ⊗M
1
��

// 0

0 // N // L // B ⊗M // 0

where the rows are short exact sequences. We deduce that the map B ⊗M → L is
surjective. By the universal property of the pullback, we have a map B ⊗ PM → L

induced by the maps B ⊗ PM → B ⊗ PN → B ⊗ N and B ⊗ PM → B ⊗M . Hence
there is a map B ⊗ PM → B ⊗M making the following triangle commutative.

B ⊗ PM

xx ��
B ⊗M // L
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Moreover, this map makes the right-hand side cube commutative, hence the induced
map Ω−1ΩM →M makes the desired square commutative.

Lemma 2.1.15. Let N be a cofibrant kG–module. Then any commutative square

0 //

��

M ′

p
��

N
g // N ′

has a filling provided that p is a trivial fibration.

Proof. Consider the pullback square of g and p

M
f //

β
��

M ′

p
��

N
g // N ′

Since p is surjective, we have that β is surjective by Remark 2.1.13. We obtain a
short exact sequence

0→ K
α−→M

β−→ N → 0

and note that K has finite projective dimension since it is isomorphic to the kernel
of p. Then this short exact sequence is split by Lemma 2.1.14. This completes the
result since a splitting of β followed by f is a filling for the original commutative
diagram.

Remark 2.1.16. Consider the following pushout square

M
f //

i
��

M ′

p
��

N
g // N ′

Then p is injective if i is injective. Recall that N ′ has an explicit description as a
quotient of N ⊕ M ′ by the submodule {(i(m),−f(m)) | m ∈ M}. Let m′ ∈ M ′.
Suppose that p(m′) = 0. Then there is m ∈ M such that (i(m),−f(m)) = (0,m′).
Since i is injective, it follows that m′ = 0, and hence p is injective as well.

Proposition 2.1.17. The class of cofibrations agrees with the class I-cof.

Proof. Consider the commutative diagram

M
f //

i
��

M ′

p
��

N
g // N ′

and suppose that i is a cofibration and p is a trivial fibration. Let X denote the
pushout of f and i, and let π : N → L denote the cokernel of i. Since i is injective,
the morphism M ′ → X is injective by Remark 2.1.16, and its cokernel is isomorphic
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to L. Moreover, note that X → N ′ is surjective, since p is surjective. Then we have
a commutative diagram

0

��

0

��
0 // K ′ //

��

M ′ p //

��

N ′

1
��

// 0

0 // K //

��

X
p′ //

��

N ′ // 0

L
1 //

��

L

��
0 0

where all the columns and rows are exact, and K and K ′ denote the kernel of p
and p′ respectively. Note that the cokernel of K ′ → K agrees with the cokernel of
M ′ → X since the upper left square is a pushout. In particular, the short exact
sequence 0→ K ′ → K → L→ 0 splits by Lemma 2.1.14, since L is cofibrant and K ′

has finite projective dimension. Then the short exact sequence

0→M ′ → X → L→ 0

splits as well. We obtain a map γ : N → M ′ by composing a splitting of the map
M ′ → X and the map N → X. Note that this map satisfies f = γ ◦ i. Therefore

(g − p ◦ γ) ◦ i = 0

hence there is a map η : L → N ′ such that η ◦ π = g − p ◦ γ. By Lemma 2.1.15 we
have a solution for the lifting problem

0

��

//M ′

p
��

L η
//

ξ
>>

N ′

Define h : N →M ′ as γ + ξ ◦ π. Note that

h ◦ i = γ ◦ i+ ξ ◦ π ◦ i = f

p ◦ h = p ◦ γ + p ◦ ξ ◦ π = (g − η ◦ π) + η ◦ π = g

hence h is a solution for the original lifting problem.

Conversely, suppose that i : M → N has the left lifting property with respect to
all trivial fibrations. Recall that the natural map M → CoInd(M↓H) given by the



28

unit of the restriction-coinduction adjunction is injective, where H denotes the trivial
group. Then we have a commutative diagram

M //

i
��

CoInd(M↓H)
p′

��
N // 0

Note that p′ is a trivial fibration since CoInd(M↓H) has finite projective dimension
(see [MS19, Lemma 3.13]). Then the diagram has a filling and we obtain that i is
injective. It remains to show that the cokernel of i is cofibrant.

We claim that a kG–module Y such that any extension by a module of finite
projective dimension is split must be cofibrant. Construct ΩY large enough so that
Ω−1ΩY → Y is a surjective map. Since G is of type Φ, we have that B ⊗ Y has
finite projective dimension. Hence the kernel of Ω−1ΩY → Y has finite projective
dimension, therefore the map splits. If Y is not cofibrant, then B ⊗ Ω−1ΩY has
smaller projective dimension than B ⊗ Y , since the former has the same projective
dimension as B ⊗ ΩY . This is a contradiction since B ⊗ Y is isomorphic to a direct
summand of B ⊗ Ω−1ΩY . Therefore Y is cofibrant.

Let π : N → L denote the cokernel of i. Consider a short exact sequence

0→ K → X
p−→ L→ 0

where K has finite projective dimension. In particular, p is a trivial fibration. We
will show that this sequence splits. Consider the following commutative diagram

K

��
M 0 //

i
��

X

p
��

N π
//

α

>>

L

Then by the assumption on i we have a filling α : N → X for the square. Since
α◦ i = 0, there exists a map γ : L→ X such that α = γ ◦π. Note that γ is a splitting
for p. Then the result follows.

Proposition 2.1.18. The class J -cof agrees with the class of trivial cofibrations.

Proof. Consider the commutative diagram

M
f //

i
��

M ′

p
��

N
g // N ′

and suppose that i is a trivial cofibration and p is a fibration. Let π : N → L denote
the cokernel of i. Since L is projective, we have maps α : N → M and β : L → N
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such that α ◦ i = 1M and π ◦β = 1L and i ◦α+β ◦π = 1N . Moreover, we have a map
δ : L→M ′ such that p ◦ δ = g ◦ β. The map

f ◦ α + δ ◦ π : N →M ′

is a filling for the diagram.

On the other hand, suppose that i : M → N has the left lifting property with
respect to all fibrations. Consider the following commutative diagram

M
(1M ,0)//

i
��

M ⊕ PN

p

��
N

1 // N
where PN is a projective mapping onto N . Then we have a map β : N → M ⊕ PN

such that β ◦ i = (1M , 0) and p ◦ β = 1N . Hence i is a retract of (1M , 0), and the
latter is a trivial cofibration. It is straightforward to verify that i is then a trivial
cofibration.

Theorem 2.1.19. Let G be a group of type Φ. Then Mod(kG) is a combinatorial
model category with respect to the collections of cofibrations, fibrations and weak equiv-
alences described in Definition 2.1.7. Moreover, the functor Mod(kG)→ StMod(kG)

induces an equivalence HoMod(kG)→ StMod(kG).

Proof. Note that every kG–module is small (see [Hov99, Example 2.1.6]). Then the
domains of I (resp. J ) are small relative to I-cell (resp. J -cell). Let W denote
the class of weak equivalences. We have proved that J -cell ⊆ W ∩ J -cof, and
I-inj ⊆ W ∩ J -inf, and W ∩ I-cof ⊆ J -cof. Hence the result follows from [Hov99,
Theorem 2.1.19].

For groups of type Φ, the class of cofibrant modules coincides with the class of
Gorenstein projective modules (see [DT10, Conjecture A] and [BDT09]), and by the
definition of fibration, any module is fibrant. Thus the full subcategory of StMod(kG)

on bifibrant1 modules agrees with GP(kG). Then by general theory of model cate-
gories we have the following result (for instance, see [Hov99, Theorem 1.2.10]).

Corollary 2.1.20. The map Hom(M,N) → HomStMod(kG)(M,N) is surjective if M
is Gorenstein projective. Moreover, the inclusion of GP(kG) into StMod(kG) is an
equivalence.

1An object that is both fibrant and cofibrant.
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2.2 Symmetric monoidal stable ∞-categories

Proposition 2.2.1. Consider Mod(kG) endowed with the symmetric monoidal struc-
ture given by the tensor product over k. Then this monoidal structure and the model
structure from Definition 2.1.7 make Mod(kG) a symmetric monoidal model category.

Proof. Recall that for any kG–module M , the functor − ⊗ M is exact, and let
α : Qk

∼−→ k be the cofibrant replacement of the unit k. Then we have that Qk⊗M ∼−→
k ⊗M is a weak equivalence.

On the other hand, since cofibrations are injective maps with Gorenstein projective
cokernel, and tensoring with a Gorenstein projective is Gorenstein projective, we
deduce that if f and g are cofibrations then f ⊗ g is a cofibration. Moreover, if f is
one of the generating cofibrations and g is one of the generating trivial cofibrations,
then f ⊗ g is a trivial cofibration because it is a trivial cofibration on the restriction
to any finite subgroup of G. Then the result follows by [Hov99, Corollary 4.2.5].

Recall that any model category has an associated underlying ∞-category (see
[Lur17, Def. 1.3.4.15]).

Definition 2.2.2. Let G be a group of type Φ. We define the stable module ∞-
category StMod(kG) as the underlying∞-category of the model structure on Mod(kG)

from Definition 2.1.7 (c.f. [Mat15, Def. 2.2]).

Proposition 2.2.3. The stable module ∞-category StMod(kG) inherits the structure
of a stable homotopy theory in the language of Mathew, that is, it is a presentable,
symmetric monoidal stable ∞-category, where the tensor product commutes with col-
imits in each variable.

Proof. By Theorem 2.1.19 and Proposition 2.2.1, we have that Mod(kG) is a combi-
natorial symmetric monoidal model category. Hence StMod(kG) is presentable and
symmetric monoidal by [Lur17, Proposition 1.3.4.22] and [Lur17, Corollary 4.1.7.16].
Moreover, the tensor product on StMod(kG) commutes with colimits separately in
each variable by [Lur17, Lemma 4.1.8.8].

Remark 2.2.4. We let HomG(M,N) denote the mapping space between objects
M,N in StMod(kG). The homotopy category of StMod(kG) corresponds to the
stable module category StMod(kG) (see Definition 1.3.4), that is, the category whose
objects are kG–modules and hom-sets are given by

π0HomG(M,N) ∼= Êxt
0

kG(M,N).
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To finish this chapter, we include comments on the compatibility of these struc-
tures with maps induced from inclusions and conjugations, and some of their prop-
erties. Let H be a subgroup of G. The inclusion i : H → G induces a symmetric
monoidal functor

ResGH = i∗ : StMod(kG)→ StMod(kH)

with left adjoint i! known as induction, and right adjoint i∗ known as coinduction. In
particular, we have that ResGH preserves all (homotopy) limits and colimits. On the
other hand, given an element g ∈ G, we can restrict along the right conjugation map
cg :

gH → H, so we obtain a functor

(cg)
∗ : StMod(kH)→ StMod(kgH).



Chapter 3

Stable decompositions

In this chapter we exhibit a decomposition of the stable module∞-category for certain
groups of type Φ. For groups of type Φ which act on a tree, a decomposition is given
in terms of its associated graph of groups. On the other hand, for groups which
admit a finite-dimensional model for the classifying space for proper actions with
compact orbit space, we exhibit a decomposition of the stable module ∞-category
in terms of its finite subgroups. The latter decomposition is motivated by Mathew’s
result in [Mat16], where he shows that the stable module∞-category of a finite group
decomposes in terms of the orbit category with isotropy groups in the family of finite
p-subgroups.

3.1 Groups acting on trees

In this section, we let G be a group of type Φ acting on a tree T . In particular, G
corresponds to the fundamental group of a graph of groups (G(−),Γ) (see [DD89,
Definition 3.1]). We shall show that the stable module ∞-category of G admits a
decomposition in terms of the graph Γ.

Remark 3.1.1. Let Γ be a directed graph. We will consider Γ as a category, still
denoted by Γ, in the following fashion.

• The objects are the vertices and edges of the graph Γ.

• The morphisms are given by the incidence maps and the identities. That is, for
an edge e we have morphisms ι(e)→ e and τ(e)→ e.

The category Γop associated to a directed graph Γ is sometimes referred to as the exit
path category of the directed graph.

For instance, consider an amalgamated product G = A ∗C B of finite groups. The
associated graph of groups (G(−),Γ) can be depicted by

32
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B

A C

j

OO

ioo

The associated graph Γ (as a category) corresponds to the barycentric subdivision
of a segment. We have a corresponding diagram of shape Γop in Cat⊗∞ depicted as
follows.

