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Resumo

Nesta tese discutimos alguns tópicos sobre cálculos daK-teoŕıa torcida e equivalências
entre dois modelos de extensão diferencial. Começamos com uma revisão matemática
de modelos para a K-teoria torcida, extensões diferenciais para o caso não tor-
cido e sequências espectrais de Serre e Atiyah-Hirzebruch, a fim de fornecer uma
ligação expĺıcita entre a extensão diferencial dos casos no torcidos e torcidos,
além dar ferramentas para a exploração posterior dos torcimentos que serão uti-
lizados. Na primeira parte desta tese, calculamos uma fórmula salvo extensões
de grupo para a K-teoria torcida para um fibrado baseado no ćırculo S1 com fi-
bra uma variedade compacta e um torcimento dado em função de uma classe do
segundo grupo de cohomoloǵıa da fibra, posteriormente este caso é generalizado
estendendo a base para o espaço classificatório de um grupo livre finitamente
gerado e o torcimento será dado por derivações de feixes lineares associados ao
grupo e à fibra, isto é acompanhado de exemplos para finalmente desenvolver um
sequência espectral onde as fórmulas anteriores são enquadradas. Na segunda
parte da tese, desenvolve-se uma equivalência topológica para os modelos de
extensão diferencial de Freed-Lott e Carey-Mickelsson-Wang, além de indicar
uma forma de alcançar a equivalência diferencial.

Palavras-chave: K-Teoria Topológica; Operadores de Fredholm; K-Teoria Tor-
cida; K-Teoria Torcida de Borel; K-Teoria Diferencial.



Abstract

In this thesis we discuss some topics about twisted K-theory calculations and
equivalences between a couple of differential extension models. We start with a
mathematical review of models for twisted K-theory, differential extensions for
the untwisted case, and Serre spectral sequences, in order to provide an explicit
link between the differential extension of the untwisted and twisted cases, in
addition to giving tools for the subsequent exploration of the twists that will be
used. In the first part of this thesis we determine a formula up to group exten-
sions for the twisted K-theory for a fiber bundle over the circle S1 with fiber
a compact manifold with respect to certain twists constructed from elements
of the second cohomology group of the fiber. Later this case is generalized by
allowing the base to be the classifying space of a finitely generated free group
and the twisting will be given by a derivation of line bundles associated to the
group and the fiber. This is accompanied by examples and we finally develop a
spectral sequence where the previous formulas are framed. In the second part of
the thesis, a topological equivalence is developed for the Freed-Lott and Carey-
Mickelsson-Wang differential extension models. Additionally, we indicate a way
to achieve the differential equivalence.

Keywords: Topological K-Theory; Fredholm operators; Twisted K-Theory;
Twisted Borel K-Theory; Differential Twisted K-Theory.
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Chapter 1

Introduction

Topological K-theory is a generalized cohomology theory that was introduced
around 1960 by Atiyah and Hirzebruch [3], based on the Periodicity Theorem of
Bott proved just a few years earlier and motivated by a more general K-theory
introduced by Grothendieck in his formulation of the Riemann-Roch theorem
[7]. Atiyah and Hirzebruch considered a topological analogue defined for any
compact and Hausdorff space X, a group K(X) constructed from the category
of complex vector bundles on X. It is this “topological K-theory” that we are
going to deal with in this document.

Topological K-theory has become an important tool in algebraic topology.
Some of the best-known applications of algebraic topology are the non-existence
theorem of division algebras after the Cayley octonions by Bott and Milnor,
Adams’ theorem determining the maximum number of linearly independent
tangent vector fields on a sphere of arbitrary dimension or the proof that the
only spheres which can be provided with H-space structures are S0, S1, S3

and S7. These facts have relatively elementary proofs using K–theory. Further
applications to analysis, algebra and physics are found in the work of Atiyah-
Singer [6], Quillen [39], Minasian and Moore [35] and others.

K-theory has different but equivalent descriptions. For a compact manifold,
the group K0(M) can be described in terms of:

• Vector bundles on M [2].

• Maps from M to a certain space of Fredholm operators ([2], Appendix).

• Maps p : Z →M where Z is compact and p is K-oriented [14].

This also gave rise to twisted K-theory first introduced by Donovan and
Karoubi [15] from a local coefficients approach, and later by Atiyah and Segal
[4] (we refer to [30] for a history of its development). More recently, twisted
K-theory has received much attention because of its applications classifying D-
brane charges in string theory [36] and its connections with Verlinde algebras
[17], [19], [18] and topological insulators [21].

9



CHAPTER 1. INTRODUCTION 10

Complementing the previous cohomological theories, their differential ver-
sions emerged where essentially given a cohomological theory K a refinement
is made by adding differential information. This refinement is accompanied by
three natural transformations, namely, we have I that forgets the differential
structure, R that we call the curvature and finally a that inserts differential
information in a refinement class. Additionally there are different compatibility
conditions such as R ◦ a = d, where d denotes the differential of forms, or that
I and R complete a certain commutative diagram involving cohomology with
real coefficients.

In the same way as in topological K-theory, there are multiple models that
represent the differential extensions. For the three descriptions given above of
K-theory, there are corresponding models for differential K-theory:

• The Freed-Lott model, as in [20] and [41].

• The Hopkins-Singer model [28].

• The geometric families of Bunke-Schick [12].

In the case of twisted differential K-theory, there are also different models,
among them the model of Freed-Lott given by Park [38] in which for a twist
representing a torsion class, a suitable connection is added to a twisted vector
bundle. A more general case with general twist is given by Gorokhovsky and
Lott [23]. A model based on sections to Grp(Pσ), a bundle of Grassmannians
asociated to a principal PU(H)–bundle Pσ, was given by Carey, Mickelsson and
Wang [13].

In this thesis we have two principal goals, the first is related to contributing
to the challenge of calculating twisted K-theory and the second is focused on
constructing an equivalence between the models for twisted differentialK-theory
given by Park and by Carey, Mickelsson and Wang.

Now let us get into the first objective. K-theory on a topological space X
can be twisted by an integral cohomology class σ of degree 3. For different
choices of spaces X and twists σ, the calculation of σK(X) requires the search
for multiple strategies, including spectral sequences [5], [40]. Since it was in-
troduced, different calculations have been made, among them for Lie groups
[9], stacks [43] and others. Some recently studied spaces and twists are product
spaces X = S1×M with σ a decomposable twist. In this case σ is decomposable
if σ is the cup product of the basic integral one-form on S1 and an integral class
in H2(M,Z).

Our work is motivated by the formula given by Harju and Mickelsson in
[24] for X = S1 ×M where M is a compact manifold and σ a decomposable
class associated to a line bundle over M . This case was recently studied by V.
Mathai, R. Melrose, and I.M. Singer [33].

The first main goal here is obtain a formula to calculate up to extensions
the twisted K-group σK(X), when X is the total space in a fiber bundle

M ↪→ X
π−→ S1 with M a compact manifold. The twist σ corresponds to a

special class in H3(X), which is obtained from elements in H2(M) and H1(S1),
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namely, through the construction of a projective bundle on X using the prop-
erty of decomposing a principal bundle on S1 as a mapping torus. The following
theorem provides a calculation up to extensions for this case.

Theorem. Let M ↪→ X
π−→ S1 be a fiber bundle where M is a compact manifold

and X is obtained as the mapping torus of a homeomorphism ς : M →M . Given
a class [λ] ∈ H2(M) represented by a complex line bundle λ, let σ ∈ H3(X) be
the image of the class of [λ] under the inclusion H2(M)Z ∼= H1(S1;H2(M))→
H3(X). Then the twisted K-theory group σK∗(X), for ∗ = 0, 1, is isomorphic
to an extension of

{x ∈ K∗(M) | x = λ · ς∗x} by
K∗+1(M)

{y − λ · ς∗(y) | y ∈ K∗+1(M)}
. (1.1)

The second main objective here resulted from regarding S1 as the classifying
space of Z and looking for a formula that generalizes the theorem above, but in
the case where the base of the bundle X was the classifying space of a finitely
generated free group G. The following theorem provides a calculation up to
extensions for this case.

Theorem. Let G be a finitely generated free group with generators {gi}i∈J
which acts on a compact manifold M and let M ↪→ EG×GM

π−→ BG be the fiber
bundle associated to the Borel construction. Given a derivation of line bundles
κ : G→MAP (M,PU(H)), if σ is the associated PU(H)–principal bundle, then
the twisted K-theory group σK∗(X), for ∗ = 0, 1, is isomorphic to an extension
group of

{x ∈ K∗(M) | x = κ(gi) · g∗i x for all i ∈ J} by
⊕
i∈J

K∗+1
i (M)/N. (1.2)

where N is the subgroup of tuples indexed by J with ith coordinate equal to
κ(gi) · g∗i x− x ∈ K∗+1(M) for a certain x ∈ K∗+1(M).

Unlike the previous case, for the construction of the projective bundle we
must consider that G may have more than one generator. The total space that
was previously obtained as a mapping torus will now be a twisted Borel con-
struction. The fibers will be glued using a derivation of line bundles, which is
a map κ : G → MAP (M,PU(H)) satisfying the following compatibility condi-
tions.

κgh = κh ◦ Lg−1 · κg
κe = id

where e is the identity of G and id is the constant function equal to the identity
of PU(H). In the case of G = Z, such a map assigned the generator to a
representative of a highlighted class in H2(M) = [M,PU(H)].

The approach that was taken after these results was to search for a spectral
sequence that encompasses these two cases. Since our space X in these two cases
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is a Borel construction, this corresponds to computing twisted Borel equivariant
K-theory. Actually there is a spectral sequence to compute the twistedK-theory
of total spaces of fibrations given in Theorem 20.4.1 of [34], but this is not useful
for our intention because the twist considered in this theorem comes from the
base space. In our case, our twists do not come from the base space, but from
a mixture of homotopical information of the base and the fiber.

For this purpose, we consider a compact manifold M with the action of a
discrete group G. We consider the spectral sequence induced by the filtration
H(k) = p−1(BG(k)) to determine the twisted K-theory of H = EG×GF , where
BG(k) denotes the k-skeleton of a CW-structure on the classifying space BG of
G. The first page of the spectral sequence has the form

Ek,mk1 =P Km(H(k), H(k−1)) ∼=
∏
α∈Jk

P ′αKm−k(p−1(oα))

where Jk is the set of k-dimensional cells in a CW-structure of BG and P ′α are
certain twists. The homogenization of the twists P ′α is achieved thanks to the
fact that we have an explicit description of the twist through the projective
bundle.

Theorem. Let G be a discrete group and let M be a compact manifold with a
G–action. Given a derivation of line bundles κ : G → MAP(M,PU(H)), there
is a spectral sequence

Ep,q2
∼= Hp(BG;Kq(M)) =⇒ PKp+q(EG×GM)

where P is the principal PU(H)–bundle associated to κ and the cohomology of
BG has local coefficients for the action

g · z = κg · L∗g−1(z).

on Kq(M).

Along the way, other formulas for σK(X) were found to calculate special
cases such as when X is a compact, path connected and orientable 3-dimensional
manifold with a twist nω ∈ H3(M ;Z), where ω is the generator class and n ∈ Z
or when X is a path connected and non-orientable 3-dimensional manifold with
a twist ω ∈ H3(M ;Z) given by the non-trivial class. Finally, the previous results
were validated with the different particular calculations:

• X = S1 × S2

• X = S1 × T2

• X = R×ρ S2, with ρ : π1(S1)×S2 → S2 is the action given by ρ(z, x) = x
if z is even and ρ(z, x) = −x if z is odd.

• X = R ×ρ T2, with ρ : π1(S1) × T2 → T2 the action over T2 = S1 × S1

induced by an element of GL2(Z).
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Now let us get into the second objective. Differential K-theory on a manifold
can be twisted by an integral cohomological differential torsion class of degree
3. For different models this twist can be represent by a gerbe with connection
and curvature [13]. This goal was motivated by the models given by Carey-
Mickelsson-Wang [13] and Park [38]. We wish to obtain an explicit equivalence
between these different models of twisted differential K-theory.

The steps that will be followed to achieve this equivalence will be first to give
an explicit description of each model, pointing out the differential information
added and describing how the twisting is characterized in each case. Eventu-
ally topological equivalence will be addressed initially and the idea to extend
differential equivalence will be established.



Chapter 2

Preliminaries

In this chapter we introduce some basic tools and terminology that will be used
in the rest of the thesis. Most of the results in this chapter are well-known
and the interested reader can check the references [2], [4], [16], [26] and [41] for
further information.

2.1 K-theory

The most intuitive definition of the degree 0 K-theory group is given through a
relation on the set of vector bundles, although this definition is only appropriate
for compact Hausdorff spaces. All vector bundles will be complex vector bundles
unless mentioned otherwise.

Definition 2.1.1. Two vector bundles E1 and E2 over X are stably isomorphic
if there is a trivial n-dimensional vector bundle εn over X such that

E1 ⊕ εn ∼= E2 ⊕ εn

We denote this by E1 ∼ E2.

Definition 2.1.2. Let X be a compact Hausdorff topological space. The com-
plex K-theory group K(X) is defined as the Grothendieck group completion of
the monoid VectC(X) of isomorphism classes of vector bundles over X.

In other words, K(X) consists of formal differences E − E′ of isomorphism
classes of vector bundles over X, with the equivalence relation

E1 − E′1 = E2 − E′2 iff E1 ⊕ E′2 ∼ E2 ⊕ E′1. (2.1)

In fact, K(X) has a ring structure with the product

(E1 − E′1)(E2 − E′2) = E1 ⊗ E2 − E1 ⊗ E′2 − E′1 ⊗ E2 + E′1 ⊗ E′2 (2.2)

Some examples of such rings are

14
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K(pt) ∼= Z, K(S2) ∼=
Z[t]

〈(t− 1)2〉

Definition 2.1.3. (Reduced K-theory) Consider the inclusion of a basepoint
x0 ↪→ X, it induces a map of rings φ : K(X) → K(x0) ∼= Z. Then the reduced
K-theory group of X is defined as

K̃(X) = Ker{φ : K(X)→ Z}

When X is path connected, it consists of classes E1 − E2 ∈ K(X) such that
dim(E1) = dim(E2).

Some properties of K-theory are:

• There are natural splittings of rings K(X) ∼= K̃(X)⊕ Z.

• A continuous map f : X → Y induces a ring homomorphism f∗ : K(Y )→
K(X).

• Let f : X → Y and g : X → Y be homotopic maps. Then the pullback
homomorphisms f∗ and g∗ are equal.

The extension of the K-theory groups to all degrees is done via the following
definition.

Definition 2.1.4. Let X be a compact Hausdorff space and Y a closed sub-
space. For n ≥ 0, we define

• K(X,Y ) = K̃(X/Y ), in particular K(X, ∅) ∼= K(X)

• K̃−n(X) = K̃(SnX)

• K−n(X,Y ) = K̃−n(X/Y ) = K̃(Sn(X/Y ))

• K−n(X) = K−n(X, ∅) = K̃(Sn(X+))

where S denotes reduced suspension and X+ is the disjoint union of X with the
one-point space.

Since K-theory defines a cohomology theory, it is accompanied by its se-
quence of the pair.

Proposition 2.1.5. If Y is a closed subspace of a compact Hausdorff space X,
there is a natural exact sequence

· · ·K−2(Y )
∂−→ K−1(X,Y )

j∗−→ K−1(X)
i∗−→ K−1(Y )

∂−→ K0(X,Y )
j∗−→ K0(X)

i∗−→ K0(Y ).

A property that greatly facilitates the use of K-theory is that it is a periodic
cohomology theory of periodicity 2, this is given by the following result.



CHAPTER 2. PRELIMINARIES 16

Theorem 2.1.6. (Bott’s periodicity theorem) For any compact Hausdorff space
X and any n ≤ 0 there is a natural isomorphism

β : K−n(X)→ K−n−2(X)

If we define Kn(X,Y ) for n > 0 inductively by Kn = Kn−2, the sequence
of the pair becomes

K0(X,Y ) // K0(X) // K0(Y )

��
K1(Y )

OO

K1(X)oo K1(X,Y )oo

Another important property when doing calculations is:

Definition 2.1.7. (Mayer-Vietoris exact sequence) Let U1 and U2 be two open
subspaces of a compact Hausdorff space X such that U1 ∪ U2 = X. Then we
have an exact sequence

K0(X) // K0(U1)⊕K0(U2) // K0(U1 ∩ U2)

��
K1(U1 ∩ U2)

OO

K1(U1)⊕K1(U2)oo K1(X)oo

Now we are going to give a definition of K-theory for more general spaces,
for this we will use the space of Fredholm operators.

Definition 2.1.8. (Fredholm Operator) Let H be an infinite-dimensional sep-
arable complex Hilbert space. A bounded operator T : H → H is a Fredholm
operator if Ker(T ) and CoKer(T ) are finite-dimensional. We denote by Fred(H)
the space of Fredholm operators in H.

The justification for this definition can be seen in the following theorem.

Theorem 2.1.9. (Index theorem) For any compact Hausdorff space X, we have
a natural isomorphism

index : [X,Fred(H)]→ K(X)

Finally the general definition can also be seen as a representation of K-
theory. For n ≥ 0 we define

K−n(X) = [X,ΩnFred(H)] (2.3)

Since Ω2Fred(H) ' Fred(H), we can extend this definition to positive de-
grees. Similarly, it can be extended to pairs of spaces in the same way as in
Definition 2.1.4.



CHAPTER 2. PRELIMINARIES 17

2.2 Brief review on Deligne cohomology

Given a smooth manifold X, we consider the complex of sheaves:

SpX := U(1)
d̃−→ Ω1

R
d−→ · · · d−→ ΩpR, (2.4)

where U(1) is the sheaf of smooth U(1)–valued functions, ΩkR is the sheaf of real

k-forms, d is the exterior differential and d̃f := 1
2πif

−1df . The Deligne cohomol-
ogy group of degree p on X is by definition the sheaf hypercohomology group
of the complex (2.4), i.e., Ȟp(X;SpX). It can be concretely described through a
good cover U = {Ui}i∈I of X as follows: we consider the double complex whose
rows are the Čech complexes of the sheaves involved in (2.4), and we consider the
cohomology of the associated total complex. This means that a p-cocycle con-
sists of a sequence ({gi0···ip}, {(C1)i0···ip−1

}, . . . , {(Cp−1)i0i1}, {(Cp)i0}), where
Ck is a k-form, satisfying the conditions:

(Cp)i1 − (Cp)i0 = d(Cp−1)i0i1
(Cp−1)i1i2 − (Cp−1)i0i2 + (Cp−1)i0i1 = −d(Cp−2)i0i1i2
...

δ̌p−1(C1)i0...ip−1 = (−1)p+1

2πi g−1
i0...ip

dgi0...ip
δ̌pgi0...ip = 1.

(2.5)

We call G := [g, C1, . . . , Cp] the corresponding cohomology class. The local
forms Cp correspond to the Ramond-Ramond potentials in string theory (if we
consider this model) and their differentials dCp glue to a global gauge-invariant
closed form Gp+1 (the Ramond-Ramond field strength), which is called cur-
vature. Moreover, from the underlying class [{gi0···ip}] ∈ Ȟp(U; U(1)), apply-

ing the isomorphism Ȟp(U; U(1)) ∼= Hp+1(X;Z), we get the first Chern class
c1(G) ∈ Hp+1(X;Z). The de-Rham cohomology class, represented by the cur-
vature, is the real image of the first Chern class (Dirac quantization condition),
therefore the curvature has integral periods. Of course we are free to add any
coboundary to the cocycle (g, C1, . . . , Cp), the meaningful datum being the cor-
responding cohomology class, since it is determined by the two real physical
observables: the field strength Gp+1 (corresponding to the field F in electro-
magnetism) and the holonomy or Wess-Zumino action (providing the additional
piece of information that, in electromagnetism, is measured by the phase differ-
ence in the Aranhov-Bohm effect). The latter can be computed on a singular
p-cycle of X, integrating the local k-forms Ck on the k-simplices and summing
the results in a suitable way [22]. It is related to the curvature by a Stokes-type
formula, hence, if the class is flat (i.e. the curvature vanishes), then its holonomy
on a cycle only depends on the underlying homology class.
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Differential cohomology diagram. We set Ĥp(X) := Ȟp−1(Sp−1
X ) and we

get the following commutative diagram [28]:

Ĥ•(X)
c1 // //

curv
����

H•(X;Z)

⊗ZR
��

Ω•int(X)
dR // H•dR(X).

(2.6)

Here c1 is the first Chern class, curv is the curvature, dR is the de-Rham coho-
mology class and Ω•int(X) is the group of closed real forms with integral periods.

The surjective map c1 in Diagram (2.6) shows that Ĥ•(X) is a differential re-
finement of H•(X;Z).

Relative Deligne cohomology. Given a smooth closed embedding ρ : Y ↪→
X, we consider the complexes of sheaves SpX and ρ∗S

p−1
Y on X. We recall that,

for any open subset U ⊂ X, by definition (ρ∗S
p−1
Y )(U) := Sp−1

Y (ρ−1U). We
have the natural morphism

ρ! : SpX → ρ∗S
p−1
Y , (2.7)

defined as follows:

U(1)X
d̃ //

ρ!,0

��

Ω1
X,R

d //

ρ!,1

��

· · · d // Ωp−1
X,R

d //

ρ!,p−1

��

ΩpX,R

��
ρ∗U(1)Y

d̃ // ρ∗Ω1
Y,R

d // · · · d // ρ∗Ω
p−1
Y,R

// 0,

(2.8)

where ρ!,q(ω) = ρ∗ω for any q ≥ 1 and ρ!,0(f) = f ◦ ρ. The corresponding cone
complex is the following one:

ČCC
•
(ρ) := Č•(SpX)⊕Č•−1(ρ∗S

p−1
Y ) ĎDD

•
(α, β) :=

(
Ď•(α), ρ!(α)−Ď•−1(β)

)
.

(2.9)

The cohomology groups of (ČCC
•
(ρ), ĎDD

•
) are by definition the relative Deligne

cohomology groups of ρ.

Remark 2.2.1. The case p = 1 is quite clear geometrically. In fact, a rel-
ative Deligne class is represented by a cocycle of the form (α, β), where α =
({gij}, {Ai}) ∈ Ž1(S1

X) represents a line bundle with connection (L,∇) and
β = {hi} ∈ Č0(U(1)Y ) represents a trivialization (i.e. a global non-vanishing
section) of ρ∗L. Let us see why such a construction is natural. Fixing a piece-
wise smooth curve γ : I → X, such that γ(∂I) ⊂ Y , the parallel transport of ∇
along γ is not well-defined as a complex number, since γ is not a closed curve.
Nevertheless, since γ(∂I) ⊂ Y , the fixed trivialization of L|Y provides a canoni-
cal way to identify the fibres Lγ(0) and Lγ(1) with C, hence the parallel transport,
as a unitary linear map from Lγ(0) to Lγ(1), becomes a well-defined number be-
longing to U(1). Therefore, the 1-Deligne cohomology group of ρ naturally leads
to the notion of relative holonomy.
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In general, if (α, β) represents a relative cocycle of degree p, then α represents
a Deligne p-cohomology class on X such that ρ∗α has trivial first Chern class.
This means that ρ∗α is topologically trivial, but not necessarily trivial as a
Deligne class. It follows that ρ∗α is cohomologous to a cochain of the form
(1, 0, . . . , 0, G), where G is a global potential. The cochain β provides a suitable
reparametrization, i.e. ρ∗α− Ďβ = (1, 0, . . . , 0, G). By definition, the curvature
of [(α, β)] is the relative form (F,G) ∈ Ωp(ρ), where F is the curvature of α in
X and G is the global potential on Y . Now we can understand why, in Diagram
(2.8), the complex on Y has been truncated at degree p − 1, not p. This is
because, if we reach p even in the lower row, then the cocycle condition also
imposes G = 0, hence ρ∗α must be trivial (not only topologically). Therefore,
the morphism ρ! : SpX → ρ∗S

p
Y (with p on both sides) leads to a proper subgroup

of relative p-Deligne cohomology, whose elements are called parallel classes:

U(1)X
d̃ //

ρ!,0

��

Ω1
X,R

d //

ρ!,1

��

· · · d // Ωp−1
X,R

d //

ρ!,p−1

��

ΩpX,R

ρ!,p

��
ρ∗U(1)Y

d̃ // ρ∗Ω1
Y,R

d // · · · d // ρ∗Ω
p−1
Y,R

d // ρ∗Ω
p
Y,R.