StMod(kA)

i∗

��
StMod(kB)

j∗ // StMod(kC)

In this case, we will show that StMod(kG) is the pullback in Cat⊗∞ of the diagram
above. Let D be the homotopy pullback of the diagram Γop → Cat⊗∞, and let

F : StMod(kG)→ D

denote the comparison functor. In order to show that F is essentially surjective,
consider a kA–module M and a kB–module N such that M ≃φ N in StMod(kC).
Following [Sym18, Section 5], we can add projectives to M and N so that φ can
be a genuine isomorphism of kC–modules. Let C(φ) = M as a k-vector space. Fix
m ∈ C(φ). For a ∈ A define a·m = am and for b ∈ B define b·m = φ−1(bφ(m)). This
action makes C(φ) a kG–module. Moreover, note that C(φ)|A = M and C(φ)|B ≃
N . Therefore, F is essentially surjective. On the other hand, consider M,N ∈
StMod(kG). It is enough to show that

π∗HomG(M,N)→ π∗HomD(F (M), F (N))

is an isomorphism. Since D is the pullback of the diagram Γop → Cat⊗∞, we have that
the space HomD(F (M), F (N)) corresponds to the homotopy pullback of a diagram
of shape Γop. In particular, we have a long exact sequence

. . .→ πn HomD(F (M), F (N))→ πnHomA(M,N)× πnHomB(M,N)→
→ πnHomC(M,N)→ . . .

Moreover, recall that π∗HomG(M,N) is given by complete cohomology. By [Bro82,
Section VII.9] we have a similar long exact sequence to compute the homotopy groups
π∗HomG(M,N). Then we can compare both long exact sequences and by the 5-lemma,
we get the desired isomorphism. Hence F is fully faithful and StMod(kG) ≃ D.

We will extend this idea to exhibit a decomposition of the stable module ∞-
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category for any group of type Φ acting on a tree. Let D : Iop → Top be a diagram.
Recall that there is a Bousfield-Kan spectral sequence for computing the homotopy
groups of the homotopy limit of D given by

Ep,q
2 = Hp(I; πqD)⇒ πp−q(lim←−D)

where πqD denotes the diagram of shape I given by i 7→ πq(Di). The differentials
have the form dr : Ep,q

r → Ep+r,q+r−1
r . Since this sequence has certain convergence

issues, we have to place some restrictions in order to avoid these inconveniences. For
instance, we can impose that each Di is path connected with abelian fundamental
group for each i to ensure convergence (see [BK72], [Dug08]).

Remark 3.1.2. Let Γ be a directed graph. Let V Γ denote the set of vertices and EΓ
denote the set of edges of Γ. Let D : Γ→ Ab be a diagram (Γ viewed as a category,
see Remark 3.1.1). Let C∗

(Γ;D) be the following 2-term complex of abelian groups∏
v∈V Γ

D(v)
d−→
∏
e∈EΓ

D(e)

where the differential d is given as follows. For U in the domain,

d(U)(e) = D(v → e)U(v)−D(w → e)U(w)

where e is an edge of the directed graph with initial vertex v and terminal vertex w,
and v → e and w → e are given by the incidence functions of the graph. Note that
C

∗
(Γ;D) is quasi-isomorphic to the cochain complex C∗(Γ;D) of Γ with coefficients

in D. In particular, we can use C∗
(Γ;D) to compute H∗(Γ;D).

Theorem 3.1.3. Let G be a group of type Φ acting on a tree T . Consider the
associated graph of groups Γ → Gps. Then we have an equivalence of symmetric
monoidal ∞-categories

StMod(kG)
≃−→ lim←−

σ∈Γop

StMod(kGσ).

Proof. Consider the canonical functor

F : StMod(kG)→ lim←−
σ∈Γ

StMod(kGσ).

Let C denote the right-hand side ∞-category. Fix M,N in StMod(kG). Let D be
the diagram of shape Γop that maps σ to the mapping space HomGσ

(Mσ, Nσ). The
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Bousfield-Kan spectral sequence for homotopy limits

Ep,q
2 = Hp(Γ; πqD)

converges to the homotopy groups

πp−qHomC(F (M), F (N))

Recall that the homotopy groups πiHomH(X, Y ) are given by the complete coho-
mology Êxt

−i

H (X, Y ). On the other hand, we have an spectral sequence (see [Bro82,
Chapter VII]) to compute the homotopy groups of the mapping space HomG(M,N)

given by
Ep,q

1 =
∏
σ∈Tq

Êxt
p

kGσ
(M,N)⇒ Êxt

p+q

kG (M,N)

where Tq is a set of representatives of the G–orbits of q-simplices of T . In particular
T0 is in bijection with V Γ and T1 is in bijection with EΓ. We deduce that F is fully
faithful. By [MS19, Lemma 7.1], we have that F is essentially surjective, and hence
an equivalence.

In fact, following [HY17] we can describe a left adjoint of F (hence an inverse) as
the composition

C HΓop

−−−→ StMod(kG)Γ
op lim−→ StMod(kG)

where lim is the left adjoint of the constant diagram functor, and HΓop is the left
adjoint of the induced functor on the lax limit. In other words, the functor H can be
described informally by the formula

H((Mσ)σ∈Γ) = lim
σ∈Γop

(M ↑GGσ
).

3.2 Groups admitting a finite-dimensional model for EG

In this section, we will assume that G admits a finite-dimensional model for the
classifying space for proper actions EG. It has been conjectured that a group G

is of type Φ over Z if and only if it admits a finite-dimensional model for EG (see
[Tal07, Conjecture A]). We will follow Balmer’s ideas in [Bal16] and adapt Mathew’s
proof of the decomposition of the stable module ∞-category for finite groups over
the orbit category (see [Mat16, Section 9]) to exhibit an analogous decomposition for
StMod(kG) in terms of the stable module ∞-category of its finite subgroups.
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3.2.1 A monadic adjunction

Proposition 3.2.1. Let H be a subgroup of G. Then the adjunction given by

Res: Mod(kG)op ⇆ Mod(kH)op : Ind

is monadic. In particular, we have that Mod(kH)op is equivalent to the category
ModMod(kG)op(A

′
H) of A′

H–modules in Mod(kG)op, where A′
H = Ind ◦ Res.

Proof. By [Bal15, Lemma 2.10] it is enough to exhibit a natural section of the counit
ϵ : 1Mod(kH) → Res ◦ Ind (since it is the opposite adjuntion, we are writing the unit
of the adjunction Ind−Res). Recall that the M -component of the counit is given by
m 7→ 1⊗m for m ∈M . For a kH–module M , we define

ψM : Res(Ind(M))→M

as the map

g ⊗m 7→

{
gm if g ∈ H
0 if g ̸∈ H.

Note that this defines a natural transformation ψ : Res ◦ Ind → 1Mod(kH) such that
ϵψ = 1, hence the result follows.

Definition 3.2.2. LetH be a subgroup ofG. Let AH denote the kG–module k(G/H).
Define a comultiplication µ : AH → AH ⊗AH by γ 7→ γ ⊗ γ, and a counit ϵ : AH → k

by the augmentation map.

Proposition 3.2.3. Let H be a subgroup of G. We have that (AH , µ, ϵ) defines a
separable algebra object on the symmetric monoidal category Mod(kG)op. Moreover,
the monad A′

H induced by the adjunction

Res: Mod(kG)op ⇆ Mod(kH)op : Ind

is isomorphic to the monad induced by AH ⊗−.

Proof. It is straightforward to verify that (AH , µ, ϵ) defines a coalgebra object in
Mod(kG) and therefore an algebra object in Mod(kG)op. The separability of AH will
follow from the equivalence, as monads, with A′

H . Recall that we have a natural
isomorphism of functors

θ : Ind ◦ Res→ AH ⊗−

where the M -component is given by θM(g ⊗m) = gH ⊗ gm and the inverse is given
by θ−1

M (γ⊗m) = g⊗ g−1m for any choice of g ∈ γ. Note that we have a compatibility
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of the units, that is, θM ◦ ϵ′M = ϵ ⊗ 1M for any kG–module M . The multiplication
µ′ of the monad is given by µ′(g ⊗m) = g ⊗ 1 ⊗m. Then the following diagram is
commutative.

kG⊗kH (kG⊗kH M)
θ2M // k(G/H)⊗ k(G/H)⊗M

kG⊗kH M

µ

OO

θM
// k(G/H)⊗M

µ′

OO

The map θ2M is given as follows. For any g, g′ ∈ G, we have that θ2M(g⊗ g′⊗m) =

gH ⊗ gg′H ⊗ gg′m. Then the result follows.

In particular, we have an analogous result in the ∞-categorical setting of the
previous result (see [MNN17, Proposition 5.29]). Let H be a subgroup of G. We can
equip AH with the structure of an object in CAlg(StMod(kG)op). Then there is an
equivalence

ModStMod(kG)op(AH) ≃ StMod(kH)op

and we can identify the adjunction StMod(kG)op ⇆ ModStMod(kG)op(AH) with the
adjunction Res: StMod(kG)op ⇆ StMod(kH)op : Ind.

3.2.2 Decompositions of the stable module ∞-category

Proposition 3.2.4. Let G be a group with a finite-dimensional cocompact model X
for EG. Let F be the family of finite subgroups of G. Then the commutative algebra
object

A =
∏
H∈S

AH ∈ CAlg(StMod(kG)op)

admits descent, where S is a set of representatives of the G-orbits of F .

Proof. Let C∗(X) denote the chain complex of X with coefficients in k. By the
hypothesis on X, the set S is finite. Since the forgetful functor

CAlg(StMod(kG)op)→ StMod(kG)op

commutes with limits (see [Lur17, Proposition 3.2.2.1]), it follows that A is just a
finite product in StMod(kG)op, and hence a finite coproduct. As a consequence, we
have that Cn(X) is a retract of a finite number of copies of A. Therefore Cn(X)

is contained in the smallest thick ⊗-ideal ⟨A⟩ containing A, for any n ∈ Z. Since
X is contractible, we have that the augmented chain complex C̃∗(X) is exact, and
therefore k is in ⟨A⟩. It follows that ⟨A⟩ = StMod(kG)op.
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Remark 3.2.5. Consider the same notation as in the previous proposition. Let S ′

denote the set of Sylow p-subgroups of the elements of S . Then the commutative
algebra object

B =
∏

H∈S ′

AH ∈ CAlg(StMod(kG)op)

has A as a retract, thus B admits descent as well. This follows since k is a retract of
k↑FS as kF–modules, where F is a finite group and S is a Sylow p-subgroup of F . In the
same fashion, we can construct commutative algebra objects in CAlg(StMod(kG)op)

which admit descent as long as the set of subgroups indexing our commutative algebra
object contains a copy of representatives of the Sylow p-subgroups of the elements in
S .

Recall that the orbit category O(G) is the category with objects the G-sets of
the form G/H where H is a subgroup of G, and the morphisms are given by G-
maps. Given a collection A of subgroups of G, that is, a set of subgroups of G closed
under conjugation, we let OA(G) ⊆ O(G) denote the full subcategory spanned by the
objects G/H with H ∈ A.

For a group G admitting a finite-dimensional cocompact model for EG, we will
exhibit a decomposition of the stable module∞-category in terms of the orbit category
OF (G), where F denotes a family of finite subgroups of G which contains the family
of finite p-subgroups of G. That is, we define a functor f0 from OF (G)op to Ĉat

⊗
∞

that maps an object G/H to ModStMod(kG)op(AH) ≃ StMod(kH)op and a morphisms

G/H
[g]−→ G/H ′ to the induced restriction functor along the conjugation by g. Hence

we will show that StMod(kG)op ≃ lim←− f0.
The idea is to find a suitable commutative algebra object A in StMod(kG)op which

satisfies descent, in fact, a commutative algebra object as in Proposition 3.2.4 will
work. This give us a decomposition

StMod(kG)op ≃ lim←−
∆

F

where F is a cobar resolution of the form ModStMod(kG)op(A
⊗k). Since we want to

rewrite this limit, we must be able to reconstruct this cobar resolution from OF (G)op

through final functors. The first step is to construct a category C by formally attaching
finite coproducts to the orbit category and then extend f0 to a functor f : Cop → Ĉat

⊗
∞

which preserves the homotopy type of f0. Moreover, we would like to find and object
in C mapping to ModStMod(kG)op(A) under f . The final step is to find a cofinal object
Z in C that will allow us to construct a cofinal functor Z•+1 : ∆op → C such that its
composition with f agrees with the cobar resolution F from above. In short, we will
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obtain a chain of equivalences

lim←−
OF (G)op

f0 ≃ lim←−
Cop

f ≃ lim←−
∆op

f ◦ Z•+1 = lim←−
∆op

F ≃ StMod(kG)op.

Theorem 3.2.6. Let G be a group with a finite-dimensional cocompact model X
for EG. Let F be a family of finite subgroups of G which contains the family of
finite p-subgroups of G. Then there is an equivalence of symmetric monoidal stable
∞-categories

StMod(kG)
≃−→ lim←−

G/H∈OF (G)op

StMod(kH).

Proof. Let S denote a set of representatives of the G-orbits of F and let A =∏
H∈S AH be a commutative algebra object in StMod(kG)op as in Proposition 3.2.4.

Since A admits descent (see Remark 3.2.5), Proposition 3.22 in [Mat16] gives us a
decomposition

StMod(kG)op ≃ Tot
(
ModStMod(kG)op(A)

−→−→ModStMod(kG)op(A
⊗2)
−→−→−→ . . .