(2.10)

We set:

Ĥp+1(ρ) := Ȟp(ρ! : SpX → ρ∗S
p−1
Y ) Ĥp+1

par (ρ) := Ȟp(ρ! : SpX → ρ∗S
p
Y ).

(2.11)
We get the following diagram, generalizing (2.6) to the relative framework:

Ĥ•(ρ)
c1 // //

curv
����

H•(ρ;Z)

⊗ZR
��

Ω•int(ρ)
dR // H•dR(ρ).

(2.12)

Moreover, Ĥp+1
par (ρ) is the subgroup of Ĥp+1(ρ) formed by classes with curvature

of the form (F, 0). It is possible to define the holonomy of a class (α, β) ∈
Ĥp+1(ρ) on relative p-cycles, such cycles being defined through the homological
version of the cone complex.

Remark 2.2.2. In the case p = 1, using the notations of Remark 2.2.1, a class
is parallel when the fixed trivialization of L|Y is a global parallel section with
respect to ∇. It follows that ∇|Y = 0.

2.3 Twisted K-theory

In this section we give two definitions of twisted K-theory, in the first part we
give a definition based on twisted vector bundles for special twists and then we
give a definition for generic twists using sections of a suitable bundle.
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2.3.1 Torsion twisting class

We begin discussing twists which are classified by a torsion class.

Twisted vector bundles

We fix a Hausdorff paracompact topological space X and a good cover U =
{Ui}i∈I , whose existence we assume by hypothesis. Every smooth manifold
admits a good cover [8]. We denote by U(r) the sheaf of U(r)–valued continuous
functions on X and, when r = 1, we denote by Č•(U; U(1)), Ž•(U; U(1)) and
Ȟ•(U; U(1)) the corresponding Čech cochains, cocycles and cohomology classes,
with respect to the fixed good cover U.

Definition 2.3.1. Given a cochain ζ := {ζijk} ∈ Č2(U; U(1)), a ζ-twisted vector
bundle of rank r onX is a collection of trivial Hermitian vector bundles πi : Ei →
Ui of rank r and unitary vector bundle isomorphisms ϕij : Ei|Uij → Ej |Uij , such
that ϕkiϕjkϕij = ζijk · id.

Of course, when ζijk = 1, we get an ordinary vector bundle by identifying
v with ϕij(v) for every v ∈ Ei|Uij . It is easy to prove by direct computation
that, if there exists a ζ-twisted vector bundle, then ζ is necessarily a cocycle,
hence the cohomology class [ζ] ∈ Ȟ2(U; U(1)) ∼= H3(X;Z) is well-defined. We
will show in Remark 2.3.5 that it is necessarily a torsion class.

Definition 2.3.2. Given two ζ-twisted vector bundles E := ({Ei}, {ϕij}) and
F := ({Fi}, {ψij}), a morphism from E to F is a collection of vector bundle
morphisms fi : Ei → Fi such that fj ◦ ϕij = ψij ◦ fi for every i, j ∈ I. The
morphism is called unitary if each fi is unitary.

Of course an isomorphism is an invertible morphism, and this is equivalent to
requiring that each fi is a vector bundle isomorphism. The following definition
easily generalizes to the non-abelian setting the basic tools of Čech cohomology
in low degree.

Definition 2.3.3. A Čech cochain of degree 1 of the sheaf U(r) is a collection
of continuous functions {gij : Uij → U(r)}. Similarly, a Čech cochain of degree
0 is a collection of continuous functions {gi : Ui → U(r)}. We denote the set
of p-cochains, for p ∈ {0, 1}, by Čp(U; U(r)). Given ζ := {ζijk} ∈ Č2(U; U(1)),
a cochain {gij} ∈ Č1(U; U(r)) is called a ζ-cocycle if gkigjkgij = ζijk · Ir. We
denote by Ž1

ζ (U; U(r)) the set of ζ-cocycles.

There is a natural action of 0-cochains on 1-cochains, defined by {hi} ·
{gij} := {higijh−1

j }. It is easy to prove that such an action determines an

equivalence relation in Č1(U; U(r)), that restricts to an equivalence relation in
Ž1
ζ (U; U(r)).

Definition 2.3.4. The ζ-twisted cohomology set of degree 1 and rank r, that
we denote by Ȟ1

ζ (U; U(r)), is the quotient of Ž1
ζ (U; U(r)) by the action of the

0-cochains.
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Clearly, when ζ = 1, we get ordinary non-abelian cohomology of degree 1,
which classifies the isomorphism classes of rank-r vector bundles on X. We
can easily show that the same happens for any ζ. In fact, given a twisted
vector bundle E := ({Ei}, {ϕij}) of rank r, for each i ∈ I we can fix a
set of r pointwise-independent local sections s1,i, . . . , sr,i : Ui → Ei of unit
norm, determining vector bundle isomorphisms ξi : Ei → Ui × Cr that send∑
λksi,k(x) to (x, (λ1, . . . , λr)). The isomorphisms ϕij determine local tran-

sition functions gij : Uij → U(r) such that ϕij(ξ
−1
i (x, λ)) = ξ−1

j (x, gij(x) · λ).
Equivalently, gij(x) is the change of basis in (Ej)x from {sj,1(x), . . . , sj,r(x)} to
{ϕij(si,1(x)), . . . , ϕij(si,r(x))}. The condition ϕkiϕjkϕij = ζijk · id is equivalent
to gkigjkgij = ζijk · In, hence {gij} ∈ Ž1

ζ (U; U(r)). Finally, it is straightforward
to verify, as for ordinary vector bundles, that the cohomology class [{gij}] ∈
Ȟ1
ζ (U; U(r)) only depends on the isomorphism class of E := ({Ei}, {ϕij}), in

such a way that we get the natural bijection [E] 7→ [{gij}].

Remark 2.3.5. The class [ζ] is necessarily torsion. In fact, computing the
determinants, we get det(gki) det(gjk) det(gij) = ζrijk; since det(gij) is a U(1)–
valued function, this shows that {ζrijk} is a trivial cocycle, hence [ζ]r = 1 (or

r[ζ] = 0, thinking of H3(X;Z)). In particular, the order of [ζ] divides r. One
can prove that, for any cocycle representing a torsion class, there exist a corre-
sponding twisted bundle [4].

2.3.2 Generic twisting class

Before giving a definition of twisted K-theory we will recall some facts about
the space of unitary projective operators PU(H) = U(H)/U(1), where U(H)
is the space of unitary operators on an infinite-dimensional separable complex
Hilbert space H. Let U(H) act on Fred(H) by

U(H)× Fred(H)→Fred(H)

(g, f) 7→g−1 ◦ f ◦ g

Since g is an isomorphism this is well defined. Now if α ∈ U(1), then

(αg, f) 7→ (αg)−1 · f · αg = g−1 · f · g = (g, f)

so indeed PU(H) = U(H)/U(1) acts on Fred(H).

K-theory on a topological space X is twisted by an integral cohomology class
H of degree 3, this means that the twists in twisted K-theory are classified
by elements of H3(X;Z). Other convenient interpretations for this group of
isomorphism classes of twists are:

H3(X;Z) ∼= [X,K(Z, 3)] ∼= [X,B2K(Z, 1)] ∼= [X,BPU(H)]

Remark 2.3.6. There is a free action of U(1) on U(H) and by Kuiper’s Theo-
rem [32] we have that U(H) is contractible, so U(H)/U(1) is a model for BU(1).
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Now we can construct two new bundles with the associated bundle construc-
tion. Let us denote by EH the principal PU(H)–bundle classified by the map
H.

EH ×PU(H) ΩnFred(H)

��

EPU(H)×PU(H) ΩnFred(H)

��
X

H
// BPU(H)

Let F 0
H = EH×PU(H) Fred(H)→ X and F 1

H = EH×PU(H) ΩFred(H)→ X.

In the next definition, Γ(P ) denotes homotopy classes of sections of P .

Definition 2.3.7. (Twisted K-theory) The twisted K-theory of X with twist
H ∈ H3(X;Z) is given by

K0
H(X) = Γ(F 0

H)

K1
H(X) = Γ(F 1

H)

The higher twisted K-theory groups are defined by Bott periodicity, i.e.
Kn
H(X) = Γ(EH ×PU(H) ΩnFred(H)) ∼= Γ(EH ×PU(H) ΩkFred(H)), where k = 0

if n is even and 1 otherwise.

Remark 2.3.8. We will also use the notation HK∗(X) in Chapters 4 and 5, or
PK∗(X), when P is a PU(H)–principal bundle classified by H.

Some noteworthy properties satisfied by twisted K-theory are:

• If H = 0 then K∗H(X) ∼= K∗(X).

• K∗H(X) is a module over K∗(X).

• There is a product homomorphism Kp
H(X)⊗Kq

H′(X)→ Kp+q
H+H′(X).

• If f : X → Y is a continuous map, then there is a homomorphism f∗ : K∗H(Y )→
K∗f∗H(X)

Proposition 2.3.9. (Mayer-Vietoris exact sequence) Let U1 and U2 be two
open subspaces of a space X such that U1 ∪ U2 = X. Then we have an exact
sequence:

K0
H(X) // K0

H(U1)⊕K0
H(U2) // K0

H(U1 ∩ U2)

��
K1
H(U1 ∩ U2)

OO

K1
H(U1)⊕K1

H(U2)oo K1
H(X)oo

In the case of a twist which represents a torsion class, a geometric represen-
tation through twisted vector bundles can be given.
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Definition 2.3.10. (ζ-twisted vector bundle) For a Hausdorff paracompact
topological space X and a good cover U = {Ui}i∈I , given a cochain ζ := {ζijk ∈
Č2(U, U(1))}, a ζ-twisted vector bundle of rank r on X is a collection of trivial
Hermitian vector bundles πi : Ei → Ui of rank r and unitary vector bundle
isomorphisms φij : Ei �Uij→ Ej �Uij , such that φkiφjkφij = ζijk · id.

We denote by V Bζ(X) the set of isomorphism classes of ζ-twisted vector
bundles.

Definition 2.3.11. The direct sum of ζ-twisted vector bundles is defined as
({Ei}, {φij})⊕ ({Fi}, {ψij}) := ({Ei ⊕ Fi}, {φij ⊕ ψij}).

Definition 2.3.12. (ζ-twisted K-theory group) The set V Bζ(X), endowed with
this operation, is a commutative semi-group, hence we can define the corre-
sponding Grothendieck group, that we call the ζ-twisted K-theory group of X
and denote by Kζ(X).

We fix an infinite-dimensional separable complex Hilbert space H. We can
easily generalize definition 6.1.7 as follows.

Definition 2.3.13. Given a cocycle ζ := {ζijk} ∈ Ž2(U; U(1)), a ζ-twisted
Hilbert bundle with fibre H on X is a collection of trivial Hilbert bundles
πi : Ei → Ui with fibre H and of Hilbert bundle isomorphisms ϕij : Ei|Uij →
Ej |Uij , such that ϕkiϕjkϕij = ζijk · id.

The corresponding definition of (iso)morphism coincides with Definition 2.3.2.
For every ζ ∈ Ž2(U; U(1)), not necessarily of finite order in cohomology, there
exists a ζ-twisted Hilbert bundle [4], the main difference with respect to the
finite-dimensional setting being that any two ζ-twisted Hilbert bundles (for a
fixed ζ) are isomorphic [31].

Projective Hilbert bundles. Given a twisted bundle E = ({Ei}, {ϕij}),
projecting each fibre (Ei)x \ {0} to the corresponding projective space, we get a
well-defined (non-twisted) projective bundle, that we denote by P(E). It follows
from local triviality that every projective bundle can be obtained in this way
up to isomorphism, therefore we get a surjective map from isomorphism classes
of twisted bundles to isomorphism classes of projective bundles. In the finite-
dimensional case such a map is not injective for a fixed ζ (for example, every line
bundle projects to the trivial one). On the contrary, in the infinite-dimensional
case, the unique isomorphism class of ζ-twisted Hilbert bundles induces a unique
isomorphism class of projective bundles. Moreover, fixing ζ and ζ ′ := ζ · δ̌1η,
let us consider the bijection

Φη : ṼBζ(X)
∼=−→ ṼBζ′(X)

E = ({Ei}, {ϕij}) 7→ Φη(E) := ({Ei}, {ϕijηij}),
(2.13)

where ṼBζ(X) denotes the set of ζ-twisted Hilbert bundles onX (not quotiented
out up to isomorphism). Since P(E) = P(Φη(E)), the isomorphism class of
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P(E) only depends on [ζ] ∈ Ȟ2(U; U(1)) ∼= H3(X;Z) (see [4]). It follows that
H3(X;Z) classifies projective Hilbert bundles on X.

If δ̌1η = 1, then, since any two ζ-twisted bundles are isomorphic, there
exists an isomorphism f = {fi} : E → Φη(E). This means that fi : Ei → Ei
and ϕijηijfi = fiϕij , hence f induces an automorphism f̄ : P(E) → P(E). Let
us see that any automorphism f̄ can be realized in this way from suitable η and
f . In fact, by local triviality, we can lift f̄ to fi : Ei → Ei for each i. Since
the family {fi} glues to f̄ , there exists ηij such fjϕij = ϕijfiηij . The latter
condition necessarily implies δ̌1η = 1. Moreover, the only freedom we had in
constructing the cocycle η was the choice of the lifts fi. Any other choice is
of the form fiξi, that replaces η by η · δ̌0ξ. Therefore, the following map is
well-defined:

Φ: Aut(P(E))→ H2(X;Z)

f̄ 7→ [{ηij}].
(2.14)

It is easy to prove that it is a group homomorphism. Moreover, it follows from
the previous construction that f̄ ∈ Aut(P(E)) lifts to an automorphism of E
if and only if Φ(f̄) = 0, therefore Φ(f̄) can be thought of as the obstruction
to the existence of such a lift. This remark leads quite easily to the following
lemma, that also follows from the fact that PU(H) is an Eilenberg-MacLane
space K(Z, 2) (see [4]).

Definition of twisted K-theory. We fix a cocycle ζ ∈ Ž2(U; U(1)) and a ζ-
twisted Hilbert bundle E = ({Ei}, {ϕij}), inducing the corresponding projective
bundle P(E). We denote by PP(E) the bundle of projective reference frames of
P(E) and by Fred(H) the space of Fredholm operators acting on H. We have a
natural adjoint action of PU(H) on Fred(H) by conjugation, that we denote by
ρ : PU(H) → C0(Fred(H)), hence we construct the associated Fred(H)–bundle
FP(E) := PP(E)×ρFred(H). We denote by Γ(FP(E)) its set of global sections and
by Γ̄(FP(E)) the corresponding quotient with respect to homotopy of sections.
The latter carries a natural abelian group structure, induced by composition of
Fredholm operators.

Definition 2.3.14. The twisted K-theory group Kζ(X) is defined as the abelian
group Γ̄(FP(E)) for any ζ-twisted Hilbert bundle E.

Since the space of bounded invertible operators in H is contractible (like
U(H)), a section of FP(E) which is point-wise invertible, is always homotopic to
the identity. Therefore, if a section is point-wise invertible in a subset of X, we
consider it trivial on such a subset. This fact justifies the following definition.

Definition 2.3.15. A section of FP(E) is called compactly supported if it is
point-wise invertible in the complement of a compact subset of X. We denote
by Γcpt(FP(E)) and Γ̄cpt(FP(E)), respectively, the space of compactly-supported
sections of FP(E) and its quotient up to compactly-supported homotopy. We
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define the compactly supported twisted K-theory group Kζ,cpt(X) as the abelian
group Γ̄cpt(FP(E)) for any ζ-twisted Hilbert bundle E.1

2.4 Differential extensions

Definition 2.4.1. (smooth refinement) Given a cohomology theory E∗, a smooth
refinement Ê∗ is a functor Ê : Diff→ Grps with transformations I, R such that

Ê(M)
I //

R ��

E∗(M)

��
Ω∗d=0(M,V ) // E∗dR(M)

where V = E∗(pt) ⊗ R is the graded non-torsion cohomology of E on the one-
point space and such that there is a transformation

a : Ω∗−1(M)/Im(d)→ Ê∗(M)

that gives an exact sequence

E∗−1(M)
ch
// Ω∗−1(M)/Im(d)

a
//

d **

Ê(M)

R ��
I
// H∗(M)

Ω∗d=0(M)

For the case where the cohomology theory is K-theory, an extension model
is given as follows. A differential K-cocycle of X is a quadruple

Ě = (E, hE ,∇E , ω)

where E is a complex vector bundle over X with a Hermitian metric hE and a
Hermitian connection ∇E and ω ∈ Ωodd(X)/Im(d). A K-relation among three
differential K-cocycles

Ě1 = (E1, h
E1 ,∇E1 , ω1) Ě2 = (E2, h

E2 , ∇E2 , ω2) Ě3 = (E3, h
E3 ,∇E3 , ω3)

is given by a short exact sequence of Hermitian vector bundles

0→ E1 → E2 → E3 → 0,

and an element
CS(∇E1 ,∇E2 ,∇E3) ∈ Ωodd(X)/Im(d)

such that w2 = ω1 + ω3 + CS(∇E1 ,∇E2 ,∇E3).

1When X is compact, Definitions 2.3.14 and 2.3.15 are equivalent. Actually, we will never
apply Definition 6.1.5 when X is not compact, hence it would be sufficient to state definition
2.3.15 for every (locally compact) space.
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Definition 2.4.2. (differential K-theory) The differential K-theory of X, de-
noted by Ǩ0(X), is the quotient of the free abelian group generated by differ-
ential K-cocycles of X, by the relation

[Ě2] = [Ě1] + [Ě3]

whenever there is a K-relation amongst Ě1, Ě2 and Ě3.

This model in terms of the extension definition we gave earlier would look
like this:

K̂0(X)
I //

čh ��

K∗(X)

ch ��
Ωev0 (X) // Hev(X,R)

There exist two natural homomorphisms

Ǩ0(X)→ K0(X)

given by the forgetful map [(E, hE ,∇E , ω)] 7→ [E], and

čh : Ǩ0(X)→ Ωev0 (X)

given by [(E, hE ,∇E , ω)] 7→ ch(E,∇E)− dω.

2.5 Spectral sequences

Definition 2.5.1. (Differential bigraded module) A differential bigraded mod-
ule over a ring R, is a collection of R–modules, {Ep,q}, where p and q are
integers, together with an R–linear mapping, d : E∗,∗ → E∗,∗, the differential,
of bidegree (s, 1− s) or (s, s− 1), for some integer s, and satisfying d ◦ d = 0.

Definition 2.5.2. (Spectral sequence) A spectral sequence is a collection of
differential bigraded R–modules {E∗,∗r , dr}, where r = 1, 2, . . .; the differentials
are all of bidegree (r, 1−r) and for all p, q, r, Ep,qr+1 is isomorphic to H(Ep,qr , dr),
the homology with respect to the maps dr.

• Notice how E∗,∗r together with dr determines Er+1 but they do not deter-
mine dr+1.

• When the differentials dr are zero, the Er+1 page is exactly Er.

• Most spectral sequences encountered in practice have the property that
dr = 0 for all r bigger than a certain value, say N . This means that
E∞ = EN and we say that the sequence collapses at N .

Definition 2.5.3. (convergence) A spectral sequence {E∗,∗r , dr}, is said to con-
verge to H∗, a graded R–module, if there is a filtration F of H∗,

{0} ⊂ F pHp ⊂ · · · ⊂ F 0Hp = Hp
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such that
Ep,q∞ = F pHp+q/F p+1Hp+q

where E∗,∗∞ is the limit term of the spectral sequence.

Theorem 2.5.4. (The Cohomological Leray-Serre Spectral Sequence) Let R be
a commutative ring with unit. Suppose F → E → B is a fibration, where B
is path-connected and F is connected. Then there is a first quadrant spectral
sequence of algebras, {E∗,∗, dr}, converging to H∗(E;R) as an algebra, with

Ep,q2 = Hp(B;Hq(F ;R)) (2.15)

denoting the cohomology of the space B with local coefficients in the cohomology
of the fibre F .

Proposition 2.5.5. If on top of the requirements in the previous theorem
π1(B) acts trivially on H∗(F ;R), then there is a first quadrant spectral sequence
{Ep,qr , dr}, with

Ep,q2 = Hp(B;Hq(F ;R))

converging to H∗(E). Here the cohomology of B is untwisted.

If the base space B of a fibration F → E → B is a finite-dimensional CW-
complex then we can extend the Serre spectral sequence to any generalized
cohomology theory h∗.

Proposition 2.5.6. Let F → E → B be a fibration where B is a finite-
dimensional CW-complex. Then we have a spectral sequence {E∗,∗r , dr} with

Ep,q2 = Hp(B;hq(F ))

converging to h∗(E). Again, here the E2-page is given by cohomology with local
coefficients.

The Atiyah-Hirzebruch spectral sequence for K-theory, is the spectral se-
quence from the previous proposition for the fibration pt→ X → X in the case
h∗ = K∗. A more general spectral sequence (Theorem 20.4.1 in [34]) that we
already mentioned in the introduction is:

Theorem 2.5.7. (Serre spectral sequence) Let B be a CW complex with p-
skeleton Bp and let X be an excellent spectrum over B. Let jp : Bp → B be the
inclusion, let Xp = jp!j

∗
pX, and let ip : Xp → Xp+1 be the induced inclusion

of spectra over B. Let J∗ be a parametrized cohomology theory over B. Then
there is a conditionally convergent spectral sequence

Ep,q1 =
∏

p−cells e

Jp+q(e!e
∗Xp, ∂e!∂e

∗Xp−1) =⇒ Jp+q(X)

The sequence converges strongly if the derived E∞ terms RE∞ vanish. If the
theory is represented by an excellent spectrum J over B, then

Ep,q2 = Hp(B;Lq(X, J))
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We only give the statement of this theorem without going into detail of the
terms used since we will not be using it in what follows. However, it is worth
mentioning that in the case of twisted K-theory and a fibration F → E → B, if
we have a twist for the base B, this spectral sequence converges to the twisted
K-theory of E with respect to the pullback twist.



Chapter 3

Twistings for fiber bundles
over the circle

In this section we construct the class of a twisting for the total space of a
fiber bundle M → X → S1 from classes in H2(M) and H1(S1). To achieve
this, first we give a description of H3(X) through the Serre spectral sequence,
then we build a projective bundle over X that represents the sought class and
eventually we give a cohomological description of it. Finally, as an addition
that will not be transcendental for our objective in the last three sections we
explore H1(S1;H2(M)) through the construction of the spectral sequence, prove
an explicit description of H3(X) in a particular case and alternatives to the
previous constructions using Čech cohomology.

3.1 The Serre spectral sequence

Let M ↪→ X
π−→ S1 be a fiber bundle, where M is a manifold. Using the Serre

spectral sequence, we determine Hi(X) for 1 ≤ i ≤ 3 up to extensions. Using
Theorem 1.14 in [25], we have Ep,q2

∼= Hp(S1;Hq(M)), where this is cohomology
with local coefficients, so the second page is

3 H0(S1;H3(M)) H1(S1;H3(M)) 0
2 H0(S1;H2(M)) H1(S1;H2(M)) 0
1 H0(S1;H1(M)) H1(S1;H1(M)) 0
0 H0(S1;H0(M)) H1(S1;H0(M)) 0

0 1 2

Since dk : Ep,qk → Ep+k,q−k+1
k , we obtain Ep,q2 = Ep,q∞ . We first determine

H1(X) up to extensions. We have E0,1
∞ = F 0H1(X)/F 1H1(X) and E1,0

∞ =
F 1H1(X)/F 2H1(X). Because F 2H1(X) = 0, we obtain E1,0

∞ = F 1H1(X) =

29
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H1(S1;H0(M)) and E0,1
∞ = H0(S1;H1(M)) = H1(X)/H1(S1;H0(M)), thus

0→ H1(S1;H0(M))→ H1(X)→ H0(S1;H1(M))→ 0 (3.1)

To calculateH2(X) up to extensions, we now consider E0,2
∞ = F 0H2(X)/F 1H2(X)

and E1,2
∞ = F 1H2(X)/F 2H2(X). Because F 2H2(X) = 0, we obtain E1,1

∞ =
F 1H2(X) = H1(S1;H1(M)) and E0,2

∞ = H0(S1;H2(M)) = H2(X)/H1(S1;H1(M)),
thus

0→ H1(S1;H1(M))→ H2(X)→ H0(S1;H2(M))→ 0 (3.2)

To compute H3(X) up to extensions, we use E0,3
∞ = F 0H3(X)/F 1H3(X)

and E1,2
∞ = F 1H3(X)/F 2H3(X). Because F 2H3(X) = 0, we obtain E1,2

∞ =
F 1H3(X) = H1(S1;H2(M)) and E0,3

∞ = H0(S1;H3(M)) = H3(X)/H1(S1;H3(M)),
thus

0→ H1(S1;H2(M))→ H3(X)→ H0(S1;H3(M))→ 0. (3.3)

In this chapter we will be particularly interested in twistings for X which
are classified by elements of the subgroup H1(S1;H2(M)). Note that

H0(S1;H3(M)) ∼= H3(M)Z

for the usual action of the fundamental group of the base on the cohomology of
the fiber. Moreover, the map H3(X)→ H3(M)Z is the restriction of codomain
of the map H3(X) → H3(M) induced by the inclusion of the fiber. Hence we
can think of them as twistings on X which are trivial when restricted to the
fiber.

3.2 Twistings via a mapping torus construction

In this section we construct a twisting over the total space of the fiber bundle
mentioned in the previous section.

Let M be a manifold and f : M → M a homeomorphism. Recall that the
mapping torus of f is the quotient X = (I ×M)/∼, where (0, x) ∼ (1, f(x)).
This is the total space of a fiber bundle over S1 with fiber M . In this section
we construct a projective bundle over X from a map M → PU(H), whose total
space will also be a mapping torus.

Lemma 3.2.1. Let p : E → B be a fiber bundle with fiber F and q : X → B
a quotient map. Then the map q′ : q∗E → E in the corresponding pullback
diagram is a quotient map.

q∗E E

X B

p′

q′

p p

q
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Proof. Given A ⊆ E such that q′−1(A) is open, we will show that A is open.
Let us assume first that the result holds for subsets of E where the bundle

trivializes. Now let A ⊆ E be such that q′−1(A) is open in E and let {Ui}i∈J
be an open cover of B where the bundle trivializes. If Bi = A ∩ p−1(Ui), we
have that

q′−1(Bi) = q′−1(A) ∩ q′−1(p−1(Ui))

is open in q′−1(p−1(Ui)), hence in q∗E. Therefore Bi is open in E by our
assumption, so A =

⋃
i∈J Bi is open in E as well.

On the other hand, let A ⊆ p−1(Ui), with {Ui}i∈J as before, and let

h : p−1(Ui)
∼=−→ Ui × F be a trivialization. Then A is open if and only if h(A) is

open. The trivialization h induces a trivialization of q∗E given by

h′ : p′
−1

(q−1(Ui))→ q−1(Ui)× F
(x, e) 7→ (x, pr2h(e))

where pr2 is the projection to the second coordinate, x ∈ X and e ∈ p−1(Ui)
satisfies p(e) = q(x). This trivialization fits into a commutative diagram

q−1(Ui)× F Ui × F

p′
−1

(q−1(Ui)) p−1(Ui)

q×id

p
h′

q′

h

This diagram is commutative because pr1h(e) = p(e) = q(x). Finally, we
prove that if q′−1(A), then A is open. Recall that A is open if and only if
h(A) is open, so it is enough to check that h(A) is open. Due to the fact that
h(A) ⊆ Ui × F and q × id is a quotient map, then h(A) is open if only if
(q × id)−1(h(A)) is open in q−1(Ui)× F . Now by commutativity we have

(q × id)−1(h(A)) = h′(q′−1(A)).

The left side is open because h′ is a homeomorphism and we suppose q′−1(A)
open.

Given an element g in a topological group G, let us denote by Lg : G → G
the map given by left multiplication with g.

Lemma 3.2.2. Let π : Y → S1 be a principal G–bundle. Then Y is homeo-
morphic to the mapping torus of a map Lg : G → G for some g ∈ G and π
corresponds to the natural projection associated to the mapping torus.

Proof. Let Φ: I → S1 be the quotient map induced by the exponential map and
∂I = {0, 1}. We have a pullback diagram

Y ′ Y

I S1

π̂

Φ̃

p
π

Φ
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Let x, y ∈ π−1(Φ(0)), then there is a tuple (0, x) in Y ′ if and only if there is a

tuple (1, x). On the other hand Φ̃(0, x) = Φ̃(1, y) if and only if x = y. This is due

to the fact that π(x) = π(y) = Φ(0) = Φ(1). Moreover Φ̃−1(x) = {(0, x), (1, x)}.
By Lemma 3.2.1, we know that Y ∼= Y ′/∼, where x ∼ y if and only if

Φ̃(x) = Φ̃(y). Due to the fact that I is contractible, there is a G–principal
bundle trivialization ρ : Y ′ → I ×G hence Y ∼= (I ×G)/≈, where x ≈ y if and

only if Φ̃ρ−1(x) = Φ̃ρ−1(y).

Recall that the restriction of Φ̃ to each fiber is a homeomorphism. In par-
ticular, we have homeomorphisms Φ̃j : π̂−1(j) → π−1(1) for j = 0, 1. Now we
define the homeomorphism h = ρ �π̂−1(1) ◦f ◦ ρ−1 �0×G : 0×G→ 1×G, where

f : π̂−1(0) → π̂−1(1) is defined by f(x) = Φ̃−1
1 (Φ̃0(x)). The map h must be

of the form Lg for some g ∈ G because ρ and Φ̃ are G–equivariant maps, be-
ing a trivialization of a principal G–bundle and a map of principal G–bundles,
respectively.

Let (x, g) and (y, z) be elements of I × G such that (x, g) ≈ (y, z). Then

Φ̃ρ−1(x, g) = Φ̃ρ−1(y, z) and therefore

πΦ̃ρ−1(x, g) = πΦ̃ρ−1(y, z)

which equals
Φπ̂ρ−1(x, g) = Φπ̂ρ−1(y, z)

We can simplify further

Φpr1(x, g) = Φpr1(y, z)

that is, Φ(x) = Φ(y). If x = y, then Φ̃ρ−1(x, g) = Φ̃ρ−1(x, z) implies g = z

because the restriction of Φ̃ρ−1 to {x} ×G is a homeomorphism. On the other

hand, (0, g) ≈ (1, z) if and only if Φ̃ρ−1(0, g) = Φ̃ρ−1(1, z). In the notation we
introduced in the previous paragraph, this is

Φ̃0ρ
−1|0×G(0, g) = Φ̃1ρ

−1|1×G(1, z)

which holds if and only if (1, z) = h(0, g)

Lemma 3.2.3. Let π : Y → S1 be a principal G–bundle and let X → S1 be the
associated bundle with fiber F . Then X is homeomorphic to the mapping torus
of an action map Lg : F → F for some g ∈ G and π corresponds to the natural
projection associated to the mapping torus.

Proof. By Lemma 3.2.2, there exists g ∈ G such that Y is homeomorphic to the
mapping torus of Lg : G→ G, that we denote by Y ∼= (I ×G)/∼g. Then

X ∼= [(I ×G)/∼g]×G F

On the other hand, let (I ×F )/∼g represent the mapping torus of Lg : F → F .
Now we define

Ψ: [(I ×G)/∼g]×G F → (I × F )/∼g
[[x, h], f ] 7→ [x, hf ]
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The map Ψ is well-defined because if ((0, h), f) and ((1, ghh′), h′
−1
f) represent

the same element in the domain, then

Ψ([[0, h], f ]) = [0, hf ] = [1, g(hf)] = [1, (gh)f ] = [1, (gh)h′h′
−1
f ] = Ψ([[1, ghh′], h′

−1
f ])

Now we define

Ψ−1 : (I × F )/∼g → [(I ×G)/∼g]×G F
[x, f ] 7→ [[x, g], g−1f ]

The map Ψ−1 is well-defined because if (0, f) ∼g (1, g · f) then

Ψ−1([0, f ]) = [[0, g], g−1f ] = [[1, gg], g−1f) = [[1, g], f ] = Ψ([1, g · f ]

It is straightforward to check that Ψ−1Ψ = id and ΨΨ−1 = id.

Let π : X → S1 be a fiber bundle with fiber a compact manifold M and
let Φ: I → S1 be the quotient map induced by the exponential map. The
corresponding pullback is represented by the following diagram.

X ′ X

I S1

π̂

Φ̃

p
π

Φ

By Lemma 3.2.3, there is a homeomorphism ς : 0×M → 1×M , such that

X ∼= (I ×M)/∼

where (0, x) ∼ (1, y) if and only if ς(0, x) = (1, y). We will use the notation ς ′

for the second component of ς, that is ς(0, x) = (1, ς ′(x)) = (1, y).
To motivate the following construction, let σ : X → BPU(H) be a represen-

tative of a class in H3(X;Z) and let Pσ a principal PU(H)–bundle classified by
σ. We denote by Pσ(X) = Pσ×PU(H) Fred(H) the associated Fredholm bundle.
As before, there is a pullback diagram

P′σ Pσ

X ′ X

p̂

˜̃
Φ

p
p

Φ̃

Thus πp : Pσ → S1 is a fiber bundle with fiber M × Fred(H) and π̂p̂ his corre-
sponding pullback. Using Lemma 3.2.3, Pσ can be obtained by a mapping torus
from a homeomorphism ε : (0×M)× Fred(H)→ (1×M)× Fred(H).

Our strategy will be to reverse the logic here, first constructing a map

ε : 0× (M × PU(H))→ 1× (M × PU(H))

ε(0,m, y) = (ς(0,m), κλ(m)y)
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where ς : 0 × M → 1 × M is the homeomorphism considered previously and
κλ : M → PU(H) is a representative of the class−λ ∈ H2(M ;Z) = [M,PU(H)].
Next we will check that the mapping torus of ε is isomorphic to the composition
of the fiber bundle M ↪→ X

π−→ S1, where X is the mapping torus of ς, and a

PU(H)–principal fiber bundle P(X)
p−→ X (see Figure 3.1).

Figure 3.1: Composition bundles

We will do this by taking the quotient of I ×M × PU(H) by the relations
∼ς and ∼κλ . The first relation matches (0,m, 1H) with (1, ς ′(m), 1H) where
m ∈M and 1H is the identity in PU(H). This leads us to define

π1 : (I ×M × PU(H))/∼ς →S1

[i,m, h] 7→[i]

It is straightforward to verify that π1 restricted to (I×M×1H)/∼ς is isomorphic

to M ↪→ X
π−→ S1. In the same way we can define

p′ : (I ×M × PU(H))/ ∼ς→(I ×M × 1H)/ ∼ς
[i,m, h] 7→[i,m, 1H]

The map p′ is a projection and the restriction to ((0, 1)×M ×PU(H))/∼ς is a
fiber bundle with fiber PU(H). However, it is not a fiber bundle since

p′
−1

([]0,m, 1H]) = {[i,m, h] ∈ I ×M × PU(H)/∼ς | i = 0, 1}

that is, two copies of M × PU(H) pairing to M × 1H. To make p′ into a fiber
bundle, we use the relation ∼κλ . We match [0,m, h] with [1, ς ′(m), κλ(m)(h)].
This is well-defined because

[[0,m, 1H]] = [[1, ς ′(m), κλ(m)(1H)]]

= [[1, ς ′(m), κλ(m)1Hκλ
−1(m)]]

= [[1, ς ′(m), 1H]]

In other words, the equivalence relation ∼κλ coincides with ∼ς in I×M×1H.
With this in mind we define

p1 : [(I ×M × PU(H))/ ∼ς ] / ∼κλ→(I ×M × 1H)/ ∼ς
[[i,m, h]] 7→[i,m, 1H]
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It remains to prove that there is a local trivialization around [[i,m, 1H]] with
i = 0, 1. Without loss of generality we will use [[0,m, 1H]]. Let U ⊂ S1 be
an open neighbourhood of [0]. Since Φ: I → S1 is a quotient map, we have
Φ−1(U) = U0 ∪ U1, where U0 and U1 are disjoint semi-open intervals with
0 ∈ U0 and 1 ∈ U1.

Next take the open subset V = π−1
1 (U) ⊆ (I ×M × 1H)/∼ς . It is a neigh-

borhood of [[0,m, 1H]]. Now we define

ξ : p−1
1 (V )→V × PU(H)

[[i,m, h]] 7→
{

([i,m, 1H], h) if [i,m, 1H] ∈ π−1
1 (U0)

([i,m, 1H], κ−1
λ (ς ′

−1
(m))(h)) if [i,m, 1H] ∈ π−1

1 (U1)

To see that it is well defined, note that the different choice of representative
(1, ς ′(m), κλ(m)h) for the element [[0,m, h]] would lead us to

([1, ς ′(m), 1H], κ−1
λ (ς ′

−1
(ς ′(m)))(κλ(m)h) = ([0,m, 1H], κ−1

λ (m)(κλ(m)h)

= ([0,m, 1H], h)

Having this PU(H)–principal bundle in mind we can define

pa : (I ×M × PU(H))/∼ε →X (3.4)

[t,m, h] 7→a[t,m] (3.5)

where a is the homeomorphism between (I ×M)/∼ς and X. Now we construct
the associated bundle

p : [(I ×M × PU(H))/∼ε]×PU(H) Fred(H)→ X

and it is straightforward to check that πp is isomorphic to (I×M×Fred(H))/∼
where (0,m, y) ∼ ε(0,m, y), that is, the mapping torus of ε over S1. Addition-
ally, the PU(H)–principal fiber bundle pa : P(X) → X is classified by a class
σ ∈ H3(X;Z).

Remark 3.2.4. (Independence of the representative) In the previous construc-
tion, we chose a representative κλ : M → PU(H) of an element of H2(M) ∼=
[M,PU(H)] to construct a PU(H)–principal bundle that we will call Pκλ in this
remark.

If we chose another representative κλ′ : M → PU(H) we would have a ho-
motopy H : M × I → PU(H) with H0 = κλ and H1 = κλ′ and we can apply
construction 3.4 again to obtain

PH = I × I ×M × PU(H)/∼

with the relation (t, 0,m, y) ∼ (t, 1, ς(m), H(m, t)y) and

PH −→X × I
[t, s,m, y] 7→([s,m], t)

(3.6)
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which by construction turns out to be a PU(H)–principal bundle over X ×
I. A property that is useful to us is that PH �X×0

∼= Pκλ and PH �X×1
∼=

Pκλ′ , finally applying Theorem 4.9.8 in [29] we get an isomorphism of PU(H)–
principal bundles

Pκλ
∼= Pκλ′

Hence this construction is independent of the choice of κλ up to isomorphism.

Remark 3.2.5. We will use the notation D+ = Φ([0, 1
2 ]) and D− = Φ([ 1

2 , 1])
but to avoid excessive notation we will also use the notation D+ and D− for
[0, 1

2 ] and [ 1
2 , 1], respectively. With this in mind we define trivializations of

the fiber bundles p1 and of the restriction π of π1 to X. The names of these
trivializations and other relevant maps are displayed in the following diagrams
for convenience.

(D+ ×M)× Fred(H) (ρ−1
+ )∗P(X) � P(X) � P(X)

D+ ×M × 1H π−1(D+) π−1(S1)

q+

α
∼=

pr1

ρ̃+

p� p

ρ+

(D− ×M)× Fred(H) (ρ−1
− )∗P(X) � P(X) � P(X)

D− ×M × 1H π−1(D−) π−1(S1)

q−

β

∼=

pr1

ρ̃−

p� p

ρ−

Now we describe these maps

q± : D± ×M × Fred(H)→D± ×M × 1H

(i,m, h) 7→(i,m, 1H)

ρ+ : π−1(D+)→
[
0,

1

2

]
×M × 1H

[[i,m, 1H]] 7→
{

(i,m, 1H) if i 6= 1

(0, ς ′
−1

(m), 1H) if i = 1

ρ− : π−1(D−)→
[

1

2
, 1

]
×M × 1H

[[i,m, 1H]] 7→
{

(i,m, 1H) if i 6= 0
(1, ς ′(m), 1H) if i = 0

ρ̃+ : p−1(π−1(D+))→(ρ−1
+ )∗(p �π−1(D+))

[[i,m, h]] 7→(ρ+[[i,m, h]], [[i,m, h]])
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ρ̃− : p−1(π−1(D−))→(ρ−1
− )∗(p �π−1(D−))

[[i,m, h]] 7→ (ρ−[[i,m, h]], [[i,m, h]])

To trivialize (ρ−1
+ )∗P(X), we first point out that there is a homeomorphism

p−1
1 (π−1(D+))→ π−1(D+)× Fred(H)

[i,m, h] 7→
{

([i,m], h) if i 6= 1
([i,m], κ−1

λ (ς ′−1(m)) · h) if i = 1

We obtain then a trivialization for the pullback:

(ρ−1
+ )∗[p−1

1 (π−1(D+))]→ D+ ×M × Fred(H)

((j, n, 1H), [i,m, h]) 7→
{

(j, n, h) if i 6= 1
(j, n, κ−1

λ (ς ′−1(m)) · h) if i = 1

Now we use ρ+([i,m, 1H]) = (j, n, 1H). If i 6= 1, then (i,m) = (j, n). If i = 1,
then (j, n) = (0, ς ′−1(m)), thus

(j, n, κ−1
λ (ς ′−1(m)) · h) = (0, ς ′−1(m), κ−1

λ (ς ′−1(m)) · h)

Hence the trivialization α is described as

α : (ρ−1
+ )∗(p1 �π−1(D+))→

[
0,

1

2

]
×M × Fred(H)

((j, n, 1H), [[i,m, h]]) 7→
{

(i,m, h) if i = j

(0, ς ′
−1

(m), κ−1
λ (ς ′

−1
(m))h) if i 6= j

β : (ρ−1
− )∗(p1 �π−1(D−))→

[
1

2
, 1

]
×M × Fred(H)

((j, n, 1H), [[i,m, h]]) 7→
{

(i,m, h) if i = j
(1, ς ′(m), κλ(ς ′(m))h) if i 6= j

Additionally, let t0 and t1 be local sections over D+ ×M × 1H and D− ×
M×1H respectively, obtained by pullback from αρ̃+ and βρ̃− of a global section
t : π−1(S1)→ P(X). They must have the form:

t1 :

[
1

2
, 1

]
×M × 1H →

[
1

2
, 1

]
×M × Fred(H)

(i,m, 1H) 7→(i,m, s1(i,m, 1H))

t0 :

[
0,

1

2

]
×M × 1H →

[
0,

1

2

]
×M × Fred(H)

(i,m, 1H) 7→(i,m, s0(i,m, 1H))
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Then we have

αρ̃+ρ̃
−1
− β−1t1(1,m, 1H) =αρ̃+ρ̃

−1
− β−1(1,m, s1(1,m, 1H))

=αρ̃+ρ̃
−1
− ((1,m, 1H), [[1,m, s1(1,m, 1H)]])

=αρ̃+([[1,m, s1ρ−([[1,m, 1H]])]])

=αρ̃+([[1,m, s1ρ−([[0, ς ′
−1

(m), 1H]])]])

=α((0, ς ′
−1

(m), 1H), [[1,m, s1ρ−ρ
−1
+ (0, ς ′

−1
(m), 1H)]])

=(0, ς ′
−1

(m), κ−1
λ (ς ′

−1
(m))s1ρ−ρ

−1
+ (0, ς ′

−1
(m), 1H)).

Since s0(0, n, 1H) = κ−1
λ (n)s1ρ−ρ

−1
+ (0, n, 1H), the relation between t0 and t1 is

t0 = ε−1t1ρ−ρ
−1
+ = ε−1t1ς (3.7)

We check that this is indeed the case:

ε−1t1ρ−ρ
−1
+ (0, n, 1H) = ε−1t1(1, ς ′(n), 1H)

= ε−1(1, ς ′(n), s1(1, ς ′(n), 1H))

= (0, ς ′
−1

(ς ′(n)), κ−1
λ (ς ′

−1
(ς ′(n)))s1(1, ς ′(n), 1H))

= (0, n, κ−1
λ (n)s1(1, ς ′(n), 1H))

= (0, n, s0(0, n, 1H))

= t0(0, n, 1H)

On the other hand

αρ̃+ρ̃
−1
− β−1t1

(
1

2
,m, 1H

)
=αρ̃+ρ̃

−1
− β−1

(
1

2
,m, s1

(
1

2
,m, 1H

))
=αρ̃+ρ̃

−1
−

((
1

2
,m, 1H

)
,

[[
1

2
,m, s1

(
1

2
,m, 1H

)]])
=αρ̃+

([[
1

2
,m, s1ρ−

([[
1

2
,m, 1H

]])]])
=α

((
1

2
,m, 1H

)
,

[[
1

2
,m, s1ρ−ρ

−1
+

(
1

2
,m, 1H

)]])
=α

((
1

2
,m, 1H

)
,

[[
1

2
,m, s1

(
1

2
,m, 1H

)]])
=

(
1

2
,m, s1

(
1

2
,m, 1H

))
.

3.3 Cohomological interpretation

In this section we want to describe the inclusion map H1(S1;H2(M)) ↪→ H3(X)
and relate it to the construction from the previous section. Let us start by
remembering a classic result about fiber bundles over homology spheres.
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Proposition 3.3.1 (Wang sequence). For a fibration F ↪→ X
π−→ B, where B

is a simply-connected homology n-sphere and F is path-connected, we have a
long exact sequence

· · · → Hk(X)→ Hk(F )→ Hk−n+1(F )→ Hk+1(X)→ · · · (3.8)

This long exact sequence follows from the Serre spectral sequence, but for
our purposes we show a different way to achieve this result when B = S1 and π
is a fiber bundle, by using the Mayer-Vietoris exact sequence.

Let e = (1, 0) ∈ S1 and let w be the antipodal point to e. Given the open
cover {U, V } of S1, where U = S1 − {e} and V = S1 − {w}, we can define
homotopy equivalences φi and homeomorphisms ξi

φ1 : π−1(U)→ π−1(n), φ2 : π−1(V )→ π−1(s)

ξ1 : π−1(n)→ F × {n}, ξ2 : π−1(s)→ F × {s}
such that φ1 �π−1(n)= id, φ2 �π−1(s)= id and φ2φ1 �π−1(s) coincides with the
action of a generator g of π1(S1) over the fiber. Here n denotes the point (0, 1)
and s = −n. We denote u = ξ1φ1ξ

−1
2 and v = ξ2φ2ξ

−1
1 .

Now we write the Mayer-Vietoris exact sequence associated to the covering
of the total space X by π−1(U) and π−1(V ). This is:

··· → Hk(X)→ Hk(π−1(U))⊕Hk(π−1(V ))
iU−iV−−−−→ Hk(π−1(U)∩π−1(V ))→ Hk+1(X)→ ···

(3.9)
Using the above homotopy equivalences and homeomorphisms, this sequence
becomes:

··· → Hk(X)→ Hk(F×{n})⊕Hk(F×{s})→ Hk(F×{n})⊕Hk(F×{s})→ Hk+1(X)→ ···
(3.10)

To describe the map that corresponds to iU − iV under these homotopy equiv-
alences and homeomorphisms, we use the following two diagrams:

Hk(π−1(U)) Hk(π−1(U) ∩ π−1(V ))

Hk(F × {n}) Hk(F × {n})⊕Hk(F × {s})

i∗U

(ξ−1
1 ⊕ξ

−1
2 )∗(ξ1φ1)∗

(id,u∗)

Hk(π−1(V )) Hk(π−1(U) ∩ π−1(V ))

Hk(F × {s}) Hk(F × {n})⊕Hk(F × {s})

i∗V

(ξ−1
1 ⊕ξ

−1
2 )∗(ξ2φ2)∗

(v∗,id)

With this in mind we get the map

Hk(F × {n})⊕Hk(F × {s})

 1 v∗

u∗ 1


−−−−−−−−→ Hk(F × {n})⊕Hk(F × {s}) (3.11)
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Intuitively we identify that there is an extra copy of Hk(F ) on each side
here and we would like to remove it. Let us denote f = v∗u∗ and have a look
at its kernel and its cokernel.