)
We will rewrite this limit in terms of the orbit category OF(G). Consider the smallest
full subcategory C of

P(OF (G)) = Fun(OF (G)op,S)

that contains the essential image of the Yoneda embedding

OF (G)
y−→ P(OF (G))

and which is stable under finite coproducts (see [Lur09, Remark 5.3.5.9]). Then we
can extend the stable module ∞-category functor

f0 : OF (G)op → Ĉat
⊗
∞

G/H 7→ ModStMod(kG)op(AH) ≃ StMod(kH)op

to a functor
f : Cop → Ĉat

⊗
∞

that sends finite coproducts to products. Moreover, the functor f is the right Kan
extension of f0 = f |OF (G)op . Then we have a commutative diagram

OF(G)
op f0 //

i $$

Ĉat
⊗
∞

Cop
Ranif0=f

<<
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and hence an equivalence
lim←−
Cop

f ≃ lim←−
OF (G)op

f0.

In particular, the object
⊔

H∈S G/H in Cop is mapped under the functor f to∏
H∈S

StMod(kH) ≃ ModStMod(kG)op(A).

On the other hand, consider the object Z =
⊔

H∈S G/H ∈ C. Note that any
object Y ∈ C admits a map Y → Z. By [MNN17, Proposition 6.28] the simplicial
object Z•+1 : ∆op → C is cofinal. Moreover, we have that

∆→ Cop → Ĉat
⊗
∞

[k] 7→ Z×k 7→ ModStMod(kG)op(A
⊗k)

in other words, the cosimplicial diagram f ◦ Z•+1 is in fact the cobar construction.
Hence the result follows.

Remark 3.2.7. The previous theorem is analogous to Mathew’s decomposition for
finite groups (see [Mat15, Corollary 9.16]). In particular, we have that the modular
representation theory of G is determined by its finite p-local information just as in
the case of finite groups, at least when G satisfies the hypothesis of Theorem 3.2.6.

It is worth highlighting that working with the orbit category of an infinite group
might be not easy, hence it is convenient to have decompositions of the stable module
∞-category in terms of simpler categories. For this, the ∞-categorical version of
Quillen’s Theorem A will play an important role. For simplicity, we will state here
the version we need of such a theorem, we refer to [Lur09, Corollary 4.1.3.3] for
further details. Let F : C → D be a functor (here as ordinary categories). Then
N(F ) : N(C) → N(D) is cofinal if all the slice categories Cd/ are weakly contractible
for every d in D.

Let X be a finite-dimensional model for EG such that the fundamental domain
of the action is homeomorphic to a standard simplex ∆n. Let T denote the poset of
simplices in ∆n. In fact, T can be identified with the barycentric subdivision of ∆n

considering the latter as a poset. We have a functor

T → OF(G)

σ 7→ G/Gσ

where F denotes the family of finite subgroups of G. Recall that the elements in
T are simplices in ∆n, so here Gσ means the isotropy group of the simplex of X
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corresponding to the simplex σ of ∆n.

Proposition 3.2.8. The functor T → OF(G) defined above is cofinal.

Proof. By Quillen’s Theorem A [Lur09, Corollary 4.1.3.3] it is enough to verify that
T(G/H)/ has weakly contractible nerve, for all G/H ∈ OF (G). Note that T(G/H)/

corresponds to the poset of simplices of ∆n whose isotropy groups contain H, but
this poset has a minimum element, namely the simplex of higher dimension whose
isotropy group contains H. Therefore T has weakly contractible nerve, and the result
follows.

Corollary 3.2.9. Let X be a finite-dimensional model for EG such that the funda-
mental domain of the action is homeomorphic to the standard simplex ∆n. Let T
denote the barycentric subdivision of ∆n. Then there is an equivalence of symmetric
monoidal ∞-categories

StMod(kG)
≃−→ lim←−

σ∈T op

StMod(kGσ).

Proof. This follows by Proposition 3.2.8 and Theorem 3.2.6.



Chapter 4

Computations of the Picard group

In this chapter we use Corollary 4.1.2 to compute the Picard group of the stable
module category for countable locally finite p-groups. We also provide computations
for certain countable locally finite groups. We implement a tool to compute the Picard
group for amalgam groups (see Definition 4.4.1). Finally, for amalgam groups with
trivial face group we provide a construction of the modules that restrict stably to the
trivial representation on any finite subgroup.

4.1 The Picard space

Definition 4.1.1. The Picard space Pic(C) of a symmetric monoidal ∞-category
(C,⊗, 1) is the ∞-groupoid of ⊗-invertible objects in C and equivalences between
them.

In other words, the Picard space is an enhancement of the Picard group, since
the former encodes the latter as the connected components, but also keeps track of
all higher isomorphisms. It is clear that Pic defines a functor from the ∞-category
of symmetric monoidal ∞-categories Cat⊗ to the ∞-category of spaces S. Moreover,
we can describe the higher homotopy groups of Pic(C) as follows.

πiPic(C) =


PicGp(C) if n = 0

(π0HomC(1, 1))× if n = 1

πi−1HomC(1, 1) if n ≥ 2.

Moreover, the Picard space functor

Pic : Cat⊗ → S

commutes with homotopy limits (see [MS16, Proposition 2.2.3]).

42
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If G is a group of type Φ acting on a tree with associated graph Γ, then Theorem
3.1.3 gives us a decomposition of the Picard space

Pic(StMod(kG))
≃−→ lim←−

σ∈Γop

Pic(StMod(kGσ)). (4.1)

If G is a group of type Φ admitting a finite-dimensional cocompact model X for EG,
then Theorem 3.2.6 gives us a decomposition of the Picard space

Pic(StMod(kG))
≃−→ lim←−

G/H∈OF (G)op

Pic(StMod(kH)) (4.2)

where F denotes a family of finite subgroups containing the family of finite p-
subgroups of G. If additionally the fundamental domain of the action of G is homeo-
morphic to the standard simplex ∆n, we obtain an easier decomposition by Corollary
3.2.9

Pic(StMod(kG))
≃−→ lim←−

G/H∈T op

Pic(StMod(kH)) (4.3)

where T denotes the barycentric subdivision of ∆n. We will use the spectral sequence
of Bousfield-Kan for homotopy limits to compute the Picard group of the stable
module category. In particular, for the stable module ∞-category of a group G of
type Φ, the higher homotopy groups of the Picard space can be described as follows.

πiPic(StMod(kG)) =


T (G) if n = 0

ÂutG(k) if n = 1

Ĥ1−i(G, k) if n ≥ 2

where ÂutG(k) denotes the group of automorphisms of k in the stable module category
StMod(kG). In particular, for groups acting on trees we can describe the Picard group
as an extension of abelian groups (c.f. [MS19, Theorem 7.4]).

Corollary 4.1.2. Let G be a group of type Φ which acts on a tree. Consider the
associated graph of groups Γ→ Gps. Then we have a short exact sequence of abelian
groups

0→ H1(Γ; π1 ◦ Pic ◦ StMod)→ T (G)→ H0(Γ; π0 ◦ Pic ◦ StMod)→ 0.

where StMod denotes the stable module ∞-category functor associated to the graph of
groups (see Section 3.1).
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Proof. By Equation (4.1), we have an spectral sequence

Ep,q
2 = Hp(Γ;πq ◦ Pic ◦ StMod)⇒ πp−qPic(StMod(kG)).

Since Γ is a graph, it is concentrated in two consecutive columns. Then the spectral
sequence collapses at page two and the result follows.

Remark 4.1.3. Note that H0(Γ;π0 ◦ Pic ◦ StMod) corresponds to the kernel of the
map ∏

v∈V Γ

T (Gv)
Res−Resf−−−−−→

∏
e∈EΓ

T (Ge)

where Res− Resf is defined as follows. Fix (Mv)v∈V Γ ∈
∏

v∈V Γ T (Gv). Then

Res−Resf (Mv)v∈V Γ = (Ne)e∈EΓ

where Ne =Mι(e)↓Ge − f ∗
e (Mτ(e))↓Ge , and f ∗

e is the functor induced by the morphism
Ge → Gτ(e) in the graph of groups. On the other hand, H1(Γ; π0 ◦ Pic ◦ StMod)

corresponds to the cokernel of the map∏
v∈V Y

ÂutGv(k)
Res−Resf−−−−−→

∏
e∈EY

ÂutGe(k)

defined in a similar fashion. This agrees with [MS19, Theorem 7.4].

4.2 Countable Locally Finite p-Groups

Recall that a group G is called a locally finite p–group if every finitely generated
subgroup is a finite p–group. The following result is well known (see for example
[KW73, Lemma 1.A.9]).

Proposition 4.2.1. Let G be a locally finite group. Then G is countable if and only
if there is an ascending chain of finite subgroups

G1 ≤ G2 ≤ G3 ≤ . . .

such that
G =

⋃
n≥1

Gn.

In this case, we will say that G1 ≤ G2 ≤ G3 ≤ . . . is a tower for G.

Proposition 4.2.2. Let G be a countable locally finite group. Consider a tower
G1 ≤ G2 ≤ . . . of finite subgroups of G. Then the following hold.
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(i) G acts on a tree with isotropy groups in the family {Gn}n≥1.

(ii) If p divides the order of Gr for some r ≥ 1, then

T (G) ∼= lim←−T (Gn)

where the maps in the inverse system are given by the restrictions maps.

In particular, note that part (i) of this proposition gives us that any countable
locally finite group is a group of type Φ.

Proof. The first part follows by [Ike84, Example 3]. For convenience we will give the
construction of the tree T : define the vertex set V T as the disjoint union of the sets
G/Gn for n ≥ 1. The edges are given by the canonical maps G/Gn → G/Gn+1, that
is, if mGn is a vertex, then there is an edge from the corresponding vertex to mGn+1.

The graph T is path connected since any vertex will be mapped to the trivial coset
eventually. Moreover, it is clear that there are no loops, hence T is a tree. The action
of G on the tree T is induced by the action of G on G/Gn by multiplication. For an
edge (mGn,mGn+1), the action is given by

g · (mGn,mGn+1) = ((gm)Gn, (gm)Gn+1)

for g ∈ G. Note that the stabilizer of the vertex mGn is isomorphic to Gn.
For the second part, note that the fundamental domain for the action of G on T

corresponds to a ray. Then the associated graph of groups Γ→ Gps can be depicted
as follows.

. . .__
i

G2 __
i

??
Id

G1??
Id

G2 G1

where i denotes the inclusion Gn → Gn+1. Then the diagram

StMod(−) : Γop → Cat⊗∞

simplifies to

. . .
Res−−→ StMod(kG3)

Res−−→ StMod(kG2)
Res−−→ StMod(kG1)

By Corollary 4.1.2, we have the following exact sequence of abelian groups.

0→ H1(Γ; π1 StMod)→ T (G)→ H0(Γ;π0 StMod)→ 0
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Note that π1 StMod(kGn) ∼= ÂutGn(k)
∼= k× for all n ≥ r, thus π1 StMod is eventually

constant. Hence we have that H1(Γ, π1 StMod)) ∼= H1(|Γ|, k×) = 0. On the other
hand, recall that

H0(Γ; π0 StMod) = lim←− π0(StMod(kGn)) = lim←−T (Gn)

and the result follows.

We will first consider the case when the group is artinian, that is, if its subgroups
satisfy the descending chain condition.

Definition 4.2.3. A group P is called a discrete p-toral group if it fits in an extension

1→ K → P → S → 1

where K is isomorphic to a finite product of copies of Z/p∞ and S is a finite p-group.

Note that Z/p∞ is an artinian locally finite p-group. Since these properties are
preserved by finite products and finite extensions, we deduce that any discrete p-toral
group is an artinian locally finite p-group. The converse also holds (see [BLO07,
Proposition 1.2]). Hence a group is a locally finite p-group if and only if it is a
discrete p-toral group. As a consequence of this characterization, it follows that the
class of discrete p-toral groups is closed under subgroups, quotients and extensions
by discrete p-toral groups. Moreover, if P is a discrete p-toral group, then it contains
finitely many conjugacy classes of elementary abelian p-subgroups and finitely many
conjugacy classes of subgroups of order pn for n ≥ 0 (see [BLO07, Lemma 1.4]).

We will use these properties of discrete p-toral groups and the description of the
restriction maps in the case of finite p-groups to determine T (P ) in terms of the P–
conjugacy classes of maximal elementary abelian subgroups of P of rank 2. The result
will be analogous to the case of finite p-groups; for almost all the cases the group of
invertible modules is an abelian free group. We shall deal separately with discrete p-
toral groups that admit a tower of cyclic, dihedral, semidihedral or quaternion groups.
We will describe these cases first.

Proposition 4.2.4. The following hold.

(a) Let P = Z/p∞. Then T (P ) ∼= Z/2.

(b) Let D2∞ =
⋃
D2n, where D2n denotes the dihedral group of order 2n. Then

T (D2∞) ∼= Z.

(c) Let Q2∞ =
⋃
Q2n, where Q2n denotes the generalized quaternion group of order

2n. Then T (Q2∞) ∼= Z/4.
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Proof. (a) In this case P admits a tower of cyclic groups

Z/p ≤ Z/p2 ≤ . . .

Since T (Z/2) is trivial and T (Z/pm) ∼= Z/2 generated by [Ω(k)], for pm > 2 (see
[Dad78a, Corollary 8.8]), we deduce that the restriction map Res: T (Z/pm+1) →
T (Z/pm) is the identity, for all m > 1. Hence the inverse system (T (Z/pm),Res) is
eventually constant. Then T (P ) is isomorphic to Z/2.

(b) Fix the following presentation for the dihedral group D2n .

⟨r, s | r2n−1

= s2 = (sr)2 = 1⟩

Then we will consider D2n−1 as the subgroup of D2n generated by r2 and s.

Recall that T (D2n) = ⟨ΩD2n
, [L]⟩ ∼= Z2 (see [CT00, Section 5]). Let ΩD2n−1 , [L

′] be
the standard generators of T (D2n−1). It is clear that

Res([ΩD2n
]) = [ΩD2n−1 ].

Set F = ⟨r2s, r2n−2⟩ and F ′ = ⟨s, r2n−2⟩, which are representatives of the two conju-
gacy classes of maximal elementary abelian subgroups of D2n−1 . Since F and F ′ are
conjugate in D2n , we have

Res: T (D2n)→T (F )⊕ T (F ′)

[L] 7→(−ΩF ,−ΩF ′)

(see [CT00, Theorem 5.4]). The map Res: T (D2n) → T (F ) ⊕ T (F ′) factors through
T (D2n−1) so we have a commutative triangle

T (D2n) //

''

T (D2n−1)

��
T (F )⊕ T (F ′)

and by the detection theorem (see [CT00, Conjecture 2.6]), the vertical map is injec-
tive. We deduce that

Res: T (D2n)→T (D2n−1)

mΩD2n
+ n[L] 7→(m− n)ΩD2n−1

Hence the result follows.
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(c) Fix the following presentation for the generalized quaternion group Q2n+1

⟨x, y | x2n = 1, y2 = x2
n−1

, yxy = x−1⟩

We will identify Q2n with the subgroup ⟨x2, y⟩ of Q2n+1 .
Recall that T (Q2n+1) = ⟨ΩQ2n+1 , [Ω

1
Qn+1(L)]⟩ ∼= Z/4⊕Z/2 (see [CT00, Section 6]).

Consider the restriction map

Res: T (Q2n+1)→ T (H)⊕ T (H ′)

where H = ⟨x2n−2
, y⟩ and H ′ = ⟨x2n−2

, xy⟩ are representatives of the two conjugacy
classes of quaternion subgroups of order 8. Then

Ω1
Q2n+1

(L) 7→ (2ΩH , 0) or (0, 2ΩH′)

under the previous restriction map [CT00, Theorem 6.5]. Let F = ⟨(x2)2n−3
, y⟩ and

F ′ = ⟨(x2)2n−3
, x2y⟩ be representatives of the two conjugacy classes of quaternion

subgroups of Q2n of order 8. Note that F and F ′ are Q2n+1-conjugate, hence

Res: T (Q2n+1)→T (H)⊕ T (H ′)

ΩQ2n+1 7→(ΩF ,ΩF ′)

[Ω1
Q2n+1

(L)] 7→(0, 0) or (2ΩF , 2ΩF ′)

Since the map Res: T (Q2n+1) → T (F ) ⊕ T (F ′) factors through T (Q2n) we have a
commutative diagram

T (Q2n+1) //

((

T (Q2n)

��
T (H)⊕ T (H ′)

and by the detection theorem, the vertical arrow is injective. We deduce that

Res: T (Q2n+1)→T (Q2n)

(mΩQ2n+1 , n[Ω
1
Qn+1(L)]) 7→((n+ 2m)ΩQ2n , 0) or

(mΩQ2n , 0)

Therefore lim←−T (Q2n) ∼= Z/4.

Remark 4.2.5. The maximal subgroups of a semi-dihedral group are generalized
quaternion, dihedral and cyclic groups and none of them contain a semi-dihedral
group as a subgroup (see [Gor80, Theorem 4.3]). Then a locally finite group that
admits a tower of semi-dihedral groups is a semi-dihedral group, hence a finite group.
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Proposition 4.2.6. Let P be a discrete p-toral group that admits a tower Q1 ≤ Q2 ≤
. . . such that Qn is not cyclic, dihedral, semi-dihedral or quaternion for all n ≥ 1.
Then

T (P ) =

{
Zr if P has p-rank at most 2
Zr+1 if P has p-rank at least 3

where r is the number of conjugacy classes of maximal elementary abelian subgroups
of P of rank 2.

Proof. Since Qn is not cyclic, semi-dihedral or generalized quaternion for all n ≥ 1, we
have that T (Qn) is a free abelian group and its rank is determined by the connected
components of E≥2(Qn)/Qn, the poset of Qn–orbits of elementary abelian subgroups
of p-rank at least 2. Recall that we have a finite number of P–conjugacy classes
of maximal elementary abelian subgroups of rank 2. Fix representatives E1, . . . , Er

of these classes. We can assume that Ei is a subgroup of Q1 and has the form
Ei = ⟨ui⟩ × Z, where Z is the unique central subgroup of Q1 of order p and ⟨ui⟩ is a
non-central subgroup of Q1 of order p, for 1 ≤ i ≤ r (see [Maz19, Section 3.3]).

Suppose that P has p-rank at least 3. Hence we can assume that Q1 has p-rank
at least 3. For n ≥ 1, choose elementary abelian subgroups En

0 , . . . , E
n
r+sn of rank

2 which are representatives of the connected components of E≥2(Qn)/Qn. We can
assume that En

0 = E0 for a fixed elementary abelian subgroup in the big component
of E≥2(Q1)/Q1, that is, the connected component that contains all the elementary
abelian subgroups of Q1 of rank at least 3.

We can assume that En
i = Ei for 1 ≤ i ≤ r, and En

i = Z × ⟨uni ⟩ for a non-central
subgroup ⟨uni ⟩ of Qn of order p, for r + 1 ≤ i ≤ r + sn. Then there exist endotrivial
modules Nn

1 , .., N
n
r+sn such that

ResQn

En
j
(Nn

i )
∼=



k ⊕ (proj) if i ̸= j,

Ω−2p
En

j
(k)⊕ (proj) if i = j and CQn(u

n
i )/⟨uni ⟩ is cyclic of order ≥ 3,

Ω−2
En

j
(k)⊕ (proj) if i = j and CQn(u

n
i )/⟨uni ⟩ has order 2,

Ω−8
En

j
(k)⊕ (proj) if i = j and CQn(u

n
i )/⟨uni ⟩ is quaternion.

for 0 ≤ j ≤ r + sn and 1 ≤ i ≤ r + sn (see [Maz19, Section 3.3]).
Since we have only r classes of P–conjugation of maximal elementary abelian

subgroups or rank 2, the subgroup En
i must be in the same Qm–orbit of some Ej in

E≥2(Qm)/Qm for some m ≥ n, and some j = 0, . . . , r. We can suppose that this holds
for m = n+ 1. In particular, we have that

Res
Qn+1

En
j

([Nn+1
i ]) = [k]
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for r < i ≤ r + sm+1 and 0 ≤ j ≤ r + sm. Then it follows that Res
Qn+1

Qn
is trivial on

the Nn
j -components for r < j ≤ r + sn. On the other hand, note that we can find a

large enough k such that

CQn(u
n
i )/⟨uni ⟩ ∼= CQn+1(u

n+1
i )/⟨un+1

i ⟩

for all n ≥ k since CQn(ui) ≤ CQn+1(ui). We can suppose that k = 1. Then we have
that Res

Qn+1

Qn
[Nn+1

j ] = [Nn
j ] for 0 ≤ j ≤ r.

For j ≥ 1, define πj : Zr+1 → T (Qj) as the inclusion on the generators Nn
j for

0 ≤ j ≤ r. It is straightforward to show that (Zr+1, πi) is the limit of the inverse
system {T (Qn)}. Then the result holds. The case where P has p-rank at most 2 is
analogous.

The following result is analogous to the description of finite p-groups whose group
of endotrivial modules is infinite cyclic. For abelian p-groups this is precisely the main
theorem given by Dade in [Dad78a]. See also [Maz19, Theorem 3.5].

Corollary 4.2.7. Let P be a discrete p-toral group. If one of the following conditions
holds, then T (P ) ∼= Z.

(1) P is an abelian group of p-rank at least 2.

(2) P has p-rank at least p+ 1 if p is odd or at least 5 if p = 2.

Proof. If (1) holds, then P admits a tower of p-abelian groups of rank at least 2. The
group of endotrivial modules of such groups is infinite cyclic by [Dad78a, Theorem
10.1], we deduce that the restriction maps are all the identity. If (2) holds, the result
follows in a similar fashion by [Maz19, Theorem 3.5].

Let P be a discrete p-toral group. Let P1 ≤ P2 ≤ . . . be a tower for P . If Pn

is cyclic, dihedral, semi-dihedral or quaternion for just a finite number of n, then
we can always consider ignore the first few terms and re-index the tower so that P
satisfies the hypothesis of Proposition 4.2.6. If Pn is cyclic, dihedral, semi-dihedral
or quaternion for an infinite number of n, then we can extract a tower so that all
the terms are of the same type, hence P would be isomorphic to one of the groups in
Proposition 4.2.4. Thus we have covered completely the class of artinian countable
locally finite p-groups.

The following result completes the classification of the Picard group for the class
of countable locally finite p-groups.

Proposition 4.2.8. Let P be a countable locally finite p-group. If P is not artinian,
then T (P ) ∼= Z.
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Proof. By Lemma 3.1 in [KW73], we have that P contains an infinite elementary
abelian subgroup. Hence there is a tower P1 ≤ P2 ≤ P3 ≤ . . . so that Pn has p-rank
at least p + 4, for all n ≥ 1. By [Maz19, Theorem 3.5] We have T (Pn) ∼= Z, for all
n ≥ 1. We deduce that {T (Pn)} is constant, and the result follows.

4.3 Countable Locally Finite Groups

Remark 4.3.1. For general finite groups, the description of the group of endotrivial
modules by generators and relations is not complete. Hence it is more elaborated
to identify the restriction maps Res: T (Gn+1) → T (Gn) in an inverse system for a
countable locally finite group G. A different approach is to study the restriction map
Res: T (G) → T (S) where S is a maximal p-subgroup of G. However, we need to be
careful since there are locally finite groups whose maximal p-subgroups are not all
isomorphic (see [KW73, Section 1.D] for a discussion).

Definition 4.3.2. Let G be a group. We say that G is p-artinian if any p-subgroup
of G is artinian.

Let G be a p-artinian countable locally finite group. In this case, a maximal p-
subgroup of G plays the role of a Sylow p-subgroup. In particular, any two maximal
p-subgroups of G are isomorphic (see [KW73, Theorem 3.7]). Consider a tower of
finite groups G1 ≤ G2 ≤ . . . of G. Set S1 a p-Sylow subgroup of G1. For each
n ≥ 2 we can find a p-Sylow subgroup Sn of Gn such that Sn−1 ≤ Sn. Then we
obtain a ascending chain Sn of finite p-subgroups of G. Then S = ∪Sn is a maximal
p-subgroup. Moreover, note that S is a discrete p-toral group.

By Proposition 4.2.2 we know that T (G) agrees with the projective limit of the
inverse system {T (Gn)} with maps induced by the restriction maps. We would like
to give a better description of this projective limit.

For n ≥ 1 consider the restriction map Res: T (Gn)→ T (Sn) and denote its image
by T (Sn) and its kernel by T (Gn, Sn). Then we have a short exact sequence of abelian
groups

0→ T (Gn, Sn)→ T (Gn)→ T (Sn)→ 0.

Hence we obtain a short exact sequence of inverse systems. The following sequence
is exact since T (Gn, Sn) is finite for all n ≥ 1, hence we can use the Mittag-Leffler
condition for the vanishing of the lim←−

1.

0→ lim←−
n

T (Gn, Sn)→ T (G)→ lim←−
n

T (Sn)→ 0.

We can identify lim←−n
T (Sn) as a subgroup of T (S). Moreover, this group agrees
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with the image of the restriction map Res: T (G) → T (S) and as a consequence we
obtain that Ker(Res) ∼= lim←−n

T (Gn, Sn). We will denote this group by T (G,S).
As we mentioned before, we have the inconvenience that we do not have an explicit

description of the restriction maps for arbitrary finite groups as in the case of finite
p-groups. Thus the best we can do is considering special cases of countable locally
finite groups. We will conclude this section with a couple of examples where we are
able to determine T (G) as an abstract group.

Example 4.3.3. Let G be an abelian countable locally finite group that has p-rank
at least 2. Suppose additionally that G is p-artinian. Let S be a maximal p-subgroup
of G constructed from a tower {Sn} of Sylow p-subgroups as above. Since G is of
p-rank at least 2, we can prove that T (S) is infinite cyclic. Hence, we deduce that
lim←−T (Sn) ∼= T (S). On the other hand, we have that T (Gn, Sn) ∼= Hom(Gn, k

×). It
follows that

T (G) ∼= Z⊕ Hom(G, k×).