The kernel is the set of tuples (x, y) such that x+v∗(y) = 0 and u∗(x)+y = 0.
So these tuples must have the form (x,−u∗(x)), where x = v∗u∗(x). But v∗u∗

is exactly the induced action of g conjugated by ξ2. We take a class and move
it along a path going from the point n to the point s avoiding e, and then from
the point s to the point n avoiding w, so we are moving across the whole loop.
Hence the kernel is Ker(f − I).

Similarly, the cokernel is the set of tuples (x, y) modulo the subgroup of
tuples of the form (x, y) = (a, u∗(a))+(v∗(b), b). But the maps (x, y) 7→ x−v∗(y)
and z 7→ (z, 0) induce an isomorphism

Coker

(
1 v∗

u∗ 1

)
∼= Coker(f − I).

To see this, note that for elements of the form (a, u∗(a)) and (v∗(b), b), we have

a− v∗u∗(a) = a− f(a)

v∗(b)− v∗(b) = 0

And for an element of the form a− f(a), we have

(a− f(a), 0) = (a− v∗u∗(a), 0) = (a, u∗(a))− (v∗u∗(a), u∗(a))

Thus, we can replace the map by f − I : Hk(F × {n}) → Hk(F × {n}). Of
course Hk(F × {n}) is just Hk(F ) and we get the Wang sequence.

An important observation in the case k = 2 is that

Coker(f − I) ∼= H2(F )Z ∼= H1(S1;H2(M))

whereH2(F )Z denotes the coinvariants. Now we want to describe the connecting
morphism γ : Coker(f − I) ↪→ H3(X) in the long exact sequence. To achieve
this, we use the following diagram.

H2(π−1(U))⊕H2(π−1(V )) H2(π−1(U) ∩ π−1(V ))

H2(F × {n})⊕H2(F × {s}) H2(F × {n})⊕H2(F × {s}) H3(X)

0 Coker(ψ)

H2(F ) H2(F )

∼=φ∗=(φ−1
1 ξ−1

1 ,φ−1
2 ξ−1

2 )∗ δ∼=(ξ−1
1 ,ξ−1

2 )∗

ψ δ′

q
γ′

f−I

ω

γ

(3.12)



CHAPTER 3. TWISTINGS FOR FIBER BUNDLES 41

Here q(z, w) = [z, w], γ′[z, w] = δ′(z, w) and ω(a) = [a, 0]. Note that ω is
the appropriate map by the previous considerations that identify the cokernels
of ψ and f − I. With this we have a better expression for γ, namely

γ(a) = δ′ω(a) = δ(ξ∗1(a), 0).

Now we describe δ to improve this formula, our idea will be use the description
in the following diagram:

Hk(Cg) Hk(X)

Hk(Σ(π−1(U ∩ V )))

Hk−1(π−1(U ∩ V ))

q∗

∼=

∼=

δ
(3.13)

First we regard the Mayer-Vietoris sequence for k 6= 1 in another way:

Hk−1(π−1(U ∩ V )) Hk(X) Hk(π−1(U))⊕Hk(π−1(V ))

Hk(Σ(π−1(U ∩ V ))) Hk(π−1(U) ∨ π−1(V ))

∼=
g∗

∼=

(3.14)
where g : π−1(U)∨π−1(V )→ X is the inclusion in each summand. Secondly, we
take its homotopy cofiber Cg and we point out that we have a homeomorphism:

e : Σ(π−1(U ∩ V ))
∼=−→ Cg

[x, t] 7→

 ∗ if x = ∗
[x, 1− 2t] if 0 ≤ t ≤ 1

2
[x, 2t− 1] if 1

2 ≤ t ≤ 1

There are two different ways of identifying Cg that we describe now. The
first description is:

Cg = X ∨ [(π−1(U) ∨ π−1(V ))× I]/∼

where (z, 1) ∼ ∗ and (z, 0) ∼ g(z). The second description is:

Cg = Cπ−1(U) ∨ Cπ−1(V )/∼

where [a, 0] ∼ [a, 0] for a ∈ π−1(U ∩ V ). With either description, we define the
map

q : X → Cg

x 7→ [x]
(3.15)



CHAPTER 3. TWISTINGS FOR FIBER BUNDLES 42

and consider the bijections

H3(Cg) ∼=[Cg, BPU(H)]∗ ∼= [Cg, BPU(H)]

H2(π−1(U ∩ V )) ∼=[π−1(U ∩ V ), PU(H)]

Given the class of h : π−1(U ∩V )→ PU(H), we consider Σh : Σ(π−1(U ∩V ))→
ΣPU(H). Now we use the fact that there is a homotopy equivalence PU(H)

'−→
ΩBPU(H) and taking the adjoint map we obtain:

Σ(π−1(U ∩ V ))→ ΣPU(H)→ BPU(H)

To obtain a bundle interpretation of an element in H3(Σ(π−1(U ∩V ))), we need
two observations:

• The PU(H)–principal bundle P over ΣPU(H) = C+PU(H)∪PU(H)C−PU(H)
obtained through the above adjoint map is

P =
C+PU(H)× PU(H)q C−PU(H)× PU(H)

∼
,

where ([x, 0], z) ∼ ([x, 0], xz), hence the clutching map is the identity map.

• The restriction of Σh to π−1(U ∩ V ) is h, thus

Σh∗P =
Cπ−1(U ∩ V )× PU(H)q Cπ−1(U ∩ V )× PU(H)

([a, 0], z) ∼ ([a, 0], h(a)z)
,

The corresponding principal PU(H)–bundle Q over Cg induced by Σh∗P
through the homeomorphism e is given by:

Q =
Cπ−1(U)× PU(H)q Cπ−1(V )× PU(H)

([a, 0], z) ∼ ([a, 0], h(a)z)
,

since e �π−1(U∩V )= id. Finally we pull Q back along q.

q∗Q Q

X Cg
q

(3.16)

Here q(π−1(U)) ⊂ Cπ−1(U) and q(π−1(V )) ⊂ Cπ−1(V ), hence q∗Q �π−1(U)

and q∗Q �π−1(V ) are trivial. The bundle q∗Q is the result of gluing two trivial
bundles on π−1(U ∩ V ) using the map

π−1(U ∩ V ) π−1(U ∩ V ) PU(H)
q=id

h

h (3.17)
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q∗Q =
π−1(U)× PU(H)q π−1(V )× PU(H)

(a, z) ∼ (a, h(a)z)
, (3.18)

Finally we match the interpretation from Equation 3.18 with the bundle de-
scribed in Equation 3.4. For this, we will again represent X as a torus mapping
of ς and choose a map h : π−1(U ∩ V )→ PU(H) which on a connected compo-
nent of π−1(U ∩ V ) represents a map homotopically equivalent to λ and on the
other component to the constant map.

H : (I ×M × PU(H)/'ε → q∗Q

[t,m, z] 7→
{

[t,m, z]U if [t,m, z] ∈ p−1
a (π−1(D+))

[t,m, z]V if [t,m, z] ∈ p−1
a (π−1(D−))

By the way they were constructed, it is easy to verify that this map is a mor-
phism of PU(H)–principal bundles. Therefore they are isomorphic. It only rests
to check that it is well-defined, that is:

H(0,m, y) = [0,m, y]U

= [0,m, h(0,m)y]V

= [ς(0,m), κλ(m)y]V

= [1, ς ′(m), κλ(m)y]V

= H(1, ς ′(m), κλ(m)y)

.

3.4 Another description of E1,2
∞

In this section we get a description of E1,2
∞ = H1(S1;H2(M)) in terms of relative

cohomology groups. To achieve this, we will construct E1,2
2 from the E1-page

of the Serre spectral sequence.
First of all we give a filtration for B = S1 where B0 is the one-point space

and B1 = S1. This induces a filtration in X given by Xi = π−1(Bi). So
X0 = M and Xi = ∅ for i < 0. To construct the first page we consider the
staircase diagram

→ H2(X1, X0) H2(X1) H3(X2, X1) H3(X2) H4(X3, X2)→

→ H2(X0, X−1) H2(X0) H3(X1, X0) H3(X1) H4(X2, X1)→

→ H2(X0, X−1) H2(X0) H3(X1, X0) H3(X1) H4(X2, X1)→

In our case, it has the form
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→ H2(X,M) H2(X) H3(X,X) H3(X) H4(X,X)→

→ H2(M, ∅) H2(M) H3(X,M) H3(X) H4(X,X)→

→ H2(∅, ∅) H2(∅) H3(M, ∅) H3(M) H4(X,M)→

i∗

j∗ δ j∗

i∗

δ

We now define En,p1 = Hn(Xp, Xp−1) and d1 = j∗ ◦ δ. With this no-
tation Hn(X) is filtered by the subgroups Fnp = Ker (Hn(X)→ Hn(Xp−1))
and En,p∞

∼= Fnp /F
n
p+1. In Section 3.1 we concluded that En,p∞ = En,p2 and

E1,2
∞ = H1(S1;H2(M)), so we will calculate E1,2

2 from E1,2
1 . We have

E0,2
1

d1−→ E1,2
1

d1−→ E2,2
1

that is

H2(M, ∅) j∗◦δ−−−→ H3(X,M)
j∗◦δ−−−→ H4(X,X) = 0

Due to the fact that j∗ = id, we have E1,2
2 = Coker(δ). From the long exact

sequence of the pair

→ H2(M)
δ−→ H3(X,M)

ĵ∗−→ H3(X)→

we obtain

H3(X,M)

Im(δ)
=
H3(X,M)

Ker(ĵ∗)
= E1,2

2

H3(X,M) H3(X)
ĵ∗

3.5 The case of a trivial action

Here we describe the isomorphism Ψ: Hom(H1(S1, B0), H2(M)) → H3(X,M)
in the case when π1(X) acts trivially over H2(M). Let π : X → B be a fiber
bundle with fiber M , let Bp be the p-skeleton of B and let Xp = π−1 (Bp). Let

Φ: Dp → Bp be the characteristic map for the p-cell epα of B. Let D̃p
α = Φ∗α(Xp)

and let S̃p−1
α be the part of D̃p

α over ∂Dp
α.

D̃p
α Xp

Dp
α Bp

Φ̃α

π

Φα

The isomorphism Ψ is constructed via the following conmutative diagram (see
Proposition 1.14 in [25]).
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∏
α
Hp+q

(
D̃p
α, S̃

p−1
α

)
Hp+q (Xp, Xp−1)

∏
α
Hq (M) Hom (Hp (Bp, Bp−1) , Hq (M))

Φ̃∗

∼=

∏
α ε

p
α
∼=

∼=

Ψ ∼=

We are interested in the case where M is a manifold and B = S1. We
consider the cellular decomposition for S1 with one 0-cell D0 and one 1-cell D1

which is attached by the constant map ∂D1 = {D0
1, D

0
−1} → D0. In particular

there is a homeomorphism ρ : D̃1 → D1 ×M . We also add the hypothesis of
trivial action of π1(X) in H2(X).

The leftmost vertical map turns up out of

H2
(
D̃0

1

)
∼= H2

(
S̃0, D̃0

−1

)
∼= H3

(
D̃1, S̃0

) (3.19)

The isomorphism ε1i in the diagram is completed with

H2(D̃0
1) ∼= H2(F1) ∼= H2(M)

where F1 = Φ̃(D̃0
1), the first isomorphism is induced by Φ̃ and the second one

is given by the hypothesis of trivial action.
Consider the fibration D̃1 → D1, now we determine Ψ explicitly in terms of

Čech cohomology. By the previous isomorphisms we have

Ȟ1(M ;U(1)) ∼= Ȟ1(F1;U(1))

∼= Ȟ1
(
D̃0

1;U(1)
)

∼= Ȟ1
(
S̃0
, D̃

0
−1;U(1)

)
∼= Ȟ2

(
D̃1, S̃0;U(1)

)
(3.20)

Let {Ui} be an open cover of M and φ ∈ Ȟ1
(
M ;U(1)

)
, where φ is a class

representative with {φij : Uij → U(1)}. The first isomorphism follows from the
hypothesis of trivial action, so we will use the same notation φ but the image has
the form φ = {φij : D0 × Uij → U(1)}. The second isomorphism is induced by

Φ̃, hence we still use the same notation φ = {φij : D0
1 ×Uij → U(1)}. The third

isomorphism comes from excision, so its image in Ȟ1
(
S0 ×M,D0

−1 ×M ;U(1)
)

is the class of
φ′ =

{
φ′ij : S0 × Uij → U(1)

}
,

where φ′(y) = φ(y) if y ∈ D0
1 ×M and φ′(y) = 1 if y ∈ D0

−1 ×M . The fourth
isomorphism is induced by a connecting morphism, so we use the following
diagram to describe it:
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Č2
(
D1 ×M,D0

−1 ×M ;U(1)
)

Č2
(
D1 ×M,S0 ×M ;U(1)

)
Č1
(
S0 ×M,D0

−1 ×M ;U(1)
)

Č1
(
D1 ×M,D0

−1 ×M ;U(1)
)

Since φ′ ∈ Č1
(
S0 ×M,D0

−1 ×M ;U(1)
)

, we get a lifting φ′′ =
{
φ′′ij : D1 × Uij → U(1)

}
in Č1

(
D1 ×M,D0

−1 ×M ;U(1)
)

defined as a family of homotopies between

φ′ij � (D0
1×M) and φ′ij � (D0

−1×M). Now we have ∂φ′′ ∈ Č2
(
D1 ×M,D0

−1 ×M ;U(1)
)

defined by
∂φ′′ = γ =

{
γijk : D1 × Uijk → U(1)

}
where

γijk = φ′′ij � (D1 × Uijk)− φ′′ik � (D1 × Uijk) + φ′′jk � (D1 × Uijk),

Since φ′′ � (S0×Uij) = φ′ and ∂φ′ = 0, we have that γ ∈ Č2
(
D1 ×M,S0 ×M ;U(1)

)
and it is a cocycle.

Finally the isomorphism Φ̃∗ turns up out of the excision property. Since
Bp−1 is a deformation retract of a neighborhood N in Bp, we have that Xp−1

is a deformation retract of π−1(N) and so:

Ȟ2
(
Xp, Xp−1;U(1)

)
' Ȟ2

(
Xp, π

−1(N);U(1)
)

' Ȟ2
(
D1 ×M, Φ̃−1(π−1(N));U(1)

)
' Ȟ2

(
D1 ×M,S0 ×M ;U(1)

)
.

(3.21)

3.6 An interpretation with Čech cohomology

Let M ↪→ X → S1 be a fiber bundle where M is manifold and let {B1, B0} be
a cellular descomposition of S1 as in the previous section. Let ∂I = {0, 1} and
let N be an open neighborhood of B0 in S1. Consider the following diagram of
pullbacks.

X ′ X

Z

I S1

V N

π̂

Φ̃

p

π

p

Φ

i
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Here we take ρ : X ′ → I ×M , ς : 0 ×M → 1 ×M and f : π̂−1(0) → π̂−1(1) as
in Lemma 3.2.2.

Ȟ1
(
S1;Z

)
⊗ Ȟ1

(
M ;U(1)

)
∼= Ȟ1

(
I, S0;Z

)
⊗ Ȟ1

(
M ;U(1)

)
∼= Ȟ2

(
I ×M,S0 ×M ;U(1)

)
∼= Ȟ2

(
I ×M,V ×M ;U(1)

)
∼= Ȟ2

(
X ′, Z;U(1)

)
∼= Ȟ2

(
X,M ;U(1)

)
.

(3.22)

Let {T+, T−} be the open cover of S1 (see Figure 3.2) corresponding to
hemispheres with non-empty intersection, composed of two disjoint components
that we denote by (T+ ∩ T−)−1 and (T+ ∩ T−)1. Let h be the Čech 1-cocycle
whose generator class is defined by

h : T+ ∩ T− → Z
(T+ ∩ T−)−1 7→ 0

(T+ ∩ T−)1 7→ 1

(3.23)

Figure 3.2: Cover of S1

In the same way we take an open cover {Ui} of M with i ∈ I and a Čech
1-cocycle g = {gij : Uij → U(1)}. Let {D1, D0} be a cellular decomposition
for S1 where D0 is given by a point in (T+ ∩ T−)−1. The induced cover for
D1 (see Figure 3.3) has two non-connected open sets as well, namely {T ′+ =
T a+∪T b+, T ′− = T a−∪T b−}. Here 0 ∈ T a+, T a− and 1 ∈ T b+, T b−. And their intersection
is

T ′+ ∩ T ′− = (T+ ∩ T−)1 q (T+ ∩ T−)−1a q (T+ ∩ T−)−1b



CHAPTER 3. TWISTINGS FOR FIBER BUNDLES 48

The first isomorphism in Equation (3.22) is induced by

Figure 3.3: Induced cover of D1

q ⊗ id : (D1, S0)×M → (D1/S0, S0/S0)×M

Thus the induced image of h⊗ g through (q⊗ id)∗ is the map h′ ⊗ g defined by

h′ ⊗ g : (T ′+ ∩ T ′−)⊗ {Uij} → Z⊗ U(1)

(T+ ∩ T−)1 ⊗ Uij 7→ 1⊗ gij(Uij)
(T+ ∩ T−)−1a ⊗ Uij 7→ 0⊗ gij(Uij)
(T+ ∩ T−)−1b ⊗ Uij 7→ 0⊗ gij(Uij)

(3.24)

For the second isomorphism, let π1 : D1 ×M → D1 and π2 : D1 ×M → M
be the projection maps. We have a cup product

H1(D1×M,S0×M ;Z)⊗H1(D1×M ;U(1))→ H2(D1×M,S0×M ;Z⊗U(1))

and the last term is isomorphic to H2(D1 ×M,S0 ×M ;U(1)). The induced

open cover for D1 ×M is {T ′k × Ui} hence the image of h′ ⊗ g is a cup product
between h′ ◦ π1 and g ◦ π2. Nevertheless we will use the open cover

{Uki = T ak × κ−s(k)(Ui) ∪ T bk × κ−s(k)+1(Ui)}

with i ∈ I, k ∈ {−,+}, s(+) = 0 and s(−) = 1. The cocycle considered
previously in this cover is a cup product h̃′ ` g̃, where h̃′ and g̃ are the cocycles
h′ ◦ π1 and g ◦ π2 on the new open cover. We point out that by construction
g̃ �π−1(b)= g for all b ∈ (T+ ∩T−)1 due to the fact that both open covers are the
same there.

h̃′ ` g̃ : {Ft1 ∩ Ft2 ∩ Ft3} → Z⊗ U(1)

Uk1
i ∩ U

k2
j ∩ U

k3

k 7→ h̃′(Uk1
i ∩ U

k2
j )⊗ g̃(Uk2

j ∩ U
k3

k )

Uk1
i ∩ U

k2
j ∩ π

−1
1 (V ) 7→ h̃′(Uk1

i ∩ U
k2
j )⊗ g̃(Uk2

j ∩ π
−1
1 (V ))

π−1
1 (V ) ∩ Uk2

j ∩ U
k3

k 7→ h̃′(π−1
1 (V ) ∩ Uk2

j )⊗ g̃(Uk2
j ∩ U

k3

k )

(3.25)
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In the third isomorphism V represents an open neighborhood of S0 in D1

which deformation retracts onto S0. This isomorphism is obtained using the
long exact sequences of the triple since H2(V ×M,S0 ×M ;U(1)) = 0. In our

example h̃′ ` g̃ is still a cocycle for

Ȟ2
(
D1 ×M,V ×M ;U(1)

)
∼= Ȟ2

(
X ′, Z;U(1)

)
.

In relation to the fourth isomorphism, there is a homeomorphism φ : X ′ →
D1 ×M which induces

Ȟ2
(
D1 ×M,V ×M ;U(1)

)
∼= Ȟ2

(
X ′, Z;U(1)

)
An open cover for X ′ is {V ki = φ−1(Ft)} and the cocycle asociated to h̃′ ` g̃ is:

ρ : {V k1
i ∩ V

k2
j ∩ V

k3

k } → Z⊗ U(1)

V k1
i ∩ V

k2
j ∩ V

k3

k 7→ h̃′(φ(V k1
i ∩ V

k2
j ))⊗ g̃(φ(V k2

j ∩ V
k3

k ))
(3.26)

Finally, in the last isomorphism, we verify that F � : X ′−Z → X−p−1(N) is
a homeomorphism. Here N deformation retracts onto D0, hence so does p−1(N)
over p−1(D0). By excision

Ȟ2
(
X ′, Z;U(1)

)
∼= Ȟ2

(
X, p−1(N);U(1)

)
Next using the long exact sequence of the triple we have

Ȟ2
(
X, p−1(N);U(1)

)
∼= Ȟ2

(
X,M ;U(1)

)
The cocycle σ asociated to ρ is defined similarly.



Chapter 4

Some computations of
twisted K-theory

In this chapter we perform some calculations of twisted K-theory. For this
purpose we first obtain a formula up to extensions that generalizes some results
of Harju and Mickelsson (see Theorem 4.2 in [24]), then through the Atiyah-
Hirzebruch spectral sequence we obtain formulas to calculate the twisted K-
theory of closed connected 3-manifolds and we finally apply these two results in
some examples.

4.1 The twisted K-theory of fiber bundles over
the circle

Let π : X → S1 be a fiber bundle whose fiber is a compact manifold M and
let σ → X be the principal PU(H)–bundle constructed in Section 3.2. If we
know the K-theory of the fiber M , we can use a Mayer-Vietoris sequence for
closed subspaces to obtain a description of a K-theory of X up to extensions.
To calculate σK(X) we use the closed hemisphere partition {D+, D−} of the
base, where D+ ∩D− = {−1, 1}. To achieve this, we need to trivialize the fiber
bundle over each hemisphere and the twisting at each (π−1(D+), π−1(D−)). Let
ρi : π

−1(Di) → Di ×M be the trivializations corresponding to regarding X as
a mapping torus. With this in mind, we have

50
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σ

(ρ−1
+ )∗σ+ σ+ σ− (ρ−1

− )∗σ−

π−1(S1)

D+ ×M π−1(D+) π−1(D+−) π−1(D−) D− ×M

D+− ×M

ρ̃−1
+

∼=

ĩ′1 ĩ′2

ρ̃−1
−
∼=

ρ−1
+

∼=

i′1

i1 i2

ρ+ ρ−

i′2

ρ−1
−
∼=

j1 j2

We focus on the intersection:

(ρ−1
+ )∗σ+− (ρ−1

− )∗σ+−

(ρ−1
+ )∗σ+ (ρ−1

− )∗σ−

D+− ×M D+− ×M

D+ ×M D− ×M

ρ̃+ρ̃
−1
−

j1 j2

ρ+ρ
−1
− =(id,κ−1)

j2

(i′1ρ
−1
+ )−1i′2ρ

−1
−

Then, the first part of the Mayer-Vietoris sequence is:

σ+K(π−1(D+))⊕ σ−K(π−1(D−)) σ+−K(π−1(D+−))

(ρ−1
+ )∗σ+K(D+ ×M)⊕ (ρ−1

− )∗σ−K(D− ×M) (ρ−1
+ )∗σ+−K(D+− ×M)

(ρ−1
+ )∗ (ρ−1

− )∗

i∗1−i
∗
2

(ρ−1
+ �)∗

j∗1−(ρ̃+ρ̃
−1
− )∗j

∗
2

Thus (ρ+ρ
−1
− ) �−1×M= id and (ρ+ρ

−1
− ) �1×M= ς−1, where ς is the homeomor-

phism from Lemma 3.2.3. Therefore from the description of twisted K-theory
in terms of sections:

(j∗1 − (ρ̃+ρ̃
−1
− )∗j

∗
2 )(x, y) = (x � −id∗(y �), x � −ς−1

∗ (y �)),

Here x � −id∗(y �) lies over −1×M and x � −ς−1
∗ (y �) lies over 1×M .