Example 4.3.4. We say that a locally finite group G is p-nilpotent if any p-subgroup
of G is nilpotent. Let G be a locally finite group that is p-artinian and p-nilpotent.
Then we have a tower G1 ≤ G2 ≤ . . . where Gn is a finite p-nilpotent group for any
n ≥ 1. By [CMT11, Theorem 3.3] we have a short exact sequence of abelian groups

0→ Hom(Gn, k
×)→ T (Gn)→ T (Sn)→ 0

where Sn is a Sylow p-subgroup of Gn, for n ≥ 1. Then

T (G) ∼= Hom(G, k×)⊕ T (S)

where S is a maximal p-subgroup of G.

4.4 Amalgam Groups

In this section, we let G be a group with geometric dimension two for the family
of finite groups. In particular, we are interested in the case where the fundamental
domain of the action is homeomorphic to the standard 2-simplex.

Definition 4.4.1. We will say thatG is an amalgam group, if it admits a 2-dimensional
model X for EG such that the fundamental domain of the action is homeomorphic
to the standard 2-simplex. In particular, amalgam groups are groups of type Φ.

Let T denote the barycentric subdivision of ∆2. A triangle of groups is a functor
T → Gps that can be depicted as commutative diagram of groups
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A

M L

N

B K C

where all the maps are injective maps, these diagrams are also known as punctured
cubes. The groups A,B and C are called vertex groups, K,L and M are called edge
groups and N is called the face group. In other words, it corresponds to a functor
from the barycentric subdivision of the standard 2-simplex that associates a group to
each vertex, an injective morphism to each edge satisfying a compatibility condition
for the composition on each face (see [FP97, Section 1]).

Any amalgam group defines a triangle of groups where the groups correspond
to the isotropy groups of the vertices, edges and face, and the maps are given by
inclusions. However, this assignation is not bijective, there are triangles of groups that
do not correspond to an amalgam group. If the triangle of groups is non-positively
curved, then the fundamental group of the triangle of groups is an amalgam group
(see [Hae92], [Sta91]).

Theorem 4.4.2. Let G be an amalgam group and T → Gps be its associated triangle
of groups. Then we have an exact sequence of abelian groups

0→ H1(T ; π1 ◦ f)→ T (G)→ H0(T ; π0 ◦ f)→ 0

where f is the composition of the Picard space functor and the stable module ∞-
category functor corresponding to the triangle of groups T → Gps. Moreover, if p
divides the order of the face group, then the map

T (G)→ H0(T ; π0 ◦ f)

is an isomorphism.

Proof. By Equation 4.3, we have a spectral sequence

Ep,q
2 = Hp(T ; πq ◦ Pic ◦ StMod)⇒ πp−q(Pic(StMod(kG)))

and recall that π0 ◦ Pic ◦ StMod(kG) corresponds to the Picard group T (G). Let σ
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be a simplex in the 2-dimensional model X for EG. We have

π1(Pic(StMod(kGσ))) = Ĥ0(Gσ; k) =

{
k× if p divides |Gσ|
0 otherwise.

π2(Pic(StMod(kGσ))) = Ĥ−1(Gσ; k) =

{
k if p divides |Gσ|
0 otherwise.

Suppose first that p does not divide the order of the face group. Then it is clear
that H2(T ; πq ◦ Pic ◦ StMod) is trivial for q = 1, 2, and the result follows. On the
other hand, if p divides the order of the face group, then πq ◦Pic◦StMod is a constant
diagram for q = 1, 2, therefore H2(T ; π1 ◦ Pic ◦ StMod) ∼= H2(|T |; k×) = 0 and
H2(T ; π2 ◦ Pic ◦ StMod) = H2(|T |; k) = 0. Hence the result follows.

Example 4.4.3. Consider the Coxeter group G = ∆∗(2, 4, 4) of isometries of the
Euclidean plane generated by the reflections across the sides of a triangle with angles
π/2, π/4 and π/4. In this case, G is an amalgam group arising from a non-positively
curved triangle of groups with trivial face group, with each edge group isomorphic
to Z/2 and with vertex groups isomorphic to the dihedral groups D8, D16 and D16,
where Dn denotes the dihedral group of order n.

In particular, the diagram π1 ◦Pic ◦ StMod is constant. It follows that H1(T ; π1 ◦
Pic ◦ StMod) ∼= H1(|T |; k×) ∼= k×. Moreover, T (Z/2) = 0, hence

T (G) ∼= T (D8)⊕ T (D16)⊕ T (D16)⊕ k× ∼= Z6 ⊕ k×.

4.5 Locally trivial modules for amalgam groups

In this section, we will discuss a different approach to compute the Picard group for
amalgam groups with trivial face group. In particular, we will focus on modules that
are stably isomorphic to the trivial module after restriction to any finite subgroup.
We will provide a construction of these modules.

Definition 4.5.1. Let G be a group of type Φ. We say that a kG–module M is
locally trivial if the restriction to any finite subgroup of G is stably isomorphic to the
trivial module k, that is, if M↓H ≃ k for any finite subgroup H of G. Let Tloc(G)

denote the group of isomorphism classes of locally trivial kG–modules equipped with
the tensor product.

Remark 4.5.2. Note that any locally trivial kG–module is invertible. In fact, the
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group of locally trivial modules corresponds to the kernel of the restriction map

Res: T (G)→
∏
H

T (H)

where H runs through the family of finite subgroups of G.

Let G be an amalgam group. Recall that, by definition, there is a 2-dimensional
model X for EG such that the fundamental domain of the action Y is homeomorphic
to the standard 2-simplex. Let V Y, EY, FY be the sets of vertices, edges and faces
of Y , respectively. Consider the following complex of abelian groups∏

v∈V Y

ÂutGv(k)
d1 //

∏
e∈EY

ÂutGe(k)
d2 //

∏
f∈FY

ÂutGf
(k)

with d1 and d2 given by

(φv)v∈V Y 7→ (φ−1
τ(e)↓Geφι(e)↓Ge)e∈EY

and
(φe)e∈EY 7→ (φf2↓Gf

φf0↓Gf
φ−1
f1
↓Gf

)f∈FY

respectively, where fj denotes the jth face of f . We will omit the restriction of an
isomorphism when it is clear from the context. We call Ker(d2) the group of 1-cocycles
and Im(d1) the group of 1-coboundaries. Define Ȟ1(G) as the quotient group of the
1-cocycles over the 1-coboundaries. We will construct an assignment

σ : Tloc(G)→ Ȟ1(G)

and we will show that this is an isomorphism when G has trivial face group.
Let M be a locally trivial kG–module. Choose a stable isomorphism of kGv–

modules ξv : M → k, for each v ∈ V Y . Let φe := ξτ(e)ξ
−1
ι(e), which is an element in

ÂutGe(k). Note that

σ(M, ξv) := (φe)e∈EY ∈
∏
e∈EY

ÂutGe(k)

is a 1-cocycle. We define σ([M ]) as the class of σ(M, ξv). We will show that this defi-
nition is independent of the representative of [M ] and the choice of ξv. Let ξ′v : M → k

be a stable isomorphism of kGv–modules. Consider τv := ξ′vξ
−1
v ∈ ÂutGv(k) for each

v ∈ V Y . We have that

σ(M, ξ)σ(M, ξ′)−1 = d1((τv)v∈V Y )

hence σ does not depend on ξ. On the other hand, let N be stably isomorphic to M ,
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and let ψ : M → N be a stable isomorphism. Set ξ′ : N → k as ξ′v := ξvψ
−1. Then

σ(M, ξ) = σ(N, ξ′).

In order to show that σ is a surjective map, we will exhibit a right inverse of σ.
We describe first the main idea in the following argument. Given an element φ in
Ȟ1(G), we will define a G–equivariant local coefficient system that depends on φ and
show that its chain complex determines a locally trivial module via the equivalence
of categories StMod(kG)→ Db(kG)/Kb(Proj(kG)).

Let X be a 2-dimensional model for EG such that the fundamental domain of the
action Y is homeomorphic to the standard 2-simplex. Let V X, EX, FX be the sets
of vertices, edges and faces of X, respectively. For each vertex v ∈ V X, let v denote
the only vertex of Y in the same G–orbit of v. Fix tv ∈ G such that tvv = v, and
take tv = 1 if v = v. We will use the same notation to refer the only edge (resp. face)
of Y in the same G–orbit of a given edge (resp. face) of X.

Consider the 2-simplex Y with an orientation and labels for the vertices, edges
and face as follows:

w0 w1

w2

f 1 f 0

f 2

f

Let kwi
denote the trivial kGwi

–module for i = 0, 1, 2. We obtain a module
for any vertex of the complex X by setting kv := tv ⊗ kv as the kGv–module with
the same action as in the restriction of the induced module kG ⊗kGv

k. Explicitly,
g(tv ⊗ m) = tv ⊗ (t−1

v gtv)m for g ∈ Gv. Note that the action of G on the direct
sum of the modules kv permutes the summands. Let ke := kι(e)↓Ge for e ∈ EX and
kf := kf0↓Gf

for f ∈ FX.
Let φ ∈ Ȟ1(G). Consider a representative (φf0

, φf1
, φf2

) of φ. Recall that φe is an
element in ÂutGe(e) for any edge e, and hence it corresponds to a unit of k. Moreover,
(φf0

, φf1
, φf2

) satisfies the condition φf0
φf2

= φf1
. We can extend this collection of

automorphisms indexed by the edges of Y to a collection of automorphisms indexed
by the edges of X. For any e ∈ EX, we can define a kGe–isomorphism as follows

φe : kι(e) → kτ(e)

tι(e) ⊗m 7→ tτ(e) ⊗ φē(m)
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so that these maps satisfy the cocycle condition φf1 = φf0φf2 for any face f ∈ FX,
where fj denotes the jth face of f . Let Vectk denote the category of k-vector spaces.
We will define a G–equivariant local coefficient system of k-vector spaces Fφ : X →
Vectk as follows (we refer to [Ben98, Section 7.1] for more details about local coefficient
systems). For a simplex x ∈ X, set Fφ(x) := kx. Let e be an edge of X, and let v
denote a vertex of e.

Fφ(v → e) =

{
1ke if v = ι(e),

φe if v = τ(e).

For a face f of X, and an edge e of f , we let

Fφ(e→ f) =


φe if e = f0,

φf1 if e = f1,

1kf if e = f2.

Note that Fφ sends morphisms to isomorphisms of vector spaces. Hence Fφ is a G–
twisted local coefficient system. The associated chain complex C∗(X;Fφ) is given by
(see [Ben98, Definition 7.3.1])

C2
d2 // C1

d1 // C0

where the terms of this chain complex correspond to the kG–modules

C0 =
⊕
v∈V X

kv, C1 =
⊕
e∈EX

ke, C2 =
⊕
f∈FX

kf

that is

C0
∼=

2⊕
j=0

kwj
↑GGwj

, C1
∼=

2⊕
j=0

kfj
↑GGfj

, C2
∼= kf↑GGf

with differentials given as follows. If x ∈ Fφ(f) with f a face of X and y ∈ Fφ(e)

with e and edge of X, then

d2(x) =
2∑

i=0

(−1)iFφ(fi → f)(x)

and
d1(y) = Fφ(τ(e)→ e)(y)−Fφ(ι(e)→ e)(y).

Proposition 4.5.3. Let G be an amalgam group. Then σ : Tloc(G) → Ȟ1(G) is a
surjective map.

Proof. First, we claim that for an element φ ∈ Ȟ1(G), the complex C∗(X;Fφ) de-
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scribed above determines a locally trivial module through the equivalence of categories

StMod(kG)→ Db(kG)/Kb(Proj(kG)).

Let v be a vertex of X. Consider the G–twisted coefficient system F ′
φ on v induced

by the inclusion v → X. Since X is a model for EG, it is Gv–contractible. It follows
that

Fφ(v) ≃ C∗(v;F ′
φ)

≃−→ C∗(X;F)

is a quasi-isomorphism since G–twisted coefficient systems are hG–homotopy invari-
ants (see [Gro23, Subsection 3.2]). Hence the claim follows. Moreover, since the
equivalence of categories mentioned above is compatible with restriction and conju-
gation, we deduce that σ(C∗(X;Fφ)) corresponds to φ in Ȟ1(G). Therefore σ is
surjective.

Proposition 4.5.4. Let G be an amalgam group with trivial face group. Then
σ : Tloc(G)→ Ȟ1(G) is a group isomorphism.

We need to show some auxiliary results first, so we will leave the proof of this
proposition until the end of this section. Let G be an amalgam group with a 2-
dimensional model X for EG. Consider the action of G on the 1-skeleton X(1) of X.
We can follow [DD89, Section I.9] to construct the universal covering group Γ of G.
Recall that Γ satisfies the following properties:

(a) Γ acts properly on a tree T .

(b) T is the universal covering space of X(1).

(c) The graphs of groups T/Γ and X/G are isomorphic.

(d) There is a short exact sequence of groups

1→ π1(X
(1))→ Γ→ G→ 1

where π1(X(1)) denotes the fundamental group of X(1). Note that π1(X(1)) is a
free group.

Moreover, Γ is a group of type Φ since T is a 1-dimensional model for EΓ.

Proposition 4.5.5. Let G be an amalgam group with trivial face group and X the
associated 2-dimensional simplicial complex. Let Γ be the universal covering group of
G. Then the inflation functor given by the quotient homomorphism p : Γ→ G

Inf : Mod(kG)→ Mod(kΓ)
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is exact and maps modules of finite projective dimension to modules of finite projective
dimension. Moreover, Inf is a fully faithful functor.

Proof. The exactness is straightforward. For the second part, let M be a kG–module
of finite projective dimension. Let H be a finite subgroup of Γ. Since the kernel
of p is a free group, we deduce that p|H : H → p(H) is a group isomorphism. Note
that Inf(M)↓H ∼= M↓p(H) as kH–modules, hence Inf(M)↓H is projective. Since Γ is
a group of type Φ, we deduce that Inf(M) has finite projective dimension. On the
other hand, recall that extension of scalars

kG⊗kΓ − : Mod(kΓ)→ Mod(kG)

is a left adjoint of Inf. Moreover, it is isomorphic to the coinvariants functor

(−)π1(X(1)) : Mod(kΓ)→ Mod(kG).

In particular, it is clear that the counit of the adjunction (−)π1(X(1)) ⊣ Inf is an
isomorphism. Hence Inf is fully faithful

Proposition 4.5.6. Let G be an amalgam group with trivial face group. Then the
inflation functor induces an injective group homomorphism Inf : T (G)→ T (Γ).

Proof. By Proposition 4.5.5, we have that Inf defines an exact functor of stable module
categories. Note that inflation is a strongly monoidal functor and maps invertible
modules to invertible modules, so we have a homomorphism T (G)→ T (Γ). We claim
that inflation reflects stable isomorphisms. Let M → N be a homomorphism of kG–
modules satisfying that Inf(M)→ Inf(N) is a stable isomorphism. Let H be a finite
subgroup of Γ. Then we have a commutative diagram

Inf(M)↓H

��

// Inf(N)↓H

��
M↓p(H)

// N↓p(H)

where the vertical maps are isomorphisms of kH–modules, and the top map is a stable
isomorphism. Then the bottom map is a stable isomorphism as well. The claim
follows because stable isomorphisms are detected by the family of finite subgroups
of G. Since Inf is fully faithful and reflects stable isomorphisms, we deduce that
Inf : T (G)→ T (Γ) is injective.

Proof of Proposition 4.5.4. Consider the universal covering group Γ of G. Recall that
we have an analogous definition of Ȟ1(Γ) and the map σ : Tloc(Γ) → Ȟ1(Γ) is an
isomorphism (see [MS19, Theorem 7.4]). Note that the following diagram is commu-
tative.
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Tloc(G)
σ //

Inf
��

Ȟ1(G)

��

Tloc(Γ) σ
// Ȟ1(Γ)

where the map Ȟ1(G) → Ȟ1(Γ) is induced by the quotient map Γ → G. The
vertical left map is injective by Proposition 4.5.6. Hence the top map is an injective
homomorphism. By Proposition 4.5.3, the map σ is surjective, and hence it is an
isomorphism.



Chapter 5

Separable algebra objects of infinite
degree

In this chapter we give background material on tensor triangular geometry in order to
introduce the degree of a tt-ring as well as some of its properties. All known tt-rings
in the literature have finite degree and it is an open question in [Bal14] whether any
tt-ring in an essentially small tensor-triangulated category must have finite degree.
We construct e a family of infinite degree tt-rings, giving a negative answer to this
question. In fact, this family extends to a family of infinite degree rigid-compact tt-
rings in the framework of rigidly-compactly generated tensor triangulated categories.
We refer to [Bal05] and [Bal10] for more details about the introductory material in
this chapter.

5.1 Set-up

Recall that an essentially small category is a category such that the collection of
isomorphism classes of its objects determines a set. This is the only restriction that
we will place on the categories in this section, so we will work in full generality as in
[Bal05].

Definition 5.1.1. A tensor triangulated category (K,⊗,1) is a triangulated category
K with a symmetric monoidal structure K ⊗ K → K and unit 1 ∈ K, such that the
tensor product ⊗ is exact in each variable. A tensor triangulated functor F : K → L
is an exact functor that is strongly monoidal and preserves the unit.

Let J be a non-empty full subcategory of a tensor triangulated category K. Sup-
pose that J is a triangulated subcategory of K, that is, J is closed under cones and
the suspension functor. Recall that:

61
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• J is a thick subcategory if it is closed under retracts. That is, if a⊕ b belong to
J , then a and b belong to J .

• J is a tensor-ideal if a⊗ b ∈ J provided that a ∈ J and b ∈ K.

• J is prime if it is a proper thick tensor-ideal such that a ⊗ b ∈ J implies that
a ∈ J or b ∈ J .

Let K be an essentially small tensor triangulated category. Let Spc(K) denote the
set of all primes P ⊂ K. The support supp(a) of an object a ∈ K is the set of all
primes P ⊂ K such that a ̸∈ P . The complements U(a) := Spc(K)\supp(a), for all
a ∈ K, define an open basis for a topology on Spc(K). The Balmer spectrum of K is
Spc(K) equipped with this topology.

The support supp(a) defines a support datum on K. That is, it is an assignment
from K to the set of closed subsets Cl(Spc(K)) of Spc(K), which satisfies the following
properties.

• supp(0) = ∅ and supp(1) = K.

• supp(a⊕ b) = supp(a) ∪ supp(b).

• supp(Σa) = supp(a).

• If a → b → c → Σa is a distinguished triangle in K, then supp(a) ⊆ supp(b) ∪
supp(c).

• supp(a⊗ b) = supp(a) ∩ supp(b).

Then the Balmer spectrum Spc(K) together with supp(−) : K → Cl(Spc(K)) is the
final support datum on K. That is, if X is a topological space together an assignment
σ : K → Cl(X) satisfying the above properties, then there exists a unique continuous
map φ : X → Spc(K) such that σ(a) = φ−1(supp(a)) for a ∈ K (see [Bal05, Theorem
3.2]).

Remark 5.1.2. The Balmer spectrum Spc(K) of an essentially small tensor triangu-
lated category K is a spectral space. That is, the following properties hold.

• Spc(K) is quasi-compact and T0.

• The topology on Spc(K) has a basis of quasi-compact open subsets.

• The collection of quasi-compact open subsets is closed under finite intersections.

• Spc(K) is sober. That is, any non-empty closed and irreducible subset of Spc(K)
has a unique generic point.



63

We refer to [DST19, Chapter 1] for more details about spectral topological spaces.

Let F : K → L be a tensor triangulated functor. The assignment P → F−1(P)
defines a spectral map1 φ : Spc(L) → Spc(K). In other words, Spc(−) defines a
contravariant functor from the category of essentially small triangulated categories to
the category of spectral spaces.

Example 5.1.3. Let G be a finite group. Let k be a field of prime characteristic p
dividing the order of G. Then the stable module category stmod(kG), which is ob-
tained from the category of finitely generated kG–modules by factoring out projective
modules, is an essentially small tensor triangulated category; the symmetric monoidal
structure is inherited by the one in the category of kG–modules given by the tensor
product ⊗k over the ground field endowed with the diagonal action of G. In this case,
the Balmer spectrum corresponds to the projective support variety ProjH•(G; k) (see
[BCR97, Theorem 3.4]).

5.2 Degree of a tt-ring

A commutative algebra object A in a tensor triangulated category K is an associative
commutative monoid (A, µ, η) internal to the symmetric monoidal category (K,⊗,1),
that is, an object A in K together with a multiplication µ : A ⊗ A → A and a unit
η : 1 → A such that the appropriate diagrams for associativity, commutativity and
unit are commutative. Let (A, µ, η) be an algebra object in K. An A–module (M,h)

is an object M together with an A–action h : A ⊗M → M such that the diagrams
for associativity and unit are commutative. An A-linear morphism of A–modules
f : (M,h)→ (M ′, h′) is a morphism f : M → M ′ in K such that f ◦ h = h′ ◦ 1A ⊗ f .
Let ModK(A) denote the category of A–modules and A–linear morphisms. There is
an adjunction

FA : K⇆ ModK(A) : UA

given by extension of scalars FA : K → ModK(A) that sends x to (A⊗x, µ⊗ 1x), and
the forgetful functor UA : ModK(A)→ K.

Definition 5.2.1. A tt-ring (A, µ, η) in a tensor triangulated category K is an algebra
object that is separable, i.e., the multiplication µ admits an (A,A)–bilinear section
σ : A→ A⊗ A.

In particular, the category of A–modules ModK(A) remains tensor triangulated.
The triangulated structure in ModK(A) is such that both extension of scalars FA : K →

1A spectral map is a continuous map such that the inverse image of any quasi-compact open set is
quasi-compact open.
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ModK(A) and the forgetful functor UA : ModK(A)→ K are exact (see [Bal14, Section
1]). The monoidal structure in the category of A–modules is given as follows. Let
FreeK(A) denote the Kleisli category, i.e., the full subcategory of ModK(A) on the
free A–modules FA(x). Define ⊗A : FreeK(A) × FreeK(A) → FreeK(A) by FA(x) ⊗A

FA(y) := FA(x ⊗ y). By the separability of A, we can prove that the co-unit of
the Eilenberg-Moore adjunction given by tensoring with A is split surjective. In
particular, any A-module is a retract of a free module: for instance M is a retract of
FA(UA(M)). In fact, ModK(A) is the idempotent completion of FreeK(A). Hence we
obtain a symmetric monoidal product ⊗A for ModK(A).

Moreover, extension of scalars is a tt-functor, that is, it is exact and strongly
monoidal (see [Bal14, Section 1]). For tt-rings the projection formula holds (see
[Bal14, Proposition 1.1]):

UA(x⊗A FA(y)) ∼= UA(x)⊗ y

in K, for all x ∈ ModK(A) and all y ∈ K.
A morphism of tt-rings α : A → B is a morphism in K compatible with the

multiplication and units of A and B. In this case, we say that B is an A–algebra.
The following is Theorem 2.4 in [Bal14].

Theorem 5.2.2. Let A be a tt-ring in a tensor triangulated category K. Then there
exists an isomorphism of tt-rings

α : A⊗ A→ A×B

for some tt-ring B in K such that pr1◦α is precisely the multiplication µ of A. In fact,
B is characterized as the unique A–algebra, up to isomorphism, with this property.

This theorem is the main ingredient to define the notion of degree for tt-rings. Let
A[0] := 1 and A[1] := A. For n ≥ 1, define A[n+1] as the A[n]–algebra for which there
exists an isomorphism of A[n]–algebras

αn : A
[n] ⊗A[n−1] A[n] → A[n] × A[n+1]

with pr1 ◦ α = µA[n] , where ⊗A[n−1] denotes the tensor product on ModK(A
[n−1]).

Definition 5.2.3. The tt-ring A has finite degree n ≥ 0 if A[m] = 0 for all m ≥ n+1

(equivalent to A[n+1] = 0). The tt-ring has infinite degree if A[n] ̸= 0 for all n ≥ 0.
Let deg(A) ∈ N ∪ {∞} denote the degree of A.

Theorem 5.2.4. Let A be a tt-ring. The following hold.

(a) Let F : K → L be a tt-functor. Then deg(F (A)) ≤ deg(A).
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(b) A has finite degree if and only if qP(A) has finite degree in KP for every prime
P ∈ Spc(K), where KP denotes the idempotent completion of the Verdier quo-
tient K/P and qP denotes the composition K → K/P → KP .

Proof. (a) We claim that F (A)[n] ∼= F (A[n]) for n ≥ 0. Applying F to the isomorphism
of A[n]–algebras as in Definition 5.2.3 we have

F (αn) : F (A
[n])⊗F (A[n−1]) F (A

[n])→ F (A[n])× F (A[n+1])

and the claim follows by induction on n. If A has infinite degree there is nothing to
prove. Suppose that A has finite degree n. Then F (A)[n+1] ∼= F (A[n+1]) = 0, and
deg(F (A)) ≤ deg(A).

(b) Note that A[n+1] ≃ Σ−1cone(µA[n]) for n ≥ 0. This follows from the iso-
morphism of A[n]–algebras of Definition 5.2.3 and the octahedral axiom for instance.
Then supp(A[n+1]) = supp(Σ−1cone(µA[n])) ⊆ supp(A[n]). Let P be a prime in K. If
qP(A

[n]) = 0, then P ∈ U(A[n]) for n ≥ 0. Hence the collection U(A[n]), for n ≥ 0

defines an open cover of Spc(K). Since Spc(K) is quasi-compact, we have a finite
number of open sets U(A[n]) covering Spc(K). By the previous comment we have
U(A[n]) ⊆ U(A[n+1]), thus there exists m such that U(A[m]) = Spc(K). It follows that
A[m] = 0.