To trivialize (ρ−1
+ )∗σ+ and (ρ−1

− )∗σ− we will use the description of σ as a
mapping torus from Section 3.2. This description of σ is useful because we have
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a description over D+ ∩D− and we see that its restriction to any fiber π−1(y)
with y ∈ S1 is trivial. Additionally each Di are contractible so for x ∈ D+−

π−1(x) π−1(Di) Di ×M π−1(Di)

x Di x×M π−1(x)

j′ ρi
∼=

j ρi�
∼=

j′

The map j′ is a homotopy equivalence, thus so is x ×M ρij
′(ρi�)

−1

−−−−−−−→ Di ×M .
Hence we can define bundle trivializations α, β (as in Remark 3.2.5) shown in
the following diagram

(D+ ×M)× Fred(H) (ρ−1
+ )∗σ+ σ+ σ

D+ ×M D+ ×M π−1(D+) π−1(S1)

α
∼=

ρ̃−1
+ ĩ′1

= ρ−1
+ i′1

(D− ×M)× Fred(H) (ρ−1
− )∗σ− σ− σ

D− ×M D− ×M π−1(D−) π−1(S1)

β

∼=

ρ̃−1
− ĩ′2

= ρ−1
− i′1

We focus on the intersection and using for notation F = Fred(H), we have
a diagram

(D+− ×M)×F (ρ−1
+ )∗σ+−

(D+ ×M)×F (D− ×M)×F

D+− ×M D+− ×M

D+ ×M D− ×M

α−1

j1 j2

=

(i′1ρ
−1
+ )−1i′2ρ

−1
−

The map (ρ−1
+ )∗σ+− → (D− ×M) × F on the top right is represented in the

following diagram:
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(D− ×M)×F (ρ−1
− )∗σ+− σ+− (ρ−1

+ )∗σ+−

D− ×M D+− ×M π−1(D+−) D+− ×M

j̃2β ρ̃− ρ̃−1
+

j2id ρ− ρ−1
+

Then the second part of the Mayer-Vietoris sequence has the form:

(ρ−1
+ )∗σ+K(D+ ×M)⊕(ρ−1

− )∗σ− K(D− ×M) (ρ−1
+ )∗σ+−K(D+− ×M)

K(D+ ×M)⊕K(D− ×M) K(D+− ×M)

α∗ β∗

j∗1−(ρ̃+ρ̃
−1
− )∗j

∗
2

α�∗

j1∗−α∗ ˜(ρ+ρ
−1
− )
∗
β−1
∗ j2∗

If we identify [0, 1/2] and [1/2, 1] with D+ and D− respectively through the
exponential map, using the description of twisted K-theory in terms of sections
and the mapping torus construction (see Remark 3.2.5), we have:

α ˜(ρ+ρ
−1
− )β−1

(
1

2
,m, s

(
1

2
,m

))
=

(
1

2
,m, s

(
1

2
,m

))
α ˜(ρ+ρ

−1
− )β−1(1,m, s(1,m)) =(0, ς ′

−1
(m), κ−1

λ (ς ′
−1

(m))sρ−ρ
−1
+ (0, ς ′

−1
(m)))

Finally, using the class λ ∈ H2(M ;Z) induced by κ−1
λ and defining a : = (j1∗−

α∗
˜(ρ+ρ
−1
− )∗β

−1
∗ j2∗), we can rewrite the map between the untwisted K-theory

groups as follows:
a(x, y) = (x− y, x− λ⊗ ς∗y). (4.1)

The tensor product corresponds to the product in the usual ring structure in
ordinary K-theory, hence we will use the notation · in the following arguments
instead of ⊗. This will also be convenient for the analogous map in K−1. We
also use the notation ς instead of ς ′ for simplicity in what follows.

Theorem 4.1.1. Let M ↪→ X
π−→ S1 be a fiber bundle where M is a compact

manifold and X obtained as the mapping torus of a homeomorphism ς : M →
M . Given a class [λ] ∈ H2(M) represented by a complex line bundle λ, let
σ ∈ H3(X) be the image of the class of [λ] under the inclusion H2(M)Z ∼=
H1(S1;H2(M))→ H3(X). Then the twisted K-theory group σK∗(X), for ∗ =
0, 1, is isomorphic to an extension of

{x ∈ K∗(M) | x = λ · ς∗x} by
K∗+1(M)

{y − λ · ς∗(y) | y ∈ K∗+1(M)}
. (4.2)

Proof. Using the decomposition {D+, D−} in terms of closed subspaces of S1,
we obtain the Mayer-Vietoris sequence
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σK0(X) K0(D+ ×M)⊕K0(D− ×M) K0(D+− ×M)

K1(D+− ×M) K1(D+ ×M)⊕K1(D− ×M) σK1(X)

c0 a0

b0b1

a1 c1

Thus there are group isomorphisms

σK∗(X) ∼=
K∗+1(D+− ×M)

Im(a∗+1)
⊕ρ Im(c∗)

∼=
K∗+1(M)⊕K∗+1(M)

Im(a∗+1)
⊕ρ Ker(a∗)

(4.3)

where the right side denotes group extensions associated to some cocycle ρ in
group cohomology. The map a∗ is given by Equation (4.1), that is, if we consider
a class (x, y) ∈ K∗(D0 ×M)⊕K∗(D1 ×M) for ∗ ∈ {0, 1}, the gluing maps a∗
are given by

a∗(x, y) = (x− y, x− λ · ς∗y).

With this in mind we can rewrite (4.3) as

Ker(a∗) = {x ∈ K∗(M) | x = λ · ς∗x}

Now consider the morphism

K∗+1(M)⊕K∗+1(M)

Im(a∗+1)
−→ K∗+1(M)

{z − λ · ς∗(z) | z ∈ K∗+1(M)}

that sends the class of (x, y) to the class of y− x. This is well-defined since the
class of the element (x, x) is sent to the class of 0 and the class of the element
(−y,−λ · ς∗(y)) to the class of the element y−λ · ς∗(y), which is the trivial class.
It is easy to check that it is bijective and this proves the theorem.

Note that this result could be described alternatively stating that σK∗(X)
is an extension of Ker(1− λ · ς∗) by Coker(1− λ · ς∗), where the first 1− λ · ς∗
is the map defined on K∗(M) and the second one on K∗+1(M).

Remark 4.1.2. (Independence of the representative) In the previous theorem
we chose a representative λ of an element in H2(M). If we chose another
representative λ′, this would be isomorphic to λ as line bundles, hence it would
define the same element in K(M). Therefore the computation would yield
the same result. This is consistent with Remark 3.2.4, since performing the
computation with λ′ would amount to computing the twisted K-theory with
respect to an isomorphic PU(H)–principal bundle.

4.2 Twisted K-theory for 3-manifolds

In this section we use the Atiyah-Hirzebruch spectral sequence to calculate the
twisted K-theory of closed connected 3-manifolds X up to extensions. Indeed
we will obtain it in terms of cohomology groups.
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4.2.1 Orientable 3-manifolds

Proposition 4.2.1. Let M be a closed, path connected and orientable 3-dimensional
manifold and consider nω ∈ H3(M ;Z) where ω is the Poincaré dual of the unit
element in H0(M ;Z) and n ∈ Z. If n 6= 0, we have

nωK1(X) ∼= H1(X;Z)⊕ Z/n (4.4)

nωK0(X) ∼= H2(X;Z) (4.5)

Proof. We consider the second page of the Atiyah-Hirzebruch spectral sequence
which is given by the formula

Epq2 = Hp(X;Kq(point))

See Proposition 4.1 in [4]. Because Kq(point) = 0 for q odd, we have that the
even differentials d2, d4, . . . are zero, in particular Ep,q2 = Ep,q3 .

3 0 0 0 0 0
2 Z H1(X;Z) H2(X;Z) Z 0
1 0 0 0 0 0
0 Z H1(X;Z) H2(X;Z) Z 0
−1 0 0 0 0 0
−2 Z H1(X;Z) H2(X;Z) Z 0
−3 0 0 0 0 0

Now we need to apply the differential d3 : Hp(X) → Hp+3(X), which is given
by Proposition 4.6 in [5], namely

d3(x) = Sq3
Z(x)− nωx

where Sq3
Z : Hp(X) → Hp+3(X) is the integral Steenrod square. Recall that

Sq3
Z = βSq2, where β is the Bockstein homomorphism associated to the short

exact sequence 0 → Z 2→ Z → Z/2 → 0. In this case, the only differential that
could possibly be zero is d3 : H0(X)→ H3(X). Since Sq2 is trivial on H0(X),
we have d3(1) = n. Assume n 6= 0, then the fourth page has the form:

3 0 0 0 0 0
2 0 H1(X;Z) H2(X;Z) Z/n 0
1 0 0 0 0 0
0 0 H1(X;Z) H2(X;Z) Z/n 0
−1 0 0 0 0 0
−2 0 H1(X;Z) H2(X;Z) Z/n 0
−3 0 0 0 0 0

Due to the fact that dn : Ep,qn → Ep+n,q−n+1
n advances at least four terms to
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the right if n ≥ 4, we obtain Ep,q4 = Ep,q∞ . To calculate nωK1(X), we use

0 = E0,1
∞ = F 0K1(X)/F 1K1(X)

H1(X;Z) = E1,0
∞ = F 1K1(X)/F 2K1(X)

0 = E2,−1
∞ = F 2K1(X)/F 3K1(X)

Z/n = E3,−2
∞ = F 3K1(X)/F 4K1(X)

Because F 4K1(X) = 0, we obtain F 2K1 = Z/n and F 1K1 = K1, thus we have
an exact sequence

0→ Z/n→ nωK1(X)→ H1(X;Z)→ 0 (4.6)

Since H1(X;Z) is finitely generated and torsion-free, it is free abelian, hence
the sequence splits. In the same way

nωK0(X) ∼= H2(X;Z). (4.7)

And this finishes the proof.

4.2.2 Non-orientable 3-manifolds

On the other hand, for the non-orientable case, first we need to describe the
group H3(X;Z). Using Poincare Duality for non-orientable manifolds (see for
instance Theorem 3H.6 in [27]), H3(X,Z) ∼= H0(X;Z), where Z indicates that
this is homology with local coefficients, more precisely, it is the coefficient system
where the class of a loop in π1(X) acts trivially if it preserves orientation and by
multiplication by −1 otherwise. It is well-known that H0(X;Z) are the coinvari-
ants of π1(X) acting over Z. Since we are assuming that X is non-orientable,
there is at least an element g ∈ π(X) which does not preserve orientation and
so we have:

H0(X;Z) ∼=
Z

〈n− g(n)〉
∼=

Z
〈n− (−n)〉

∼= Z/2

Proposition 4.2.2. Let M be a closed, path-connected and non-orientable 3-
dimensional manifold and let ω ∈ H3(M ;Z) be the non-trivial class. Then

ωK0(X) ∼= Z⊕H2(X;Z) (4.8)

ωK1(X) ∼= H1(X;Z) (4.9)

Proof. Similarly to the case of orientable manifolds, we will use the Atiyah-
Hirzebruch spectral sequence, only in this case the second page has the form

3 0 0 0 0 0
2 Z H1(X;Z) H2(X;Z) Z/2 0
1 0 0 0 0 0
0 Z H1(X;Z) H2(X;Z) Z/2 0
−1 0 0 0 0 0
−2 Z H1(X;Z) H2(X;Z) Z/2 0
−3 0 0 0 0 0
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We again have E2 = E3 and we need to compute the differential d3 : H0(X)→
H3(X). Again we have d3(x) = Sq3

Z(x)−ωx, but Sq3
Z vanishes on H0(X), hence

d3(1) = ω and ω represents the nontrivial element of Z/2.

3 0 0 0 0 0

2 2Z H1(X;Z) H2(X;Z)
Z/2
Z/2

0

1 0 0 0 0 0

0 2Z H1(X;Z) H2(X;Z)
Z/2
Z/2

0

−1 0 0 0 0 0

−2 2Z H1(X;Z) H2(X;Z)
Z/2
Z/2

0

−3 0 0 0 0 0

Due to the fact that dn : Ep,qn → Ep+n,q−n+1
n advances at least four terms to

the right if n ≥ 4, we obtain Ep,q4 = Ep,q∞ , hence Ep,q∞ has the form

3 0 0 0 0 0
2 Z H1(X;Z) H2(X;Z) 0 0
1 0 0 0 0 0
0 Z H1(X;Z) H2(X;Z) 0 0
−1 0 0 0 0 0
−2 Z H1(X;Z) H2(X;Z) 0 0
−3 0 0 0 0 0

To calculate ωK0(X), we use

Z = E0,0
∞ = F 0K0(X)/F 1K0(X)

0 = E1,−1
∞ = F 1K0(X)/F 2K0(X)

H2(X;Z) = E2,−2
∞ = F 2K0(X)/F 3K0(X)

0 = E3,−3
∞ = F 3K1(X)/F 4K0(X)

Because F 4K0(X) = 0, we obtain F 1K0 = H2(X;Z), thus we have an exact
sequence

0→ H2(X;Z)→ ωK0(X)→ Z→ 0 (4.10)

which splits. In the same way

ωK1(X) ∼= H1(X;Z). (4.11)

And this concludes the proof.

4.3 Computations and comparisons

In this section we compute the twisted K-theory of some 3-manifolds using the
two methods shown in the previous sections for proper contrast.
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4.3.1 The case of S1 × S2

Using Proposition 4.2.1, if n 6= 0 we have

nωK0(S1 × S2) ∼= H2(S1 × S2;Z)

nωK1(S1 × S2) ∼= H1(S1 × S2;Z)⊕ Z/n

To put it explicitly, we will apply the Künneth formula to obtain H1(S1×S2;Z)
and H2(S1 × S2;Z)

H1(S1 × S2;Z) ∼= H0(S2;Z)⊗H1(S1;Z) ∼= Z

H2(S1 × S2;Z) ∼= H0(S1;Z)⊗H2(S2;Z) ∼= Z.

Then

nωK0(S1 × S2) ∼= Z,
nωK1(S1 × S2) ∼= Z⊕ Z/n.

(4.12)

Now we will calculate twisted K-theory using Theorem 4.1.1. First we need
to understand

{x ∈ K∗(S2) | x = λ · ς∗x} and
K∗+1(S2)

{y − λ · ς∗(y) | y ∈ K∗+1(S2)}
.

Initially we will consider it for K0. The K-theory ring for S2 is
Z[t]

(t− 1)2
(see

Corollary 2.3 in [26]), so any element has the form x1 + x2t or equivalently
(x1, x2), where 1 represents the rank 1 trivial bundle and t the tautological
lineal bundle L. Then

{(x1, x2) ∈ K0(S2) | (x1, x2) = λ · ς∗(x1, x2)}

We choose λ = Ln ∈ H2(S2;Z), then L = (0, 1) and Ln = (1 − n, n). In this
case ς is the identity map, hence

λ(x1, x2) = ((1− n)x1 − nx2, (1− n)x2 + nx1 + 2nx2), (4.13)

thus we need to solve

x1 = (1− n)x1 − nx2

x2 = (1− n)x2 + nx1 + 2nx2

and we obtain x1 = −x2, hence

{x ∈ K0(S2) | x = λ · ς∗x} ∼= Z.

On the other hand, for the second term in (1.1) we have (x1, x2)−λς∗(x1, x2) =
(n(x1 + x2),−n(x1 + x2)). Now

Z(1, 0)⊕ Z(0, 1)

Z(n,−n)
=
Z(1,−1)⊕ Z(0, 1)

Z(n,−n)
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Therefore
K0(S2)

{y − λ · ς∗(y) | y ∈ K0(S2)}
∼== Z⊕ Z/n

Due to the fact that K1(S2) = 0 the terms in (1.1) related to it are trivial.
Then by Theorem 4.1.1

0→ Z/n⊕ Z→ σnK1(X)→ 0→ 0

0→ 0→ σnK0(X)→ Z→ 0
(4.14)

Finally we obtain

σnK0(S1 × S2) ∼= Z,
σnK1(S1 × S2) ∼= Z⊕ Z/n.

(4.15)

where σn ∈ H3(S1 × S2;Z) is the class that corresponds to Ln, which in turn
corresponds to n ∈ H2(S2;Z).

4.3.2 The case of R×ρ S2

Let ρ : π1(S1) × S2 → S2 be the action given by ρ(z, x) = x if z is even and
ρ(z, x) = −x if z is odd. We consider the space X = R ×ρ S2, which is a
nonorientable 3-manifold.

First of all we will calculate the cohomology groups of X. Using the Serre
spectral sequence, we obtained in a previous section the Equations 3.1, 3.2, 3.3,
which we repeat here for convenience. Note that they are cohomology groups
with local coefficients.

0→ H1(S1;H0(S2))→ H1(X)→ H0(S1;H1(S2))→ 0

0→ H1(S1;H1(S2))→ H2(X)→ H0(S1;H2(S2))→ 0

0→ H1(S1;H2(S2))→ H3(X)→ H0(S1;H3(S2))→ 0.

The groups H0(S1;H1(S2)), H1(S1;H1(S2)), H0(S1;H3(S2)) vanish. On the
other hand H0(S1;H2(S2)) are the invariants of H2(S2) under the action of
π1(S1). Nevertheless, this group vanishes as well. H1(S1;H0(S2)) andH1(S1, H2(S2))
are the coinvariants of π1(S1) acting over H0(S2) and H2(S2) respectively, so
we have

H0(S2)π1(S1)
∼=

Z
〈n− g(n)〉

∼=
Z

〈n− (n)〉
∼= Z

H2(S2)π1(S1)
∼=

Z
〈n− g(n)〉

∼=
Z

〈n− (−n)〉
∼=

Z
2Z
∼= Z/2

where g ∈ π1(S1). Therefore, H1(X;Z) ∼= Z, H2(X;Z) = 0, H3(X;Z) =
Z/2. To twist K-theory we will use the generator σ ∈ H3(X;Z), hence using
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Proposition 4.2.2 we obtain σK1(X) ∼= H1(X;Z) and σK0(X) ∼= H2(X;Z)⊕Z.
So finally we have

σK1(X) ∼= Z
σK0(X) ∼= Z

Now we will calculate twisted K-theory using Theorem 4.1.1. The fiber of
X → S1 is S2. First we need to understand

{x ∈ K∗(S2) | x = λ · ς∗x} and
K∗+1(S2)

{y − λ · ς∗(y) | y ∈ K∗+1(S2)}
.

In the same way as in the previous example, the fiber S2 has K-theory ring
Z[t]

(t− 1)2
, hence any element has a form x1 + x2t or equivalently (x1, x2), where

1 represent the rank 1 trivial bundle and t the tautological lineal bundle L, then
we will determine

{(x1, x2) ∈ K0(S2) | (x1, x2) = λ · ς∗(x1, x2)}

We choose a generator λ ∈ H2(S2;Z), then λ represents (0, 1) in K-theory.
Next ς acts via the antipodal map on S2 so it takes the class of the tautological
vector bundle t to 2 − t in K-theory. Hence ς∗(x1 + x2t) = x1 + x2(2 − t) =
(x1 + 2x2,−x2). Thus

λς∗(x1, x2) = λ(x1 + 2x2,−x2) = (0, 1)(x1 + 2x2,−x2) = (x2, x1)

. Therefore

{(x1, x2) ∈ K0(M) | (x1, x2) = λ·ς∗(x1, x2)} = {(x1, x2) ∈ K0(M) | x1 = x2} ∼= Z.

On the other hand, for the second term in (1.1) we have

(x1, x2)− λς∗(x1, x2) = (x1 − x2, x2 − x1),

Therefore

K0(S2)

{y − λ · ς∗(y) | y ∈ K0(S2)}
∼=

Z(1, 0)⊕ Z(0, 1)

Z(1,−1)
=
Z(1,−1)⊕ Z(0, 1)

Z(1,−1)

Thus this other terms is isomorphic to = Z. Due to the fact that K1(S2) = 0
the terms in (1.1) related to it are null. Then by Theorem 4.1.1 we have:

0→ Z→ σK1(X)→ 0→ 0

0→ 0→ σK0(X)→ Z→ 0
(4.16)

And so finally

σK0(R×ρ S2) ∼= Z,
σK1(R×ρ S2) ∼= Z.

(4.17)

where σ ∈ H3(R×ρ S2;Z) is the non-trivial class, which comes from the gener-
ator of H2(S2;Z) corresponding to λ = L.
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4.3.3 The case of S1 × T2

We use here the notation T = S1 to distinguish the other two factors in X =
S1 × T2. Using Proposition 4.2.1, we have

nωK0(S1 × T2) ∼= H2(S1 × T2;Z)

nωK1(S1 × T2) ∼= H1(S1 × T2;Z)⊕ Z/n

To put it explicitly we will apply the Künneth formula to obtain H1(S1×T2;Z)
and H2(S1 × T2;Z).

H1(S1 × T2;Z) ∼= H0(S1;Z)⊗H1(T2;Z)⊕H1(S1;Z)⊗H0(T2;Z) ∼= Z⊕3

H2(S1 × T2;Z) ∼= H0(S1;Z)⊗H2(T2;Z)⊕H1(S1;Z)⊗H1(T2;Z) ∼= Z⊕3

Then

nωK0(S1 × T2) ∼= Z⊕3,
nωK1(S1 × T2) ∼= Z⊕3 ⊕ Z/n.

(4.18)

Initially we will calculate K∗(T2) using Künneth formula for K-theory (see
Lemma 1 in [1]).

K∗(S1)⊗K∗(S1) ∼= K∗(S1 × S1)

Here ⊗ indicates the Z/2–graded tensor product, that is:

K0(S1)⊗K0(S1)⊕K1(S1)⊗K1(S1) ∼= K0(S1 × S1)

K0(S1)⊗K1(S1)⊕K1(S1)⊗K0(S1) ∼= K1(S1 × S1)

Analyzing each component, denote by pi : X1 ×X2 → Xi the projection maps.

K∗(S1)⊗K∗(S1)→K∗(S1 × S1)

x⊗ y 7→ p∗1(x)⊗ p∗2(x)
(4.19)

A more explicitly description follow from two facts, first the identity element
e of K∗(S1 × S1) belongs K0(S1)⊗K0(S1). Second, for any two classes a, b in
K1(S1) we have a · b = 0. This last fact is obtained from the isomorphism

K1(S1) ∼= K̃0(S2) ∼= H̃2(S2;Z)

which is multiplicative, since it comes from the Chern character (see Proposition
4.3 in [26]). If we regard K0(S1 × S1) as the direct sum coming from the
Künneth theorem above, given elements of the form [(a0 ⊗ b0), (a1 ⊗ b1)] and
[(c0 ⊗ d0), (c1 ⊗ d1)] in K0(S1 × S1) we have:

[(a0 ⊗ b0), (a1 ⊗ b1)] · [(c0 ⊗ d0), (c1 ⊗ d1)]

=[(a0c0 ⊗ b0d0), (a0c1 ⊗ b0d1)] + [−(a1c1 ⊗ b1d1), (a1c0 ⊗ b1d0)]

=[(a0c0 ⊗ b0d0), (a0c1 ⊗ b0d1)] + [(0, 0), (a1c0 ⊗ b1d0)]

=[(a0c0 ⊗ b0d0), (a0c1 ⊗ b0d1) + (a1c0 ⊗ b1d0)]
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Then K0(S1 × S1) ∼= Z[t]
(t2) , with 1 = [(1 ⊗ 1), (0 ⊗ 0)] and t = [(0 ⊗ 0), (1 ⊗ 1)].

Similarly, given[(a0 ⊗ b0), (a1 ⊗ b1)] ∈ K0(S1 × S1) and [(c0 ⊗ d1), (c1 ⊗ d0)] ∈
K1(S1 × S1) we have:

[(a0 ⊗ b0), (a1 ⊗ b1)] · [(c0 ⊗ d1), (c1 ⊗ d0)]

=[(a0c0 ⊗ b0d1), (a0c1 ⊗ b0d0)] + [−(a1c1 ⊗ b1d0), (a1c0 ⊗ b1d1)]

=[(a0c0 ⊗ b0d1), (a0c1 ⊗ b0d0)] + [−(0⊗ b1d0), (a1c0 ⊗ 0)]

=[(a0c0 ⊗ b0d1), (a0c1 ⊗ b0d0)] ∈ K1(S1 × S1)

(4.20)

The class of a vector bundle over S1 × S1 has the shape αt+ β ∈ K0(S1 × S1)
with α, β ∈ Z. Due to the fact that H2(S1 × S1;Z) ∼= Z there is a generator
line bundle L, our next step is to find the polynomial that represents L. If we
denote by 1S1 the trivial line bundle over S1, from Equation (4.19) we get that
1 = p∗1(1S1)⊗ p∗1(1S1), so 1 represents the trivial line bundle over S1 × S1.