5.3 Examples of tt-rings of infinite degree

For i ∈ N, let Ki be a non-trivial essentially small tensor triangulated category. Define

K :=
∏
i∈N

Ki.

It is clear that K is essentially small; the product of small skeletons in each component
defines a small skeleton of K. We give K a triangulated structure component-wise.
We endow K with a symmetric monoidal structure component-wise. In particular, K
is a non-trivial essentially small tensor triangulated category.

Theorem 5.3.1. Let Kn and K as above and let 1n denote the monoidal unit of Kn.
Then the tt-ring

A := (1×n
n )n∈N ∈ K

has infinite degree with the component-wise tt-ring structure.

Proof. It is clear that A is a tt-ring with component-wise multiplication, and a
component-wise bilinear section. On the other hand, by the definition of K, the
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projection functor
prn : K → Kn

is a tensor triangulated functor for each n ≥ 0. In particular, prn(A) = 1×n which
has finite degree n (see [Bal14, Theorem 3.9]). Then A has infinite degree, otherwise
it contradicts Theorem 5.2.4 (see [Bal14, Theorem 3.7]).

Remark 5.3.2. By Theorem 5.2.4, it follows that there exists a prime P in K such
that the tt-ring qP(A) has infinite degree in KP . Then placing the adjective local
on an essentially small tensor triangulated category is not enough to guarantee that
tt-rings have finite degree.

At first glance, our example of a tt-ring of infinite degree seems to live in an
artificial tensor triangulated category. However, it is possible to find this type of ex-
ample in practice, for instance in the study of the stable module categories for infinite
groups. Recall that an object x in a tensor triangulated category K is dualizable if
there exists an object y in K, called a dual of x, and morphisms

• ev : x⊗ y → 1, called evaluation, and

• coev : 1→ y ⊗ x, called coevaluation

such that the compositions

x ≃ x⊗ 1
1x⊗coev−−−−−→ x⊗ y ⊗ x ev⊗1x−−−→ x

y ≃ 1⊗ y coev⊗1y−−−−→ y ⊗ x⊗ y 1y⊗ev−−−→ y

correspond to the respective identities. A dualizable object in a symmetric monoidal
∞-category C is an object that is dualizable in the homotopy category of C.

Example 5.3.3. Let G be the fundamental group of the following graph of finite
groups.

. . .̂̂
0

G2 ^^
0

@@
0

G1@@
0

0 0
where Gn is a fixed finite group, for all n ≥ 1. In other words, the group G corresponds
to the free product of the groups Gn. In particular, G is a group of type Φ. By
Theorem 3.2.6, we have an equivalence of symmetric monoidal stable ∞-categories

StMod(kG) ≃
∏
n∈N

StMod(kGn)
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Note that dualizable objects in StMod(kG) are detected component-wise via this
equivalence. In other words, we have a similar decomposition for the dualizable part
of StMod(kG) (i.e., the symmetric monoidal, stable ∞-category on the dualizable
objects of StMod(kG)). Moreover, this factorization induces a product decomposition
at the level of homotopy categories. Hence the homotopy category of StMod(kG)

satisfies the hypothesis of Theorem 5.3.1.

In practice, essentially small tensor triangulated categories arise as the dualizable
part of a bigger tensor triangulated category which, for instance, admits small coprod-
ucts, just as in Example 5.3.3. Then we can consider tt-rings in a tensor triangulated
category which sits inside a bigger one. In particular, the framework of rigidly-
compactly generated tensor triangulated categories has been extensively studied (see
for instance [BHS21]). In fact, all tt-rings that have been proved to have finite degree
in [Bal14, Section 4] sit in the dualizable part a rigidly-compactly generated tensor
triangulated category. In the rest of this section we will investigate rigid-compact
tt-rings in the setting of rigidly-compactly generated tensor triangulated categories.

Recall that an object x in a triangulated category K with small coproducts is
compact if the functor Hom(x,−) commutes with small coproducts. In particular,
the subcategory Kc of compact objects remains triangulated.

Definition 5.3.4. A tensor triangulated category K is rigidly-compactly generated if
Kc is essentially small, the smallest triangulated subcategory containing Kc which is
closed under small coproducts is K, and the class of compact objects coincides with
the class of dualizable objects. In this case, Kc remains tensor triangulated.

Remark 5.3.5. For a general tensor triangulated category K with small coproducts,
compact objects are not necessarily dualizable, and vice versa, dualizable objects are
not necessarily compact. However, if the monoidal unit of K is compact, then any
dualizable object in K is compact. This follows from the fact that a dualizable object
x and its dual y determine adjoint functors x⊗− ⊣ y⊗−. Then for any set of objects
{ti}i∈I in K we have that

HomK (x,⨿i∈Iti) ≃ HomK (1,⨿i∈I(ti ⊗ y))
≃ ⨿i∈IHomK(1, ti ⊗ y)
≃ ⨿i∈IHomK(x, ti).

Example 5.3.6. For more details about the following categories we refer to [Bal10].

• The stable module category StMod(kG) of a finite groupG is a rigidly-compactly
generated tensor triangulated category. In this case, the compact part corre-
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sponds to the small stable module category stmod(kG), that is, the full subcat-
egory of StMod(kG) on the finitely generated kG–modules.

• The stable homotopy category of topological spectra SH is a rigidly-compactly
generated tensor triangulated category. The tensor product corresponds to the
smash product, and the unit is the sphere spectrum. The compact objects in
SH are finite spectra, hence the compact part of SH is the Spanier-Whitehead
stable homotopy category on pointed CW-complexes which is denoted by SHω.

• Let X be a quasi-compact and quasi-separated scheme. Then the derived cat-
egory Dperf on the perfect complexes over X is the compact part of the cate-
gory DQCoh(X)(X) of complexes of OX–modules with quasi-coherent cohomology
which is a rigidly-compactly generated tensor triangulated category.

Example 5.3.7. The following results are proved in [Bal14, Section 4].

• Let G be a finite group. Then any tt-ring in stmod(kG) has finite degree.

• Any tt-ring in the compact part of SH has finite degree.

• Let X be a quasi-compact and quasi-separated scheme. Then any tt-ring in
Dperf(X) has finite degree.

We might think these are the conditions we should impose on a tensor triangulated
category to guarantee that any tt-ring has finite degree. We will see in the following
example that this is not the case. Let 2-Ring denote the ∞-category of of essentially
small, symmetric monoidal, stable ∞-categories with exact tensor product in each
variable. We refer to [Mat16, Definition 2.14]) for further details about this ∞-
category.

Example 5.3.8. For i ∈ N, let Ki be a non-trivial rigid 2-ring. Define K :=
∏

i∈NKi

in 2-Ring. Note that K is a rigid 2-ring. Let L denote the Ind-completion of K which
is a stable homotopy theory. In particular, the compact objects of L are precisely the
elements of K. Since the inclusion functor

K ↪→ L

is strongly monoidal, we deduce that any compact element in L is dualizable. There-
fore the homotopy category of L is a rigidly-compactly generated tensor triangulated
category. In particular, we can construct a tt-ring in the dualizable part of L, just as
in Theorem 5.3.1, which has infinite degree.



Appendix A

Basic concepts from higher algebra

In this appendix we give an overview of the theory of ∞-categories. We aim to pro-
vide the basic∞-categorical notions leading to stable homotopy theories and descent
theory. We omit technical details and all the proofs. For more details, we refer to
[Lur17] and [Mat16].

A.1 ∞-categories, limits and colimits

Recall that the simplex category ∆ is the category whose objects are the linearly
ordered sets [n] := {0, . . . , n}, for n ≥ 0, and the set of morphisms Hom∆([m], [n])

consists of all monotone maps f : [m] → [n]. By monotone, we mean that if 0 ≤ i ≤
j ≤ m, then f(i) ≤ f(j).

A simplicial set is a functor ∆op → Set. The category of simplicial sets sSet is
Fun(∆op, Set). The standard n-simplex ∆n is the simplicial set

∆n : ∆→ Set

[m] 7→ Hom∆([m], [n]).

For n ≤ 1, and 0 ≤ i ≤ n, the ith horn Λn
i of the standard n-simplex is the

subsimplicial set of ∆n such that Λn
i [m] ⊆ ∆n[m] corresponds to the set of morphisms

f : [m]→ [n] whose image does not contain at least one element of {0, . . . , n}\{i} In
other words, the ith-horn of the standard n-simplex is the union of all faces except
the ith face.

Definition A.1.1. An ∞-category is a simplicial set C : ∆op → Set, which has the
right lifting property with respect to inner horn inclusions, that is, inclusions Λn

i → ∆n

with 0 < i < n. In other words, for any morphism Λn
i → C there is a morphism

∆n → C such that the diagram
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Λn
i

//

��

C

∆n

>>

is commutative.

Example A.1.2. Let K be a Kan complex. Then K is an∞-category. In particular,
given a topological space X, the singular complex Sing(X) is a Kan complex, hence
an ∞-category. Recall that the n-simplices of Sing(X) are the continuous maps
|∆n| → X, where |∆n| is the geometric n-simplex. In fact, any Kan complex is
homotopy equivalent to the singular complex of a topological space.

Example A.1.3. Let C be a small category. The nerve N(C) of C is a simplicial
set whose n-simplices are given by n composable morphisms in C. More precisely, an
n-simplex of N(C) is a chain

x0 → x1 → . . .→ xn.

In particular, N(C) is an ∞-category. There is a characterization of simplicial sets
obtained as the nerve of a small category. Let K be a simplicial set. Then there exists
a small category C such that K is isomorphic to N(C) (as simplicial sets) if and only
if there is a unique way to lift any map Λn

i → K with respect to horn inclusions
Λn

i → ∆n for 0 < i < n.

Let Cat1∞ denote the category of (small) ∞-categories. That is, the full subcat-
egory of sSet on the ∞-categories. In particular, a functor between ∞-categories
is just a simplicial map between the underlying simplicial sets. The ∞-category
of ∞-categories Cat∞ is the coherent nerve of the the simplicial category on ∞-
categories and hom-simplicial sets given by the maximal ∞-groupoid in the ∞-
category Fun(C,D), see [Lan21, Section 2.1] for further details. Let S denote the
coherent nerve of the simplicial category on Kan complexes and hom-simplicial sets
given by the internal hom-set, see [Lan21, Definition 1.3.41]. We will say that S is
the ∞-category of spaces.

Let C be an ∞-category. Recall that the homotopy category Ho C of C is the
category whose objects are the vertices (0-simplices) of C, and the morphisms between
two objects x, y are given by homotopy classes of edges (1-simplices) ϕ : x→ y. Two
edges ϕ1 : x → y, ϕ2 : x → y are homotopic if there exists a homotopy from x to y,
that is a 2-simplex σ : ∆2 → C, which can be depicted as follows:

y
idy

��
x

ϕ1

??

ϕ2 // x
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and the composition in Ho C is induced by the filling of the horns Λ2
1 → C.

Remark A.1.4. Let x and y denote a pair of vertices of a simplicial set C. We define
the simplicial set HomC(x, y) as the pullback

HomC(x, y) //

��

Fun(∆1, C)

��
∆0 (x,y) // C × C

In particular, if C is an ∞-category, then HomC(x, y) is a Kan complex. In this case,
HomC(x, y) is known as the space of morphisms from x to y.

Now that we have the notion of mapping spaces we can give a characterization of
functors between ∞-categories which are equivalences. Let F : C → D be a functor
between ∞-categories. We say that

• the functor F is essentially surjective if the induced functor

HoF : Ho C → HoD

is essentially surjective,

• the functor F is fully faithful if for each pair of objects x, y in C, the map

HomC(x, y)→ HomD(F (x), F (y))

is a weak equivalence of spaces.

Then the functor F is an equivalence of ∞-categories if and only if it is essentially
surjective and fully faithful.

Definition A.1.5. Let C be an ∞-category. Let x be an object in C. We say that
x is an initial object if the mapping space HomC(x, y) is contractible for any object
y ∈ C. We say that x is a final object if Hom(y, x) is contractible for any y ∈ C.

Recall that the join S ⋆T of two simplicial sets S and T is the simplicial set whose
value on a non-empty, linearly ordered finite set J is⊔

I∪I′=J

S(I)× T (I ′)

where the coproduct runs over decompositions I ∪ I ′ of J into disjoint sets I, I ′ such
that every element of I is smaller than every element of I ′.

Example A.1.6. Let K be a simplicial set. Then ∆0 ⋆ K corresponds to attaching
an initial vertex to K, and K ⋆∆0 corresponds to attaching a final vertex to K. In
particular ∆1 ×∆1 ∼= Λ2

0 ⋆∆
0 ∼= ∆0 ⋆ Λ2

2.
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LetK be a simplicial set. Let p : K → C be a diagram of shapeK in an∞-category
C. The overcategory C/p is the ∞-category with n-simplices

(C/p)n := homp(∆
n ⋆ K, C)

where the right-hand side denotes the subset of morphisms f : ∆n ⋆K → C such that
f |K = p. Similarly, the undercategory Cp/ is the ∞-category with n-simplices

(Cp/)n := homp(K ⋆∆n, C)

where the right-hand side denotes the subset of morphisms f : K ⋆∆n → C such that
f |K = p (see [Lur17, Section 2.1.2] for a discussion).

Definition A.1.7. Let p : K → C be a diagram in an ∞-category C. A limit of p is
a final object in C/p, and a colimit of p is an initial object in Cp/.

A.2 Stable ∞-categories and exact functors

Definition A.2.1. We say that an object x in an ∞-category is a zero object if it is
both initial and final.

If a zero object exists, then it is unique up to contractible choice. In particular, if
x is a zero object, we write x = 0.

Definition A.2.2. Let C be an ∞-category with a zero object. We say that C is a
stable ∞-category if it admits finite limits and colimits, and a commutative square is
a pullback if and only if it is a pushout1.

Let C be an∞-category with a zero object. A commutative diagram ∆1×∆1 → C
x α //

��

y

β

��
0 // z

is called a fiber sequence if it is a pullback. In this case, we write fib(β) = x and call
it the fiber of β. Dually, a commutative diagram ∆1 ×∆1 → C depicted as above is
called a cofiber sequence if it is a pushout. In this case, we write cofib(α) = z and
call it the cofiber of α.

Definition A.2.3. Let C be an∞-category with a zero object. Assume that C admits
all finite limits and colimits and let x ∈ C. The suspension Σx of x is the cofiber of
the morphism x → 0. Dually, the loop Ωx of x is the fiber of the morphism 0 → x.
These constructions define functors Σ,Ω: C → C.

1Note that this is a property of an ∞-category rather than of the extra structure.



73

Let C be a stable∞-category. Then the functors Σ,Ω: C → C are mutually inverse
equivalences. Note that in a stable ∞-category, fiber sequences coincide with cofiber
sequences. In particular, for x ∈ X we have a cofiber sequence

x //

��

0

��
0′ // Σx

that is also a fiber sequence, thus it follows that ΩΣx ≃ x. Dually, we have that
ΣΩx ≃ x.

Definition A.2.4. Let C be an ∞-category with a zero object. A distinguished
triangle in Ho C is a sequence

x
f−→ y

g−→ z
h−→ Σx

such that, for certain zero objects 0 and 0′, there exists a diagram ∆1 ×∆2 → C of
the form

x
f̃ //

��

y //

g̃

��

0

��
0′ // z

h̃

// w

such that both squares are pushouts, f̃ and g̃ represent f and g, respectively, and the
following diagram is commutative.

z
h̃ //

h !!

w

≃
��

Σx

The following corresponds to [Lur17, Theorem 1.1.2.14].

Theorem A.2.5. Let C be a stable ∞-category. Then the suspension functor of
Definition A.2.3 and the class of distinguished triangles of Definition A.2.4 define a
triangulated structure on the homotopy category Ho C.

In practice, all triangulated categories of interest arise as the homotopy category
of a stable ∞-category, and there is a dictionary for translating between them. For
instance, the shift functor corresponds to the suspension functor, the distinguished
triangles correspond to fiber and cofiber sequences, and the mapping cone to the
cofiber. We can consider stable ∞-categories as enhancements of triangulated cate-
gories; functoriality of cones is a notable improvement.

Example A.2.6. Let Sfin
∗ denote the ∞-category of finite pointed spaces. The ∞-
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category of finite spectra Spfin is defined as the colimit of the sequence

Sfin
∗

Σ−→ Sfin
∗

Σ−→ . . .

in Cat∞. The ∞-category of spectra is the Ind-completion of Spfin. The stable ∞-
category of spectra is a stable ∞-category and its homotopy category corresponds to
the classical stable homotopy category. (See [Lur17, Section 1.4].)

Let W be a collection of morphisms in an ∞-category C. The ∞-category ob-
tained from C by inverting the morphisms in W is an ∞-category C[W−1] with a
map f : C → C[W−1] which satisfies the following property. For any ∞-category D,
composition with the map f induces an equivalence between Fun(C[W−1],D) and the
the subcategory of Fun(C,D) on the functors which invert the morphisms in W .

Definition A.2.7. Let C be a model category. The underlying ∞-category of C is
given by N(C)[W−1], where W denotes the collection of weak equivalences in C (see
[Lur17, Definition 1.3.4.15] for further details).

Example A.2.8. Let G be a finite group and let k be a field of prime characteristic
p dividing the order of G. The stable module ∞-category StMod(kG) is the ∞-
categorical localization of the category of kG–modules Mod(kG) at the class of stable
isomorphisms (See [Mat15, Section 2]). Then StMod(kG) is a stable ∞-category and
its homotopy category corresponds to the stable homotopy category obtained from
Mod(kG) by quotienting out the projective modules.

Example A.2.9. Let A be a Grothendieck category. The unbounded derived ∞-
category D(A) of A is the ∞-categorical localization of the nerve of the category of
chain complexes Ch(A) at the quasi-isomorphisms.

Definition A.2.10. Let F : C → D be a functor between ∞-categories.

• F is left exact if it commutes with finite limits.

• F is right exact if it commutes with finite colimits.

• F is exact if it is right and left exact.

If F : C → D is a functor between stable∞-categories, then F is exact if and only
if it preserves all fiber and cofiber sequences. In particular, the identity functor of any
stable∞-category is exact, and the composition of exact functors is exact. Moreover,
exact functors between stable ∞-categories induce triangulated functors between the
respective triangulated homotopy categories.

Let Catst∞ denote the subcategory of Cat∞ spanned by stable ∞-categories and
exact functors.
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Definition A.2.11. An ∞-category C is called accessible if there exists a regular
cardinal κ and a small category C ′, such that C is obtained from C ′ by freely adjoining
κ-filtered colimits, also known as the Indκ-completion (see [Lur17, Section 5.3]). We
say that C is presentable if it is accessible and admits all colimits.

In particular, any presentable ∞-category is equivalent to the underlying ∞-
category of a combinatorial simplicial model category [Lur17, Proposition A.3.7.6].
Moreover, the underlying ∞-category of a combinatorial model category is a pre-
sentable ∞-category [Lur17, Proposition 1.3.4.22].

The following is an ∞-categorical version of the adjoint functor theorem [Lur17,
Corollary 5.5.2.9]

Theorem A.2.12. Let F : C → D be a functor between presentable ∞-categories.

• F admits a right adjoint if and only if it preserves small colimits.

• F admits a left adjoint if and only if it preserves all limits and it is accessible
(that is, it preserves κ-filtered colimits for some regular cardinal κ).

Example A.2.13. Let G be a finite group and let k be a field of prime characteristic
p dividing the order of G. Define the stable module∞-category stmod(kG) as the∞-
categorical localization of the category of finitely generated kG–modules mod(kG) at
the stable isomorphisms. In this case, we have that stmod(kG) is a small∞-category
and StMod(kG) = Ind(stmod(kG)). Moreover, the ∞-category StMod(kG) admits
all colimits. It follows that StMod(kG) is a presentable ∞-category.

On the other hand, consider a subgroup H of G. Then the restriction functor
Res: Mod(kG)→ Mod(kH) induces an exact functor

Res: StMod(kG)→ StMod(kH).

In fact, it has a left adjoint given by extension of scalars

kG⊗kH − : StMod(kH)→ StMod(kH).

Note that the restriction functor also has a right adjoint given by coinduction.

Remark A.2.14. The inclusion Catst∞ ⊆ Cat∞ preserves all small limits [Lur17,
Theorem 1.1.4.4] and all small filtered colimits [Lur17, Proposition 1.1.4.6], hence
limits and filtered colimits in Catst∞ can be computed in Cat∞. For instance, consider
the diagram in Catst∞ depicted by

C

��
D // E
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Then the homotopy pullback C ′ in Cat∞ is automatically a stable ∞-category.
Let PrL denote the∞-category of presentable∞-categories and left-adjoint (colimit-

preserving) functors. Dually, let PrR denote the ∞-category of presentable ∞-
categories and right-adjoint (limit-preserving) functors (see [Lur17, Definition 5.5.3]).
Let PrLst ⊂ PrL and PrRst ⊂ PrR denote the full subcategories spanned by stable ∞-
categories. Computations of limits in these ∞-categories reduce to computations of
limits in Cat∞ since the inclusions PrLst ⊂ PrL ⊆ Cat∞ and PrRst ⊂ PrR ⊆ Cat∞

preserve all limits.
Let F : I → PrR be a diagram. For each map f : i → j, the right-adjoint Rf : =

F (f) : F (j) ⇆ F (i) has a left adjoint Lf : F (i) ⇆ F (j), hence we have an adjunction
of ∞-categories

Lf : F (j) ⇆ F (i) : Rf .

An object x in lim−→
I

F is the following data (see [Mat16, Section 2]).

• An object xi in F (i), for each i ∈ I.

• An isomorphism xj → Rf (xi), for each f : i→ j in I.

• Higher homotopies and coherences.

A.3 Stable homotopy theories

The∞-category PrLst has a symmetric monoidal structure given as follows (see [Lur17,
Section 4.8]).

Definition A.3.1. Let C, D be presentable stable ∞-categories. The tensor product
C ⊗ D is the presentable ∞-category defined by the universal property

HomPrLst
(C ⊗ D, E) ≃ Fun′(C × D, E)

where Fun′(C × D, E) consists of functors C × D → E preserving colimits in both
entries.

Recall that a commutative algebra object (X,µ, η) in a symmetric monoidal ∞-
category (C,⊗, 1) is an object X in C together a multiplication map µ : X ⊗X → X

and a unit map η : 1 → X satisfying the analogous axioms of a commutative alge-
bra object (in the classical setting of symmetric monoidal categories) up to coherent
homotopy. We refer to [Lur17, Section 2.4.2] for further discussion. In particular,
symmetric monoidal ∞-categories correspond to commutative algebra objects in the
∞-category of ∞-categories. Moreover, there is an ∞-category CAlg(C) of commu-
tative algebra objects in a given symmetric monoidal ∞-category C.
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Definition A.3.2. A stable homotopy theory C is a commutative algebra object in
PrLst, that is, a presentable symmetric monoidal stable ∞-category with bicocontinu-
ous tensor product (see [Mat16, Definition 2.14]).

Example A.3.3. The derived ∞-category D(R) of a commutative ring is a stable
homotopy theory. The tensor product corresponds to the derived tensor product.

Example A.3.4. The stable module ∞-category StMod(kG) for a finite group G is
a stable homotopy theory. The tensor product is induced by the tensor product on
Mod(kG), that is, the tensor product ⊗k over the ground field k with the diagonal
action of G.

Let C be a stable homotopy theory. Let X be a commutative algebra object in
C. There is an ∞-category ModC(X) of X–module objects in C. The ∞-category
ModC(X) is a stable homotopy theory with the relative X–linear tensor product (see
[Lur17, Section 4.5]).

A.4 Descent

Let C be a stable homotopy theory. A ⊗-ideal is a full subcategory I of C that is
stable, idempotent-complete which satisfies that X ⊗ Y is in I provided that X ∈ C
and Y ∈ I. A subcategory D ⊂ C is thick if D is closed under finite limits, finite
colimits and retracts. A thick ⊗-ideal D of C is a thick subcategory that in addition
is a ⊗-ideal.

Definition A.4.1. Let C be a stable homotopy theory. A commutative algebra object
X in C is descendable (or admits descent) if C is the smallest thick ⊗-ideal containing
A.

A commutative algebra object X in a stable homotopy theory C defines an ad-
junction

FX : C ⇆ ModC(X) : UX

where FX is given by tensoring by X, and UX is the forgetful functor. If additionally
X admits descent, then the adjuntion is monadic and the canonical functor

C → Tot

(
ModC(X) −→−→ModC(X ⊗X)

−→−→−→ . . .

)
is an equivalence [Mat16, Proposition 3.22].

Definition A.4.2. Let A be an object in a stable homotopy theory C. A map
f : X → Y in C is A–zero if A⊗X 1A⊗f−−−→ A⊗ Y is nullhomotopic in C.
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A tensor ideal I in a tensor triangulated category C is a collection of maps which
satisfies the following properties. The class of maps X → Y in I is a subgroup of
HomC(X, Y ) such that for any triple (f, g, h) of composable maps in C and any object
X in C, the composition h ◦ g ◦ f and the map 1X ⊗ g are in I provided that g is in
I. The collection IA of A–zero maps in the homotopy category Ho C is a tensor ideal.
The following result corresponds to Proposition 3.27 in [Mat16].

Proposition A.4.3. Let A be a commutative algebra object in a stable homotopy
theory C. Then A admits descent if and only InA = 0 for some n ≥ 0, where InA
denotes the smallest tensor ideal containing the compositions of n consecutive A–zero
maps.

Example A.4.4. Let G be a finite group. For a subgroup H of G, let AH denote
the commutative algebra object

∏
G/H k in StMod(kG) (the G–action permutes the

factors). Then the commutative algebra object∏
H

AH

where the product runs over all the p-subgroups of G, admits descent (see [Bal15,
Theorem 4.3] and [Mat16, Section 4]).
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