From the cofibration sequence S1 ∨S1 i−→ S1×S1 q−→ S2 we get a long exact
sequence

K̃0(S2) K̃0(S1 × S1) K̃0(S1 ∨ S1)

K̃1(S1 ∨ S1) K̃1(S1 × S1) K̃1(S2)

q∗ i∗

(4.21)

hence an exact sequence

K̃0(S2) ∼= Z K̃0(S1 × S1) ∼= Z K̃0(S1 ∨ S1) = 0
q∗

∼=
i∗ (4.22)

It is known that K0(S2) ∼= Z(x)
(x−1)2 and K̃0(S2) is the ideal generated by x− 1.

Then K̃0(S1 × S1) = 〈t〉, that means q∗(x − 1) = t, so the virtual dimension
of t is zero. Additionally it induces an isomorphism K0(S2) ' K0(S1 × S1) of
groups. With this in mind our candidate to represent the class of line bundle
generator is t + 1. Indeed the multiplicative subgroup K0(S1 × S1)dim=1 of
one-dimensional virtual bundles classes is generated by t+ 1 and isomorphic to
Z, because (t+ 1)n = nt+ 1 for n ∈ Z. Now

Z ∼= VectC(S2)
∼=−→K0(S2)dim=1 ↪→ K0(S2)

L 7→x 7→ x
(4.23)

From this we get a ring isomorphism

K0(S2)
∼=−→K0(S1 × S1)

x 7→t+ 1

1 7→1.

(4.24)
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Hence t+ 1 represent the class of the line bundle generator L over S1 × S1. In
fact there is another isomorphism with x 7→ −t + 1, but a change of variable
would lead to our choice.

Now to calculate σK(S1 × T2) we use Theorem 4.1.1 with ς = id. We need

{x ∈ K∗(T2) | x = λ · x} and
K∗+1(T2)

{y − λ · y | y ∈ K∗+1(T2)}
.

Initially we will consider it for K0. The K-theory ring of the fiber T 2 is
Z[t]

(t2)
,

so any element has the form x1 + x2t or equivalently (x1, x2). Then we need to
determine

{(x1, x2) ∈ K0(M) | (x1, x2) = λ · (x1, x2)}

We choose λ = Ln ∈ H2(T2), then λ(x1, x2) = (1, n)(x1, x2) = (x1, nx1 + x2).
Thus we need to solve

x1 = x1

x2 = nx1 + x2

from where x1 = 0 and the desired group is

{(x1, x2) ∈ K0(T2) | x1 = 0} ∼= Z

For the other group, we compute

(x1, x2)− λ(x1, x2) = (0,−nx1)

Therefore

K0(T2)

{y − λ · y | y ∈ K0(T2)}
∼=

Z(1, 0)⊕ Z(0, 1)

Z(0,−n)
∼= Z/n⊕ Z

Now we will describe it for K1. For this purpose, it is advantageous to use the
notation λ = (1 ⊗ 1, n ⊗ 1) and (x1, x2) = [(a0 ⊗ b1), (a1 ⊗ b0)] coming from
Künneth theorem for K-theory.

{(x1, x2) ∈ K1(T2) | (x1, x2) = λ · (x1, x2)}

In Equation (4.20) we showed that

λ(x1, x2) = (1⊗ 1, n⊗ 1)[(c0 ⊗ d1), (c1 ⊗ d0)] = [(c0 ⊗ d1), (c1 ⊗ d0)] = (x1, x2)

Thus {(x1, x2) ∈ K1(T2) | (x1, x2) = λ(x1, x2)} ∼= Z ⊕ Z. On the other hand,
for the second term, we have (x1, x2)− λ(x1, x2) = (0, 0), thus

K1(T2)

{y − λ · y | y ∈ K1(T2)}
= K1(T2) = 0
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Then by Theorem 4.1.1, we have:

0→ Z/n⊕ Z→ σnK1(S1 × T2)→ Z⊕ Z→ 0

0→ Z⊕ Z→ σnK0(S1 × T2)→ Z→ 0
(4.25)

Finally

σnK0(S1 × T2) ∼= Z⊕3,
σnK1(S1 × T2) ∼= Z⊕3 ⊕ Z/n.

(4.26)

where σn ∈ H3(S1×T2;Z) is the class that corresponds to λ = Ln ∈ H2(T2;Z).

4.3.4 The case of R×ρ′ T2

Let ρ′ : π1(S1)× T2 → T2 be the action determined by

ρ′(1, (x, y)) =

[
a b
c d

]
(x, y) = (xayc, xbyd)

where M =

[
a b
c d

]
belongs to GL2(Z). That is:

ρ′(z, (x, y)) =

[
a b
c d

]z
(x, y) =

[
az bz
cz dz

]
(x, y) = (xazycZ ,xbzydz )

Here x = eiθ1 and y = eiθ2 . We will compute the twisted K-theory of X =
R×ρ′ T2 with respect to certain twists.

First of all we will calculate the different cohomology groups of X. Using the
short exact sequences obtained with the Serre spectral sequence in a previous
section (Equations (3.1), (3.2), (3.3)), we have:

0→ H1(S1;H0(T2))→ H1(X)→ H0(S1;H1(T2))→ 0

0→ H1(S1;H1(T2))→ H2(X)→ H0(S1;H2(T2))→ 0

0→ H1(S1;H2(T2))→ H3(X)→ H0(S1;H3(T2))→ 0.

where we are using cohomology with local coefficients. We haveH0(S1;H3(T2)) =
0. On the other hand, H0(S1;H1(T2)) and H0(S1;H2(T2)) are the invariants
of the action of π1(S1) over H1(T2) and H2(T2). To calculate them, let us first
see what the action looks like. By identifying H1(T2) ∼= π1(T2 and using the
standard generators of this fundamental groups, we obtain the action of Z over
H1(T2) = Zα⊕ Zβ

1 · (r, s) = 1 · (rα+ sβ) = r(aα+ bβ) + s(cα+ dβ) = (ra+ sc, rb+ sd)
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We have the dual action onH1(T2) = Zρ⊕Zµ, since H1(T2) ∼= Hom(H1(T2),Z).
Then

1 · (r, s) = 1 · (rρ+ sµ) = r(aρ+ cµ) + s(bρ+ dµ) = (ra+ sb, rc+ sd)

The latter can be interpreted as:

1 · (r, s) =

[
a b
c d

](
r
s

)
= (ra+ sb, rc+ sd)

The action on H2(T2) = Zρµ is given by:

1 · (ρ, µ) = 1 · (aρ+ cµ)(bρ+ dµ) = adρµ+ cbµρ = (ad− cb)ρµ =

∣∣∣∣a b
c d

∣∣∣∣ ρµ
For H1(T2), the non-zero invariants are the eigenvectors of the eigenvalue 1

for M . We describe the different cases:

• If det(M) = 1 and a+ d 6= 2, then H1(T2)Z = 0.

• If det(M) = 1 and a+ d = 2, then H1(T2)Z = Z.

• If det(M) = −1 and a 6= −d, then H1(T2)Z = 0.

• If det(M) = −1 and a = −d, then H1(T2)Z = Z.

For H2(T2) the invariants are

• If det(M) = −1, then H2(T2)Z = 0.

• If det(M) = 1, then H2(T2)Z = Z.

The groups H1(S1;H0(T2)), H1(S1;H1(T2)) and H1(S1;H2(T2)) are the
coinvariants of the action of π1(S1) over H0(T2), H1(T2) and H2(T2), respec-
tively, so we have:

H1(S1;H0(T2)) ∼=
Z

〈n− g(n)〉
∼=

Z
〈n− n〉

∼= Z

H1(S1;H1(T2)) ∼=
Z⊕ Z

〈(n,m)− g(n,m)〉
∼=

Z⊕ Z
〈(n,m)− (an+ bm, cn+ dm)〉

∼=
Z⊕ Z

〈(1− a, c)n− (−b, 1− d)m〉
∼= H1(T2)Z

H1(S1;H2(T2)) ∼=


Z

〈n− g(n)〉
∼=

Z
〈n− n〉

∼= Z if det(M) = 1

Z
〈n− g(n)〉

∼=
Z

〈n− (−n)〉
∼= Z/2 if det(M) = −1



CHAPTER 4. SOME COMPUTATIONS OF TWISTED K-THEORY 66

where g belongs to π(S1). Therefore when det(M) = 1, we have:

Hj(X;Z) ∼=



Z if j = 0
Z⊕ Z if j = 1 and a+ d = 2
Z if j = 1 and a+ d 6= 2
Z⊕H1(T2)Z if j = 2
Z if j = 3
0 if j ≥ 4

In particular, X is an orientable manifold when det(M) = 1. When det(M) =
−1, we have:

Hj(X;Z) ∼=



Z if j = 0
Z⊕ Z if j = 1 and a = −d
Z if j = 1 and a 6= −d
H1(T2)Z if j = 2
Z/2 if j = 3
0 if j ≥ 4

and X is a nonorientable manifold.
When det(M) = −1, we twist K-theory using the generator σ ∈ H3(X;Z).

Since X is a closed nonorientable manifold, we will be using Proposition 4.2.2
first. We have σK1(X) ∼= H1(X;Z) and σK0(X) ∼= H2(X;Z)⊕ Z, hence

σK1(R×ρ T2) ∼=
{

Z⊕ Z if a = −d
Z if a 6= −d

σK0(R×ρ T2) ∼= Z⊕H1(T2)Z

When det(M) = 1, we twist K-theory using nσ ∈ H3(X;Z) where σ is a
generator. Since X is a closed orientable manifold, we will be using Proposition
4.2.1. We have σK1(X) ∼= H1(X;Z)⊕ Z/n and σK0(X) ∼= H2(X;Z), hence

nσK1(R×ρ T2) ∼=
{

Z⊕2 ⊕ Z/n if a+ d = 2
Z⊕ Z/n if a+ d 6= 2

nσK0(R×ρ T2) ∼= Z⊕H1(T2)Z

Now we will calculate σK∗(R×ρT2) using Theorem 4.1.1 when det(M) = −1.
So initially we need

{x ∈ K∗(T2) | x = λ · ς∗x} and
K∗+1(T2)

{y − λ · ς∗(y) | y ∈ K∗+1(T2)}
.

In the same way from previous example the fiber T2 has K-theory ring
Z[t]

(t2)
.

We start determining

{(x1, x2) ∈ K0(T2) | (x1, x2) = λ⊗ ς∗(x1, x2)}
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We choose the generator λ = L ∈ H2(T2;Z) which corresponds to λ = (1, 1) in
K0(T2). Next, since ς acts reversing the orientation of T2, it takes the generator
line bundle t+ 1 to −t+ 1. Then

ς∗(x1 + x2t) = ς∗(x1 − x2 + x2(t+ 1)) = x1 − x2 + x2(−t+ 1) = (x1,−x2)

Hence
λς∗(x1, x2) = λ(x1,−x2) = (1, 1)(x1,−x2) = (x1, x1 − x2)

and we need to solve

x1 = x1

x2 = x1 − x2

from where x1 = 2x2. Therefore

{(x1, x2) ∈ K0(T2) | (x1, x2) = λ⊗ς∗(x1, x2)} = {(x1, x2) ∈ K0(T2) | x1 = 2x2} ∼= Z

On the other hand, for the second term we need to compute

(x1, x2)− λς∗(x1, x2) = (0, 2x2 − x1)

Then

K0(T2)

{y − λ · ς∗(y) | y ∈ K0(T2)}
∼=

Z(1, 0)⊕ Z(0, 1)

Z(0, 1)
∼= Z

Now we will describe it for K1, for this purpose it is advantageous to use the
notation:

λ = (1⊗ 1, 1⊗ 1)

(x1, x2) = [(a0 ⊗ b1), (a1 ⊗ b0)]

(y1, y2) = [(c0 ⊗ d1), (c1 ⊗ d0)]

coming from Künneth theorem for K-theory. To determine

{(x1, x2) ∈ K1(T2) | (x1, x2) = λ · ς∗(x1, x2)}

we note that in Equation (4.20) we showed that

λ(y1, y2) = (1⊗ 1, 1⊗ 1)[(c0 ⊗ d1), (c1 ⊗ d0)] = [(c0 ⊗ d1), (c1 ⊗ d0)] = (y1, y2)

On the other hand, from the Chern character isomorphism we can deduce how
ς acts on K1(T2) by analizing the action of ς on H1(T2). Hence

ς∗(x1, x2) =

[
a b
c d

](
x1

x2

)
= (ax1 + bx2, cx1 + dx2)

and so

λς∗(x1, x2) = λ(ax1 + bx2, cx1 + dx2) = (ax1 + bx2, cx1 + dx2)
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Thus the desired set is

{(x1, x2) ∈ K1(T2) | (x1, x2) = (ax1 + bx2, cx1 + dx2)} =

{
Z if a = −d
0 if a 6= −d

On the other hand, for the second term we compute

(x1, x2)− λς∗(x1, x2) = (x1 − ax1 − bx2, x2 − cx1 − dx2)

Now

K1(T2)

{y − λ · ς∗(y) | y ∈ K1(T2)}
∼= H1(T2)Z

Then by Theorem 4.1.1, we have: 0→ Z→ σK1(R×ρ T2)→ Z→ 0 if a = −d

0→ Z→ σK1(R×ρ T2)→ 0→ 0 if a 6= −d

0→ H1(T2)Z → σK0(R×ρ T2)→ Z→ 0

Finally σK1(R ×ρ T2) ∼= Z⊕2 if a = −d or σK1(R ×ρ T2) ∼= Z if a 6= −d and
σK0(R ×ρ T2) ∼= Z ⊕ H1(T2)Z where σ ∈ H3(R × ρT2;Z) is the non-trivial
class, which corresponds to the generator λ ∈ H2(T2;Z). We highlight that this
coincides with the previous computation.

Now we will calculate σK∗(R×ρT2) using Theorem 4.1.1 when det(M) = 1.
So initially we need

{x ∈ K∗(T2) | x = λ · ς∗x} and
K∗+1(T2)

{y − λ · ς∗(y) | y ∈ K∗+1(T2)}
.

In the same way from previous example the fiber T2 has K-theory ring
Z[t]

(t2)
.

We start determining

{(x1, x2) ∈ K0(T2) | (x1, x2) = λ⊗ ς∗(x1, x2)}

We choose the element λ = Ln ∈ H2(T2;Z) which corresponds to λ = (1, n)
in K0(T2). Next, since ς acts maintaining the orientation of T2, it takes the
element t+ 1 to t+ 1. Then

ς∗(x1 + x2t) = (x1, x2)

Hence
λς∗(x1, x2) = λ(x1, x2) = (1, n)(x1, x2) = (x1, nx1 + x2)

and we need to solve

x1 = x1

x2 = nx1 + x2
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from where x1 = 0. Therefore

{(x1, x2) ∈ K0(T2) | (x1, x2) = λ⊗ς∗(x1, x2)} = {(x1, x2) ∈ K0(T2) | x1 = 0} ∼= Z

On the other hand, for the second term we need to compute

(x1, x2)− λς∗(x1, x2) = (0, nx1)

Then

K0(T2)

{y − λ · ς∗(y) | y ∈ K0(T2)}
∼=

Z(1, 0)⊕ Z(0, 1)

Z(0,−n)
∼= Z⊕ Z/n

Now we will describe it for K1, for this purpose it is advantageous to use the
notation:

λ = (1⊗ 1, 1⊗ 1)

(x1, x2) = [(a0 ⊗ b1), (a1 ⊗ b0)]

(y1, y2) = [(c0 ⊗ d1), (c1 ⊗ d0)]

coming from Künneth theorem for K-theory. To determine

{(x1, x2) ∈ K1(T2) | (x1, x2) = λ · ς∗(x1, x2)}

we note that in Equation (4.20) we showed that

λ(y1, y2) = (1⊗ 1, 1⊗ 1)[(c0 ⊗ d1), (c1 ⊗ d0)] = [(c0 ⊗ d1), (c1 ⊗ d0)] = (y1, y2)

On the other hand, from the Chern character isomorphism we can deduce how
ς acts on K1(T2) by analizing the action of ς on H1(T2). Hence

ς∗(x1, x2) =

[
a b
c d

](
x1

x2

)
= (ax1 + bx2, cx1 + dx2)

and so

λς∗(x1, x2) = λ(ax1 + bx2, cx1 + dx2) = (ax1 + bx2, cx1 + dx2)

Thus the desired set is

{(x1, x2) ∈ K1(T2) | (x1, x2) = (ax1 + bx2, cx1 + dx2)} =

{
Z if a = −d
0 if a 6= −d

On the other hand, for the second term we compute

(x1, x2)− λς∗(x1, x2) = (x1 − ax1 − bx2, x2 − cx1 − dx2)

Now

K1(T2)

{y − λ · ς∗(y) | y ∈ K1(T2)}
∼= H1(T2)Z
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Then by Theorem 4.1.1, we have: 0→ Z⊕ Z/n→ nσK1(R×ρ T2)→ Z→ 0 if a = −d

0→ Z⊕ Z/n→ nσK1(R×ρ T2)→ 0→ 0 if a 6= −d

0→ H1(T2)Z → nσK0(R×ρ T2)→ Z→ 0

Finally nσK1(R ×ρ T2) ∼= Z⊕2 ⊕ Z/n if a = −d or nσK1(R ×ρ T2) ∼= Z ⊕ Z/n
if a = −d and nσK0(R ×ρ T2) ∼= Z ⊕ H1(T2)Z where σ ∈ H3(R ×ρ T2;Z) is
the non-trivial class, which corresponds to the generator λ ∈ H2(T2;Z). We
highlight that this coincides with the previous calculation.

Example 4.3.1. A particular example from the previous case is when

M =

[
−1 0
0 1

]
Then the coinvariants H1(T2)Z are given by

H1(T2)Z ∼=
Z⊕ Z

〈(n,m)− g(n,m)〉
∼=

Z⊕ Z
〈(n,m)− (−n,m)〉

∼=
Z⊕ Z
2Z⊕ 0

∼= Z⊕ Z/2

To twist K-theory we use the generator σ ∈ H3(X;Z) ∼= Z/2. Since X is a
closed nonorientable manifold, we have

σK1(R×ρ T2) ∼= Z⊕ Z
σK0(R×ρ T2) ∼= Z⊕2 ⊕ Z/2



Chapter 5

The twisted K-theory of
Borel constructions

In this chapter we will generalize Theorem 4.1.1 using the same construction
for classifying spaces of free groups. Moreover, we construct a spectral sequence
that converges to the twisted K-theory of the Borel construction of a G–space
M for a certain twist. The E2-page is given in terms of group cohomology of
G with coefficients in the K-theory of M for a certain twisted action of G, not
only the action induced by the action of G on M .

5.1 Constructing a PU(H)–principal bundle

Let G be a group and M a compact manifold with a G–action. Let p : X =
EG×GM → BG be the fiber bundle obtained by the Borel construction. Our
idea here is to construct a PU(H)–principal bundle over X given a map

κ : G→ MAP(M,PU(H))

with the properties:

1. κgh = κh ◦ Lg−1 · κg,

2. κe = id,

where e is the identity of G and id is the constant function to the identity of
PU(H). The notation · indicates pointwise multiplication using the product in
PU(H), namely given m ∈M , the first property means

κgh(m) = κh(g−1m)κg(m)

We will call such a map κ a derivation of line bundles over M . We define
the PU(H)–principal bundle P over X by

P = EG×GM ×κ PU(H)

71
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Despite the notation, this does not refer to a Borel construction, although it can
thought of as a twisted Borel construction. More explicitly, it is the quotient of
EG×M × PU(H) by the equivalence relation

(xg,m, u) ∼ (x, gm, κg−1(m)u)

and the bundle map q : P → X takes [x,m, u] to [x,m].
Let us check first that P is a fiber bundle. For [x, n] ∈ X we define a trivial-

ization φ over an advantageous open neighborhood p−1(U) of [x, n]. We take an
open neighbourhood U of x in BG where the principal G–bundle r : EG→ BG
trivializes and so

r−1(U) =
⋃
g∈G

Vg =
⋃
g∈G

Veg

Then we have
p−1(U) =

⋃
g∈G

Vg ×GM

Now we will define the local trivialization. We denote by p−1(U) ×κ PU((H))
the subspace of EG×GM×κPU(H) of elements [x,m, u] where [x,m] ∈ p−1(U).
Assume that (x,m) ∈ Vg × F

φ : p−1(U)×κ PU(H)→p−1(U)× PU(H)

[x,m, u] 7→([x,m], κg−1(m)u).
(5.1)

It is well-defined because if (xh,m, u) ∼ (x, hm, κh−1(m)u) then xh ∈ Vgh and
so

φ[xh,m, u] =([xh,m], κh−1g−1(m)u)

=([x, hm], κh−1g−1(m)u)

=([x, hm], κg−1Lh(m)κh−1(m)u)

=([x, hm], κg−1(hm)κh−1(m)u)

=φ[x, hm, κh−1(m)u]

Moreover φ is continuous due to the fact that the product and κ are continuous.
The inverse for φ is defined by

p−1(U)× PU(H)→p−1(U)×κ PU(H)

([x,m], u) 7→[x,m, κgLg(m)u].
(5.2)
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when [x,m] ∈ Vg. It is well-defined because if (xh,m) ∼ (x, hm) then

φ−1([xh,m], u) =([xh,m], κghLgh(m)u)

=([x, hm], κh−1(m)κghLgh(m)u)

=([x, hm], κh−1(m)κhLg−1(ghm)κg(ghm)u)

=([x, hm], κh−1(m)κhLh(m)κg(ghm)u)

=([x, hm], κh−1Lh−1(hm)κh(hm)κg(ghm)u)

=([x, hm], κe(hm)κgLg(hm)u)

=([x, hm], κgLg(hm)u)

=φ−1([x, hm], u)

Finally, P is a PU(H)–principal bundle because if we choose two of these triv-
ializations φ1 and φ2 over open neighborhoods p−1(U1) and p−1(U2) of [x, n],
we have

φ2φ
−1
1 ([m], u)) = ([x,m], κh−1(m)κgLg(m)u)

= ([x,m], κh−1Lg−1(gm)κg(gm)u)

= ([x,m], κgh−1(gm)u)

which means that the structural group for P is PU(H).

Remark 5.1.1. The conditions for the derivation of line bundles κ may be too
restrictive when G has torsion elements. If we denote by λf the line bundle over
M associated to a map M → PU(H), and gngm = e we would have

λκgmLh−1 ⊗ λκgn = M × C

We will focus first in the case where G is free. In this case we can obtain the
line bundle associated to κgni from the bundle associated to κgi . This limitation
stems from our approach to map G to bundles instead of isomorphism classes of
bundles, but at this point we do not know how to construct a PU(H)–principal
bundle from a similar map G→ [M,PU(H)].

Remark 5.1.2. Note that the restriction of P to the fiber M is a trivial prin-
cipal PU(H)–bundle.

5.2 The case of free groups

In this section we prove the following theorem.

Theorem 5.2.1. Let G be a finitely generated free group with generators {gi}i∈J
which acts on a compact manifold M and let M ↪→ EG×GM

π−→ BG be the fiber
bundle associated to the Borel construction. Given a derivation of line bundles
κ : G→MAP (M,PU(H)), if σ is the associated PU(H)–principal bundle, then
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the twisted K-theory group σK∗(X), for ∗ = 0, 1, is isomorphic to an extension
group of

{x ∈ K∗(M) | x = κ(gi) · g∗i x for all i ∈ J} by
⊕
i∈J

K∗+1
i (M)/N. (5.3)

where N is the subgroup of tuples indexed by J with ith coordinate equal to
κ(gi) · g∗i x− x ∈ K∗+1(M) for a certain x ∈ K∗+1(M).

Proof. Due to the fact that G is a free group

BG '
∨
i∈J

S1
i

Let y be the point where the circles are joined (see figure 5.1). Now we use the
closed decomposition {D+, D−} of

∨
i∈J S

1
i , where D+ (blue part in Figure 5.1)

is a contractible closed neighborhood of y and D− is the closure of
∨
i∈J S

1
i −D+,

which is homotopy equivalent to a disjoint union
⊔
i∈J ti of points.

y

S1
1

S
12S

1
i

Figure 5.1: Guide to Theorem 5.2.1

We obtain a Mayer-Vietoris sequence

σK0(X) K0(D+ ×M)⊕K0(D− ×M) K0(D+− ×M)

K1(D+− ×M) K1(D+ ×M)⊕K1(D− ×M) σK1(X)

c0 a0

b0b1

a1 c1

Thus, there are the following group isomorphisms

σK∗(X) ∼=
K∗+1(D+− ×M)

Im(a∗+1)
⊕ρ Im(c∗)

∼=

⊕
i∈J

[K∗+1(M)⊕K∗+1(M)]

Im(a∗+1)
⊕ρ Ker(a∗)

(5.4)

where the terms on the right represent group extensions associated to some
cocycle ρ in group cohomology.
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The map a∗ is computed in similar way to (4.1), that is, if we consider a class
(x, (yi)i∈J) ∈ K∗(D+×M)⊕K∗(D−×M) for ∗ ∈ {0, 1} with yi ∈ K∗(ti×M),
the gluing maps a∗ are given by

a∗(x, (yi)i) = (x− yi, x− κ(gi) · g∗i yi)i.

With this in mind we can rewrite the kernel above:

Ker(a∗) = {x ∈ K∗(M) | x = κ(gi) · g∗i x for all i ∈ J}

For Coker(a∗) we consider the following homomorphism:

Ψ:

⊕
i∈J

[K∗+1(M)⊕K∗+1(M)]

Im(a∗+1)
−→

⊕
i∈J

K∗+1
i (M)

N

[(xi, yi)i] 7→[(κ(gi) · g∗i xi − yi)i].

(5.5)

It is well-defined since the class of (x− yi, x−κ(gi) · g∗i yi)i would be sent to the
class of the element

(κ(gi) · g∗i x− κ(gi) · g∗i yi − x+ κ(gi) · g∗i yi)i = (κ(gi) · g∗i x− x)i

which lies in N . It is clearly surjective. If an element [(xi, yi)i] is sent to the
class of an element of N , then

κ(gi) · g∗i xi − yi = κ(gi) · g∗i x− x

and so

[(xi, yi)i] = [(x− (x− xi), x− κ(gi) · g∗i (x− xi))i] = [a∗+1(x, (x− xi)i)]

This shows that Ψ is an isomorphism and proves the theorem.

Remark 5.2.2. The terms in this theorem and in Theorem 4.1.1 are reminiscent
of the cohomology of free groups. Namely, if G is a finitely generated free group
with generators {gi}i∈J and A is a ZG–module, we have

H0(G;A) ∼= AG = {a ∈ A | gia = a for all i ∈ J}

H1(G;A) ∼=

(⊕
i∈J

A

)/
N

where N is the subgroup of tuples indexed by J with ith coordinate equal to
gia−a for a certain a ∈ A. In the following section, we will see that it is possible
to interpret these results in terms of a spectral sequence whose E2-page is given
in terms of group cohomology. These two theorems served as inspiration for the
development of this spectral sequence.

Remark 5.2.3. It would be possible to prove a similar result for free groups
which are not finitely generated using an open cover instead of a closed cover.
However, we will not provide the details since such a result will follow from the
spectral sequence in next section.
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5.3 A spectral sequence for twisted K-theory

Let G be a discrete group and let us pick a model for BG which is a CW-
complex. Let M be a compact manifold with a G–action and consider the fiber
bundle p : EG ×G M → BG obtained by the Borel construction. We have the
following pushout diagram:∐

α∈Jk
Sk−1
α BG(k−1)

∐
α∈Jk

Dk
α BG(k)

tϕα

tφα
y

where BG(k) is the k-skeleton of BG, ϕα are the attaching maps of the k-cells
and φα are their characteristic maps. We are denoting by Jk the set of k-cells
of BG. The subspaces H(k) = p−1(BG(k)) form a filtration of H = EG ×GM
and we have ∐

α∈Jk
Sk−1
α × p−1(oα)

∐
α∈J

p∗Sk−1
α H(k−1)

∐
α∈Jk

Dk
α × p−1(oα)

∐
α∈J

p∗Dk
α H(k)

∼=

∼=
tηα

y
(5.6)

where oα is the image of the center of Dk
α under the characteristic map φα in

BG. We are going to consider the spectral sequence associated to the filtration
of H by the subspaces H(k) in twisted K-theory. We consider a derivation of
line bundles κ : G→ MAP(M,PU(H)) and the corresponding PU(H)–principal
bundle P over H constructed in Section 5.1. Then the first page of the spectral
sequence has the form

Ek,m−k1 = PKm
(
H(k), H(k−1)

)
∼=
∏
α∈Jk

P ′αKm−k(p−1(oα))

for some twists P ′α which are restrictions of P in a certain sense. These twists
are trivial, but not in a canonical way. We provide more details about this
isomorphism. If we define Fα from the pullback

p∗Dk
α H

Dk
α BG

Fα

p p

φα

by excision we have:

PKm
(
H(k), H(k−1)

)
∼= tF

∗
αPKm

(∐
p∗Dk

α,
∐

p∗Sk−1
α

)
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Using the homeomorphisms in Diagram (5.6), we get:

tF∗αPKm
(∐

p∗Dk
α,
∐

p∗Sk−1
α

)
∼= tη

∗
αF
∗
αPKm

(∐
Dk
α × p−1(oα),

∐
Sk−1
α × p−1(oα)

)
and by the additivity property of twisted K-theory:

tη∗αF
∗
αPKm

(∐
Dk
α × p−1(oα),

∐
Sk−1
α × p−1(oα)

)
∼=
∏

η∗αF
∗
αPKm

(
Dk
α × p−1(oα), Sk−1

α × p−1(oα)
)

Now we use the isomorphism QKm(Z,B) ∼= Q′K̃m
(
Z
B

)
which holds when (Z,B)

is a CW-pair (for a certain PU(H)–principal bundle Q′ → Z/B) and the home-
omorphism

Dk
α × p−1(oα)

Sk−1
α × p−1(oα)

∼=−→ Skα ∧ p−1(oα)+

where W+ denotes the disjoint union of W with the one-point space. Then we
obtain∏

η∗αF
∗
αPKm

(
Dk
α × p−1(oα), Sk−1

α × p−1(oα)
) ∼= ∏ η∗αF

∗
αP K̃m

(
Skα ∧ p−1(oα)+

)
On the right hand side the twist corresponds to that of the quotient, but we
are abusing the notation for simplicity. The inclusion rα : p−1(oα)+ ↪→ Skα ∧
p−1(oα)+ induces an isomorphism:∏

η∗αF
∗
αP K̃m

(
Skα ∧ p−1(oα)+

) ∼= ∏ r∗αη
∗
αF
∗
αP K̃m−k (p−1(oα)+

)
We summarize some of the morphisms of the twist in the following diagram for
convenience.

p−1(oα) Dk
α × p−1(oα) φ∗αD

k
α H(k)∼=

ηα

Fα

and we denote this composition by ηα �. Using this notation we can write the
E1-page in a reduced way:∏

r∗αη
∗
αF
∗
αPKm−k (p−1(oα)

) ∼= ∏ (ηα�)
∗PKm−k (p−1(oα)

)
Rewriting the twist (ηα �)∗P = P ′α, we get our first goal. The second step to sim-
plify this spectral sequence is to find an explicit way to transform (ηα�)

∗PKm−k (p−1(oα)
)

into Km−k(M). For this purpose, we are going to first fix a point x0 ∈ BG which
corresponds to a 0-cell and a point x̃0 on the fiber of x0 in the universal principal
G–bundle q : EG → BG. An explicit description of this fiber gives rise to the
following homeomorphism

p−1(x0) = {[x̃0, z]/z ∈M}
∼=−→M

[x̃0, z] 7→z.
(5.7)

Now for each cell Dk
α we choose a path βα from x0 to oα and a lift β̃α as shown

in the following diagram



CHAPTER 5. TWISTED K-THEORY OF BOREL CONSTRUCTIONS 78

(EG, x̃0)

(I, 0) (BG, x0)
βα

β̃α

This lift induces a morphism

˜̃
βα : I ×M →EG×GM

(t, z) 7→[β̃α(t), z].
(5.8)

Taking the end of the path through the fibers described by
˜̃
βα we define hα as

the following composition

M
'−→ p−1(x0)

hα−−→p−1(oα)

z0 7→ [x̃0, z0] 7→[
˜̃
βα(1, z0)].

(5.9)

Let α′ be the 0-cell which corresponds to x0. We indicate our route to follow
next through the following maps:

(ηα�)
∗PKm−k (p−1(oα)

)
(h∗αηα�)

∗PKm−k (p−1(x0)
)

(h∗αηα′�)
∗PKm−k (p−1(x0)

)
Km−k(p−1(x0))

h∗α
∼= ∼=

∼=

Now we consider the explicit description P = EG ×G M ×κ PU(H) and
define

β̂α : I × p−1(x0)× PU(H)→P

(t, z, p) 7→[β̃α(t), z, p].
(5.10)

We point out that β̂α(0, z, p) = [x̃0, z, p] lies over [x̃0, z] and β̂α(1, z, p) =

[β̃α(1), z, p] lies over [β̃α(1), z] =
˜̃
βα(1, z) = hα(x̃0, z). Here it is important to

highlight that we can construct this map β̂α thanks to the explicit construction
of P . Using β̂α we define ĥ as follows:

ηα′P = P �p−1(x0)

h∗αP P �p−1(oα)= η∗αP

p−1(x0) p−1(oα)

ĥ

∼=
ˆ̂
h

p

hα
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Here we are using

ĥα : P �p−1(x0)→P �p−1(oα)

(x̃0, z, p) 7→β̂α(1)
(5.11)

From the pullback diagram we can extract a factorization of ĥ through
ˆ̂
h and

this gives us the following composition

(ηα�)
∗PKm−k (p−1(oα)

)
(h∗αηα�)

∗PKm−k (p−1(x0)
)

(h∗αηα′�)
∗PKm−k (p−1(x0)

)
Km−k(M) Km−k(p−1(x0))

h∗α
∼= ∼=

(
ˆ̂
h−1
α )∗

∼=

∼=

Adding the canonical maps to the diagram our second step is accomplished.
The next step to achieve in our spectral sequence is to describe the differential
map

d1 : Ek,m−k1 → Ek+1,m−k
1

in terms of Bredon cohomology of EG with coefficients in a certain system that
we will describe later. This differential is defined as the composition of two
maps from long exact sequences of the pair.

PKm(H(k), H(k−1)) PKm+1(H(k+1), H(k))

PKm(H(k), w0)

d1

j∗ δ

Here w0 ∈ H(0). We will expand this composition. First we use the following
diagram

H(0) H(k)

H(k−1)
H(k)

H(k−1)∪
(
t
β 6=α

φ∗βD
k
β

)

Dkα×p
−1(oα)

Sk−1
α ×p−1(oα)

∼=

Moving to twisted K-theory, we have:
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PKm(H(k), H(k−1)) PKm(H(k), w0)

P K̃m(H(k)/H(k−1))

∏
α

η∗αF
∗
αP K̃m

(
Dkα×p

−1(oα)

Sk−1
α ×p−1(oα)

)

∨
α
η∗αF

∗
αP K̃m

(∨
α
Skα ∧ p−1(oα)+

)

∏
α

η∗αF
∗
αP K̃m(Skα ∧ p−1(oα)+)

j∗

∼=

∼=

∼=

∼=

q

Now we will describe the connecting map δ. According to Theorem 8.2
in [42], we use the following diagram, where the middle horizontal line is a
cofibration sequence.

H(k+1) ∪ CH(k)

H(k) H(k+1) H(k+1)

H(k) ΣH(k)

Dk+1
β ×p−1(oβ)

Skβ×p−1(oβ)

by CH(k) ' by H(k+1)

by H(k) induces δ

Now we feed it into twisted K-theory, again with similar abuses in the no-
tation for twistings.
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P K̃m+1(ΣH(k))

PKm(H(k), w0) = PKm+1(ΣH(k), w0) P K̃m+1
(
H(k+1)

H(k)

)
∏
β

η∗βF
∗
βP K̃m+1(Sk+1

β ∧ p−1(oβ)+)

P K̃m(H(k))
∏
β

η∗βF
∗
βP K̃m+1(Σ(Skβ ∧ p−1(oβ)+))

∏
β

η∗βF
∗
βP K̃m(Skβ ∧ p−1(oβ)+)

= δ

∼=
((Σϕβ)∗)β

∼=

∼=

(ϕ∗β)β ∼=

Assembling these perspectives, we can summarize them in the following diagram.

Dk+1
β × p−1(oβ) H(k+1)

Skβ × p−1(oβ) H(k) H(k)/H(k−1) ∼=
∨

α∈Jk
Skα ∧ p−1(oα)+

Skβ ∧ p−1(oβ)+ Skα ∧ p−1(oα)+

q

quotient
j∗

rβ,α

In particular, we will be using the maps

r∗β,α : η
∗
αF
∗
αP K̃m(Skα ∧ p−1(oα)+)→η∗βF

∗
βP K̃m(Skβ ∧ p−1(oβ)+)

x 7→(qαϕβ)∗(x)
(5.12)

where qα is the composition of q and the map labeled “quotient” in the diagram
above. Now let us return to the objective of describing the differential d1. With
respect to the decomposition found previously, the differential d1 corresponds
to the lefthand vertical map in the following diagram:
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t
α
η∗αF

∗
αPKm

( ∐
α∈Jk

Dk × p−1(oα),
∐
α∈Jk

Sk−1 × p−1(oα)

) ∏
α∈Jk

Km(M)

t
β
η∗βF

∗
βP
Km

( ∐
β∈Jk+1

Dk+1 × p−1(oβ),
∐

β∈Jk+1

Sk × p−1(oβ)

) ∏
β∈Jk+1

Km(M)

∼=

rβ,α

∼=

δ

∼=

where despite the abuse of notation, the vertical map on the left is given by:

[rβ,α(xα)α]β =
∑

∂β∩α6=∅

r∗β,α(xα) =
∑

∂β∩α6=∅

(qαϕβ)∗(xα) =
∑

∂β∩α 6=∅

(q′αϕ
′
β)∗(xα)

Here ∂β ∩ α 6= ∅ means that the boundary of the (k + 1)-cell labeled by β
intersects the k-cell labeled by α in BG. The maps q′α and ϕ′β are given by:

(Skα)+ ∧M H(k) = EG(k) ×GM (Skβ)+ ∧M

(Skα ×G)+ ∧M EG(k) ×M (Skβ ×G)+ ∧M

∐
g∈G

(Skgα)+ ∧M
∐
g∈G

(Skgβ)+ ∧M

qα ϕβ

q′α

q′gα

ϕ′β

ϕ′gβ

We will reinterpret
∏
α∈Jk

Km(M) as the kth term in the cochain complex for

Bredon Cohomology [10], with respect to certain a coefficient system, namely:

Mm : OG →Ab
G/H 7→Km(M)H

(5.13)

where the action of G on Km(M) is given by

g · z = κg · L∗g−1(z).

Then we have a description

CnG(EG,Mm) ∼=
∏

G/H×Dn
Mm(G/H)

where the product runs over the equivariant n-cells of EG. Since G acts freely
on EG, this expression turns into it turn into

CnG(EG,Mm) ∼=
∏

G/1×Dn
Mm(G/H) ∼=

∏
G/1×Dn

Km(M) =
∏
α∈Jn

Km(M)
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where the last equality holds because EG has an equivariant n-cell for each
n-cell of BG. In what follows, let us denote Pα = η∗αF

∗
αP . In order to identify

the differential d1 with the differential in the Bredon cohomology complex, we
first perform the following steps.

t
α
Pα
Km

(∐
α
Dk × p−1(oα),

∐
α
Sk−1 × p−1(oα)

)
t
β
Pβ
Km

(∐
β

Dk+1 × p−1(oβ),
∐
β

Sk × p−1(oβ)

)

∨
α
Pα
Km

(∨
α
Skα ∧ p−1(oα)+

) ∨
β

Pβ
Km

(∨
β

Skβ ∧ p−1(oβ)+

)

∏
α

PαKm(Skα ∧ p−1(oα)+)
∏
β

PβKm(Skβ ∧ p−1(oβ)+)

∏
α

hh∗αPαKm(Skα ∧ p−1(x0)+)
∏
β

hh∗βPβKm(Skβ ∧ p−1(x0)+)

r∗α,β

∼= ∼=

∼=

(qαϕβ)∗

∼=

∼=(Sk∧(hα)+)∗=hh∗α

(qαϕβ)∗

∼=hh∗β

Now we investigate the nature of the last horizontal arrow. To remove the
dependence on the paths used to define hα and hβ we intend to “lift” everything
to EG in a certain sense. Note that we have a pullback diagram:

EG×M EG×GM

EG BG

q
p

p

and consider the following schematic diagram of paths in EG for a k-cell labeled
by α and a (k+ 1)-cell labeled by β, both in BG, such that gα∩β 6= ∅ for some
g ∈ G. We think of the equivariant cell in EG corresponding to α as a union
of nonequivariant cells gα. In the following we denote as γgα,β the radial path
between the centers of the non-equivariant k-cell gα and the (k + 1)-cell β.

gx̃0 ogα

oβ

x̃0
oα

gβ̃α

β̃α

γgα,β

β̃β
ag
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Now we have “lifted” maps for each g ∈ G.

hgα : p−1(x0)→q−1(ogα)

[x̃0, z0] 7→(β̃α(1)g, z0),
(5.14)

hhgα : Sk ∧ p−1(x0)→Sk ∧ q−1(ogα)

[y, [x̃0, z0]] 7→[y, (β̃α(1)g, z0)]
(5.15)

and the maps induced by hhgα and γgα,β form a commutative diagram:

PαK̃m(Skα ∧ q−1(o1α)+) PgαK̃m(Skα ∧ q−1(ogα)+) PβK̃m(Skα ∧ q−1(oβ)+)

PαK̃m(Skα ∧ p−1(oα)+) PαK̃m(Skα ∧ p−1(x0)+) PβK̃m(Skβ ∧ p−1(x0)+)

PgαK̃m(Skα ∧ p−1(x0)+)

∼=
(hh1

α)∗

(qgαϕβ)∗

(hhgα)∗

L∗g

(hh1
β)∗

hh∗α

(ag)∗
(gβ̃α·γgα,β)∗·H∗

and we wish to determine the dashed line, hence we need to determine the
composition of the inverse of (hhgα)∗, the map (qgαϕβ)∗ and (hh1

β)∗. Since EG is

contractible, there is a canonical homotopy H rel ∂I from the path ag ·gβ̃α ·γgα,β
to β̃β . Here ag is the unique lift of the loop represented by g in π1(BG, x0) that
starts at x̃0. This homotopy determines another homotopy from Lg−1hhα to
hh1

β which we will still denote by H. We assume from this point that the CW-
structure on BG and the corresponding CW-structure on EG are regular in
the sense of Section II.6 of [44]. Then following Theorem XII.6.12 in [44] in
this twisted cohomological context (note that Hk in that theorem refers to a
generalized homology theory, and see also the arguments in Sections XIII.4 and
XIII.5 in [44]) we reduce the dashed line to L∗g−1 composed with the following
maps:

L∗
g−1 (hh1

α)∗PαKm(Skα ∧ p−1(x0)+) (hh1
β)∗PβKm(Skβ ∧ p−1(x0)+) (hh1

β)∗PβKm(Skβ ∧ p−1(x0)+)
H∗ [gα : β]

When we trivialize the twists for the first two terms in this sequence to reduce to
untwisted K-theory, by the way in which P was constructed, this composition
will correspond to multiplication by κg. With this arguments we have shown

that the isomorphism between Ek,m−k1 and CkG(EG;Mm−k) takes the differ-
ential of the spectral sequence to the differential of the Bredon cohomology
complex, hence

Ek,m−k2
∼= Hk

G(EG;Mm−k)
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Finally note that by the Remark in page I-22 of [10], we have an isomorphism
of complexes

C∗G(EG;Mm−k) ∼= C∗(BG;Km−k(M))

where the right side denotes the complex that defines group cohomology with
coefficients in the ZG–module Km−k(M) for the action described earlier. Hence
we have shown the following theorem.

Theorem 5.3.1. Let G be a discrete group and let M be a compact manifold
with a G–action. Given a derivation of line bundles κ : G→ MAP(M,PU(H)),
there is a spectral sequence

Ep,q2
∼= Hp(BG;Kq(M)) =⇒ PKp+q(EG×GM)

where P is the principal PU(H)–bundle associated to κ and the cohomology of
BG has local coefficients for the action

g · z = κg · L∗g−1(z).

on Kq(M).

Note that the action in our previous theorem when G = Z may seem differ-
ent, but we chose in that case the class λ ∈ H2(M) corresponding to κ−1

λ , so
there was an inverse implicit in that statement. A similar comment applies for
the case of free groups.

5.4 A computation using the spectral sequence

Let ρ : π1(BZ2) × S2 → S2 be the action given by ρ((x, y), z) = z if x + y
is even and ρ((x, y), z) = −z if x + y is odd. We consider the fiber bundle
S2 ↪→ EZ2 ×ρ S2 → BZ2, which is a Borel construction. And let κ : Z2 →
MAP(S2, PU(H)) be the derivation of line bundles defined below in Equation
(5.16). This derivation κ satisfies κ(1,0) = l and κ(0,1) = l where l : S2 → PU(H)
is the classifying map of the tautological complex line bundle. Since it may not
be clear that defining κ in this way for (1, 0) and (0, 1) defines a unique derivation
of line bundles, we will start by showing this. From κ(1,0) and κ(0,1) we get a
general representation

κ(m,n)(x) = κ(0,n)((−1)mx)κ(m,0)(x) (5.16)

And explicit descriptions of these factors are:

κ(m,0)(x) =

m∏
i=1

l((−1)i+mx) if m > 0

κ(−m,0)(x) = [κ(m,0)((−1)mx)]−1 if m > 0
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To check that this constitutes a derivation of line bundles we check

κ(0,0)(x) = κ(0,0)((−1)0x)κ(0,0)(x)

= id(x)

and

κ(a+m,b+n)(x) = κ(0,b+n)((−1)a+mx)κ(a+m,0)(x)

=

b+n∏
i=1

l((−1)i+m+n+a+bx)

a+m∏
j=1

l((−1)j+n+ax)

κ(a,b)+(m,n)(x) = κ(m,n)((−1)a+bx)κ(a,b)(x)

= κ(0,n)((−1)m+a+bx)κ(m,0)((−1)a+bx)κ(0,b)((−1)ax)κ(a,0)(x)

=

n∏
i=1

l((−1)i+m+n+a+bx)

m∏
j=1

l((−1)j+m+a+bx)

b∏
t=1

l((−1)t+a+bx)

a∏
s=1

l((−1)s+ax)

Using asociativity with (−1)n+m+n+a+b = (−1)m+2n+a+b = (−1)m+a+b we
have

κ(a,b)+(m,n)(x) =

b+n∏
i=1

l((−1)i+m+n+a+bx)

a+m∏
j=1

l((−1)j+n+ax)

Now we get the second page of our spectral sequence

Ep,q2
∼= Hp(T2;Kq(S2)) =⇒ PKp+q(R2 ×ρM)

3 H0(Z2;K3(S2)) H1(Z2;K3(S2)) H2(Z2;K3(S2)) H3(Z2;K3(S2))
2 H0(Z2;K2(S2)) H1(Z2;K2(S2)) H2(Z2;K2(S2)) H3(Z2;K2(S2))
1 H0(Z2;K1(S2)) H1(Z2;K1(S2)) H2(Z2;K1(S2)) H3(Z2;K1(S2))
0 H0(Z2;K0(S2)) H1(Z2;K0(S2)) H2(Z2;K0(S2)) H3(Z2;K0(S2))
−1 H0(Z2;K−1(S2)) H1(Z2;K−1(S2)) H2(Z2;K−1(S2)) H3(Z2;K−1(S2))
−2 H0(Z2;K−2(S2)) H1(Z2;K−2(S2)) H2(Z2;K−2(S2)) H3(Z2;K−2(S2))
−3 H0(Z2;K−3(S2)) H1(Z2;K−3(S2)) H2(Z2;K−3(S2)) H3(Z2;K−3(S2))

3 0 0 0 0
2 H0(Z2;K0(S2)) H1(Z2;K0(S2)) H2(Z2;K0(S2)) 0
1 0 0 0 0
0 H0(Z2;K0(S2)) H1(Z2;K0(S2)) H2(Z2;K0(S2)) 0
−1 0 0 0 0
−2 H0(Z2;K0(S2)) H1(Z2;K0(S2)) H2(Z2;K0(S2)) 0
−3 0 0 0 0
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Note that the action of Z2 on K0(S2) ∼= Z1⊕ Zl is given by

(1, 0)(a1 + bl) = κ(1,0)L
∗
(1,0)−1(a1 + bl) = al + b1

(0, 1)(a1 + bl) = κ(0,1)L
∗
(0,1)−1(a1 + bl) = al + b1

We refer to the calculations near Equation (4.13) for details. All differentials
di with i > 1 are trivial, so we only need to describe the nonzero terms in this
page. For this purpose, we use the Lyndon-Hochschild-Serre spectral sequence
induced by the following exact sequence

0→ A = {(m,n) | m+ n even} → Z2 → Z/2→ 0

whose E2-page is given by

Hp(Z/2;Hq(A;K0(S2))) =⇒ Hp+q(Z2;K0(S2))

On the left hand side, since Z2 is abelian, the action of Z/2 over A is trivial.
Moreover, by the description of the action above, we see that the action of A
on K0(S2) is trivial. For the following values of q we have:

• q = 0, H0(A;K0(S2)) = K0(S2)A = K0(S2)

• q = 1, H1(A;K0(S2)) = Hom(Z2,K0(S2)) = K0(S2)⊕K0(S2)

• q = 2, H2(A;K0(S2)) = K0(S2), because

0→ Ext(H1(Z2),K0(S2))→ H2(A;K0(S2))→ Hom(H2(Z2),K0(S2))→ 0

0→ 0→ H2(A;K0(S2))→ K0(S2)→ 0

We can regard K0(S2) ∼= Z[Z/2] as Z/2 module. Now we check the different
values for p. To calculate the cases where p 6= 0 we use Example 2 from Section
3.1 in [11], where N : MZ/2 →MZ/2 is the norm map, induced by N : M →M
with N(x) = x+ ωx, here M is a Z/2–module and Z/2 = {1, ω}.

• For p = 0

H0(Z/2;H0(A;K0(S2))) = [K0(S2)]Z/2 = Z
H0(Z/2;H1(A;K0(S2))) = [K0(S2)⊕K0(S2)]Z/2 = Z2

H0(Z/2;H2(A;K0(S2))) = H0(Z/2,K0(S2)) = K0(S2)Z/2 = Z

• For p = 1

First we calculate K0(S2)Z/2 = Z⊕Z
<1−l,l−1> = Z⊕Z

<l−1>
∼= Z.

H1(Z/2;H0(A;K0(S2))) = Ker[N : K0(S2)Z/2 → K0(S2)Z/2] = 0

H1(Z/2;H1(A;K0(S2))) = Ker[N : (K0(S2)⊕2)Z/2 → (K0(S2)⊕2)Z/2] =
0
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• For p = 2

H2(Z/2;H0(A;K0(S2))) = Coker[N : K0(S2)Z/2 → K0(S2)Z/2] = 0

3 H0(Z/2;H3(A;K0(S2))) H1(Z/2;H3(A;K0(S2))) H2(Z/2;H3(A;K0(S2)))
2 H0(Z/2;H2(A;K0(S2))) H1(Z/2;H2(A;K0(S2))) H2(Z/2;H2(A;K0(S2)))
1 H0(Z/2;H1(A;K0(S2))) H1(Z/2;H1(A;K0(S2))) H2(Z/2;H1(A;K0(S2)))
0 H0(Z/2;H0(A;K0(S2))) H1(Z/2;H0(A;K0(S2))) H2(Z/2;H0(A;K0(S2)))

Replacing the groups we have just computed:

3 0 0 0
2 Z
1 Z2 0
0 Z 0 0

Then
H0(Z2;K0(S2)) ∼= Z

H1(Z2;K0(S2)) ∼= Z2

H2(Z2;K0(S2)) ∼= Z

Replacing these groups in the original spectral sequence we have

3 0 0 0 0
2 Z Z2 Z 0
1 0 0 0 0
0 Z Z2 Z 0
−1 0 0 0 0
−2 Z Z2 Z 0
−3 0 0 0 0

So we can conclude

PK0(EZ2 ×ρ S2) ∼= Z⊕2,
PK1(EZ2 ×ρ S2) ∼= Z⊕2.

Remark 5.4.1. In the previous example we can calculate H0(Z2;K0(S2)) and

H1(Z2;K0(S2)) in different ways. For H0(Z2;K0(S2)) ∼= K0(S2)Z
2

for the

action described in the example, we obtain K0(S2)Z
2 ∼= Z.

We continue with

H1(Z2;K0(S2)) ∼=
Der(Z2,Z⊕ Zl)

PDer(Z2,Z⊕ Zl)

Let a = (x, y) and b = (z, w)

d(1, 1) = d(1, 0) + (1, 0)d(0, 1) = a+ (1, 0)b = (x+ w)1 + (y + z)l

d(1, 1) = d(0, 1) + (0, 1)d(1, 0) = b+ (0, 1)a = (y + z)1 + (x+ w)l
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So Der(Z2,Z ⊕ Zl) ⊆ {(a, b) ∈ (K0(S2))2 | x + w = z + y} ∼= Z3. On the
other hand, we represent Z2 as the abelianization of the free group on two
generators g, h. Given (a, b) satisfying x + w = z + y, we define a derivation
d by d(1, 0) = (x, y) and d(0, 1) = (z, z + y − x). To see that this defines a
derivation, we use the Exercise 4(a) in Section 4.2 of [11], which says that we
need to check d(ghg−1h−1) = 0 to verify that d is a derivation.

d(ghg−1h−1) = d(g) + gd(h) + ghd(g−1) + ghg−1d(h−1)

= (x, y) + (1, 0)(z, z + y − x) + (1, 0)(0, 1)(−y,−x) + ghg−1d(h−1)

= (z + y, y + z) + (−y,−x) + (1, 0)(0, 1)(−1, 0)(x− z − y,−z)
= (z, y + z − x) + (−z, x− z − y)

= 0

Now to describe the principal derivation

d(1, 0) = (1, 0)(x1 + yl)− (x1 + yl) = (y − x)1 + (x− y)l

d(0, 1) = (y − x) + (x− y)l

Z2 PDer(Z2,K0(S2)) Der(Z2,K0(S2))

(x, y) ((y − x)1 + (x− y)l, (y − x)1 + (x− y)l) Z3

(y − x, x− y, y − x)

∼=

hence

Der(Z2,Z⊕ Zl)
PDer(Z2,Z⊕ Zl)

∼=
Z3

Z(−1, 1,−1)⊕ Z(1,−1, 1)
=

Z3

Z(1,−1, 1)
∼= Z2.

Remark 5.4.2. In this remark we perform the same computation as in the
previous example, but when the twist P is trivial. Let ρ : π1(BZ2) × S2 → S2

be the action given by ρ((x, y), z) = z if x + y is even and ρ((x, y), z) = −z if
x + y is odd. We consider the fiber bundle S2 ↪→ EZ2 ×ρ S2 → BZ2, which is
a Borel construction.

Now we get the second page of our spectral sequence

Ep,q2
∼= Hp(T2;Kq(S2)) =⇒ Kp+q(R2 ×ρM)

3 H0(Z2;K3(S2)) H1(Z2;K3(S2)) H2(Z2;K3(S2)) H3(Z2;K3(S2))
2 H0(Z2;K2(S2)) H1(Z2;K2(S2)) H2(Z2;K2(S2)) H3(Z2;K2(S2))
1 H0(Z2;K1(S2)) H1(Z2;K1(S2)) H2(Z2;K1(S2)) H3(Z2;K1(S2))
0 H0(Z2;K0(S2)) H1(Z2;K0(S2)) H2(Z2;K0(S2)) H3(Z2;K0(S2))
−1 H0(Z2;K−1(S2)) H1(Z2;K−1(S2)) H2(Z2;K−1(S2)) H3(Z2;K−1(S2))
−2 H0(Z2;K−2(S2)) H1(Z2;K−2(S2)) H2(Z2;K−2(S2)) H3(Z2;K−2(S2))
−3 H0(Z2;K−3(S2)) H1(Z2;K−3(S2)) H2(Z2;K−3(S2)) H3(Z2;K−3(S2))
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3 0 0 0 0
2 H0(Z2;K0(S2)) H1(Z2;K0(S2)) H2(Z2;K0(S2)) 0
1 0 0 0 0
0 H0(Z2;K0(S2)) H1(Z2;K0(S2)) H2(Z2;K0(S2)) 0
−1 0 0 0 0
−2 H0(Z2;K0(S2)) H1(Z2;K0(S2)) H2(Z2;K0(S2)) 0
−3 0 0 0 0

All differentials di with i > 1 vanish, so it only remains to describe the nonzero
terms in this page. For this we use the Lyndon-Hochschild-Serre spectral se-
quence induced from the short exact sequence

0→ A = {(m,n) | m+ n even} → Z2 → Z/2→ 0

which has E2-page given by

Hp(Z/2;Hq(A,K0(S2))) =⇒ Hp+q(Z2;K0(S2))

On the left hand side, because Z2 is abelian the action of Z/2 over A is trivial.
In this case, it is clear that the action of A over K0(S2) is trivial, hence for the
following values of q we have

• q = 0, H0(A;K0(S2)) = K0(S2)A = K0(S2)

• q = 1, H1(A;K0(S2)) = Hom(Z2,K0(S2)) = K0(S2)⊕K0(S2)

• q = 2, H2(A;K0(S2)) = K0(S2), because

0→ Ext(H1(Z2),K0(S2))→ H2(A,K0(S2))→ Hom(H2(Z2),K0(S2))→ 0

0→ 0→ H2(A;K0(S2))→ K0(S2)→ 0

We can regard K0(S2) ∼= Z[Z/2] as a Z/2–module. Now we check the
different values for p. To calculate the cases when p 6= 0 we use Example 2
from Section 3.1 in [11], where N : MZ/2 →MZ/2 is the norm map, induced by
N : M →M with N(x) = x+ ωx, here M is a Z/2–module and Z/2 = {1, ω}.

• For p = 0

H0(Z/2;H0(A;K0(S2))) = [K0(S2)]Z/2 = Z
H0(Z/2;H1(A;K0(S2))) = [K0(S2)⊕K0(S2)]Z/2 = Z2

H0(Z/2;H2(A;K0(S2))) = H0(Z/2;K0(S2)) = K0(S2)Z/2 = Z

• For p = 1

First we calculate K0(S2)Z/2 = Z⊕Z
<1−1,l−(2−l)> = Z⊕Z

<2l−2> = Z⊕ Z/2.

H1(Z/2;H0(A;K0(S2))) = Ker[N : K0(S2)Z/2 → K0(S2)Z/2] = Z/2

H1(Z/2;H1(A;K0(S2))) = Ker[N : (K0(S2)⊕2)Z/2 → (K0(S2)⊕2)Z/2] =
Z/2⊕ Z/2
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• For p = 2

H2(Z/2;H0(A;K0(S2))) = Coker[N : K0(S2)Z/2 → K0(S2)Z/2] = Z/2

3 H0(Z/2;H3(A;K0(S2))) H1(Z/2;H3(A;K0(S2))) H2(Z/2;H3(A;K0(S2)))
2 H0(Z/2;H2(A;K0(S2))) H1(Z/2;H2(A;K0(S2))) H2(Z/2;H2(A;K0(S2)))
1 H0(Z/2;H1(A;K0(S2))) H1(Z/2;H1(A;K0(S2))) H2(Z/2;H1(A;K0(S2)))
0 H0(Z/2;H0(A;K0(S2))) H1(Z/2;H0(A;K0(S2))) H2(Z/2;H0(A;K0(S2)))

Replacing the computed groups, we obtain

3 0 0 0
2 Z
1 Z2 (Z/2)2

0 Z Z/2 Z/2

Then for p+ q = 1 in the E2 of the spectral sequence

0→ Z/2→ H1(Z2;K0(S2))→ Z2 → 0

For p+ q = 2

0→ F 1H2(Z2;K0(S2))→ H2(Z2;K0(S2))→ Z→ 0

0→ Z/2→ F 1H2(Z2;K0(S2))→ (Z/2)2 → 0

With this in mind and renaming F 1H2(Z2;K0(S2)) as B, which must be an
abelian group of order eight.

H0(Z2;K0(S2)) ∼= Z

H1(Z2;K0(S2)) ∼= Z2 ⊕ Z/2
H2(Z2;K0(S2)) ∼= Z⊕B

Replacing these groups in the original spectral sequence we have

3 0 0 0 0
2 Z Z2 ⊕ Z/2 Z⊕B 0
1 0 0 0 0
0 Z Z2 ⊕ Z/2 Z⊕B 0
−1 0 0 0 0
−2 Z Z2 ⊕ Z/2 Z⊕B 0
−3 0 0 0 0

Finally we have

K0(EZ2 ×ρ S2) ∼= Z⊕2 ⊕B,
K1(EZ2 ×ρ S2) ∼= Z⊕2 ⊕ Z/2.

Remark 5.4.3. From the main example of this section and Remark 5.4.2 we
deduce that the projective bundles constructed in Section 5.1 are not necessarily
trivial.



Chapter 6

Twisted differential
K-theory

In this chapter we describe the Freed-Lott and Carey-Mickelsson-Wan models for
differential extension for twisted K-theory, the first is based on the Grothendieck
group of a suitable semi-group and twisted. The second one is related to sections
and a suitable space. At first we make a topological identification of them and
finally we indicate a path for a differential equivalence.

6.1 Models of twisted K-theory

We briefly review the construction of two relevant models of twisted K-theory
in the topological framework. We start from the groups of degree 0. We will
consider the extension to any degree in the last section.

Notation 6.1.1. We use the following notation.

• We denote by X a fixed compact topological space in which good covers
exist and are cofinal (e.g. a finite CW-complex).

• We denote by U = {Ui}i∈I a fixed good cover of X.

• We denote by U(1) the sheaf of U(1)-valued continuous functions on X.

• We denote by Ž•(U,U(1)) and by Ȟ•(U,U(1)) respectively the Cech co-
cycle and cohomology groups of the sheaf U(1) with respect to U. Since
U is a good cover, Ȟ•(U,U(1)) ' Ȟ•(X,U(1)) ' H•+1(X;Z) canonically.

• We denote by H a fixed separable infinite-dimensional Hilbert space and
by Fred(H) the space of Fredholm operators in H.

92
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6.1.1 Model through Fredholm operators

Since Fred(H) is a classifying space for K-theory, a natural model for twisted
K-theory consists of homotopy classes of sections of a suitable Fred(H)-bundle,
so that the twisting is encoded in the non-triviality of such bundle. Usually
this model is constructed starting from a projective Hilbert bundle, but with
this approach it is not canonical even fixing a twisting cocycle ζ (not only the
cohomology class [ζ]). On the contrary, if we start from a twisted Hilbert bundle
(before projectivizing it), we get a canonical group Kζ(X), as we are going to
review.

Twisted Hilbert bundles.

Definition 6.1.2. Given a cocycle ζ := {ζijk} ∈ Ž2(U,U(1)), a ζ-twisted Hilbert
bundle with fibre H on X is a collection of (trivial) Hermitian vector bundles
πi : Ei → Ui, with typical fibre H, and of unitary vector bundle isomorphisms
ϕij : Ei|Uij → Ej |Uij , such that ϕkiϕjkϕij = ζijk · id.

Definition 6.1.3. Given two ζ-twisted Hilbert bundles E := ({Ei}, {ϕij}) and
F := ({Fi}, {ψij}), for any fixed ζ ∈ Ž2(U,U(1)), a morphism from E to F is a
collection of vector bundle morphisms fi : Ei → Fi such that fj ◦ ϕij = ψij ◦ fi
for every i, j ∈ I. The morphism is called unitary if each fi is.

Of course, an isomorphism is an invertible morphism, and this is equivalent
to requiring that each fi is an isomorphism. For every ζ ∈ Ž2(U,U(1)) there
exists a ζ-twisted Hilbert bundle (see [4]) and, fixing ζ, any two ζ-twisted Hilbert
bundles are isomorphic (see [31]).

Projective Hilbert bundles.

Given a twisted bundle E = ({Ei}, {ϕij}), projecting each fibre (Ei)x \ {0} to
the corresponding projective space, we get a well-defined (non-twisted) projec-
tive bundle with typical fibre P(H), that we denote by P(E). It follows from
local triviality that every projective bundle can be obtained in this way up to
isomorphism. Moreover, it is straightforward to verify that an isomorphism of
ζ-twisted bundles induces an isomorphism of projective bundles, hence, fixing
ζ, the unique isomorphism class of ζ-twisted Hilbert bundles induces a unique
isomorphism class of projective bundles. Let us now fix ζ and ζ ′ cohomologous.
We call HBζ(X) the set of ζ-twisted bundles on X (Notation quotiented out up
to isomorphism) and we set ζ ′ = ζ · δ̌1η. We get the bijection

Φη : HBζ(X)
'−→ HBζ′(X)

E = ({Ei}, {ϕij}) 7→ Φη(E) := ({Ei}, {ϕijηij}).
(6.1)

Since P(E) = P(Φη(E)), the isomorphism class of P(E) only depends on the
cohomology class [ζ] ∈ Ȟ2(U,U(1)). Moreover, such isomorphism class is
well-behaved with respect to cover refinements (see section 6.1.3 below for de-
tails, in particular diagrams (6.8) and (6.10)), hence it only depends on [ζ] ∈
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Ȟ2(X,U(1)) ' H3(X;Z). Conversely, it is easy to verify that, if P(E) ' P(E′),
then [ζ] = [ζ ′], therefore H3(X;Z) classifies projective Hilbert bundles on X.
In fact, by local triviality, an isomorphism f̄ : P(E) → P(E′) can be lifted to
fi : Ei → E′i for each i. Since the family {fi} glues to f̄ , there exists a U(1)-
cochain ηij such that fjϕijηij = ψijfi. It follows that

ζ ′ijkfi = ψkiψjkψijfi = ηijψkiψjkfjϕij = ηijηjkψkifkϕjkϕij

= ηijηjkηkifiϕkiϕjkϕij = ηijηjkηkiζijkfi,

hence ζ ′ = ζ · δ̌1η, therefore [ζ] = [ζ ′].
If δ̌1η = 1 in (6.1), then both E and Φη(E) are ζ-twisted, hence there

exists an isomorphism f = {fi} : Φη(E) → E. This means that fi : Ei → Ei
and ϕijfi = fjϕijηij , hence f induces an automorphism f̄ : P(E) → P(E).
Any automorphism f̄ can be realized in this way from suitable η and f . In
fact, the computation of the previous paragraph shows that f̄ can be lifted to
fi : Ei → Ei for each i, such that fjϕijηij = ϕijfi for a suitable cochain ηij
satisfying ζ = ζ · δ̌η, i.e. δ̌1η = 1. The only freedom we have in constructing the
cocycle η is the choice of the lifts fi. Any other choice is of the form fiξi, that
replaces η by η · δ̌0ξ−1. Therefore, the following map is well-defined:

Φ: Aut(P(E))→ H2(X,Z)

f̄ 7→ [{ηij}].
(6.2)

It is easy to prove that it is a group homomorphism. Moreover, it follows from
the previous construction that f̄ ∈ Aut(P(E)) lifts to an automorphisms of E
if and only if Φ(f̄) = 0, therefore Φ(f̄) can be thought of as the obstruction to
the existence such a lift. The following lemma is a consequence of the fact that
PU(H) is an Eilenberg-MacLane space K(Z, 2) [4, Prop. 2.2].

Lemma 6.1.4. The morphism (6.2) is surjective. Moreover, its kernel is the
connected component of the identity of Aut(P(E)), therefore Φ induces a canon-
ical bijection between the connected components of Aut(P(E)) and H2(X,Z).

Definition of twisted K-theory.

We fix a cocycle ζ ∈ Ž2(U,U(1)) and a ζ-twisted Hilbert bundle E = ({Ei}, {ϕij}),
inducing the corresponding projective bundle P(E). We denote by PP(E) the
bundle of projective reference frames of P(E). We have a natural adjoint action
of the projective unitary group PU(H) on the topological space Fred(H) by con-
jugation,1 that we denote by ρ : PU(H) → C0(Fred(H)), U 7→ (A 7→ UAU−1),
hence we construct the associated Fred(H)-bundle FP(E) := PP(E) ×ρ Fred(H).
Since the composition of two Fredholm operators is Fredholm too, the set
Fred(H) has a natural structure of monoid. The action of PU(H) by conju-
gation respects composition, therefore FP(E) is a bundle of monoids. It follows

1We consider the norm topology in the space of bounded linear operators in H and we
restrict it to Fred(H).
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that its set of global sections, that we denote by Γ(FP(E)), inherits a monoid
structure as well. Quotienting Γ(FP(E)) up to homotopy of sections, we get an
abelian group, the opposite of [s] being [s∗], where s∗ is point-wise adjoint to s.
We denote such a group by Γ̄(FP(E)).

Definition 6.1.5. The twisted K-theory group Kζ(X) is defined as the abelian
group Γ̄(FP(E)) for any ζ-twisted Hilbert bundle E.

Dependence on the cocycle.

Definition 6.1.5 seems to depend on E, not only on ζ. Nevertheless, fixing
two ζ-twisted bundles E and E′, an isomorphism f : E → E′ is unique up to
an automorphism of E. It follows from lemma 6.1.4 that the induced isomor-
phism f̄ : P(E) → P(E′) is unique up to an automorphism of P(E) connected
to the identity, the latter inducing the identity on Γ̄(FP(E)). Hence, Kζ(X) is
canonically defined.

On the contrary, the definition is not canonical if we only fix the cohomology
class [ζ]. In fact, let us consider ζ and ζ ′ cohomologous. We fix η ∈ Č1(U; U(1))
such that ζ ′ = ζ · δ̌1η. For any ζ-twisted bundle E, we have P(E) = P(Φη(E)),
the r.h.s. being ζ ′-twisted. Hence, we get the isomorphism

Φη : Kζ(X)
'−→ Kζ′(X) (6.3)

defined as the identity between the representatives Γ̄(FP(E)) and Γ̄(FP(Φη(E)))
respectively.

The isomorphism (6.3) depends on η up to coboundaries. In fact, any other
choice of η is of the form η · ν, where ν ∈ Ž1(U,U(1)). We have Φη·ν = Φν ◦Φη
and, because of lemma 6.1.4, Φν is the identity if and only if ν is a coboundary.
This implies that the set of isomorphisms of the form (6.3) is a torsor over
H2(X;Z), hence, if ζ = ζ ′, we get an action of H2(X;Z) on Kζ(X). Only the
quotient up to this action is canonically defined for a fixed class [ζ]. Of course,
if H2(X;Z) = 0, then the quotient is trivial, therefore the group K[ζ](X), with

[ζ] ∈ Ȟ2(U; U(1)), is well-defined. In this case, K[ζ](X) does not depend on the
cover even (see section 6.1.3 below for details), since we can take the direct limit
with respect to U, hence the groupK[ζ](X), with [ζ] ∈ Ȟ2(X; U(1)) ' H3(X;Z),
is well-defined.

Remark 6.1.6. If H2(X,Z) = 0, we can show that K[ζ](X) is well-defined
in the following equivalent way. Given a ζ-twisted bundle E and a ζ ′-twisted
bundle E′, with ζ and ζ ′ cohomologous, we fix any isomorphism f̄ : P(E) →
P(E′). The latter is unique up to an automorphism of P(E), that is neces-
sarily connected to the identity by lemma 6.1.4. Hence, the induced morphism
f̄∗ : Γ̄(FP(E))→ Γ̄(FP(E′)) does not depend on f̄ , therefore K[ζ](X) is canonically
defined.
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6.1.2 Model through finite-dimensional twisted bundles

When the cohomology class [ζ] has finite order, the Grothendieck group of
finite-dimensional ζ-twisted vector bundles provides another model for twisted
K-theory. In particular, the following definition is analogous to 6.1.2.

Definition 6.1.7. Given a cocycle ζ := {ζijk} ∈ Ž2(U,U(1)), a ζ-twisted vector
bundle of rank r on X is a collection of (trivial) Hermitian vector bundles
πi : Ei → Ui of rank r and of unitary vector bundle isomorphisms ϕij : Ei|Uij →
Ej |Uij , such that ϕkiϕjkϕij = ζijk · id.

The definition of (iso)morphism is identical to 6.1.3. Given a twisted vector
bundle E := ({Ei}, {ϕij}) of rank r, for each i ∈ I we can fix a set of r pointwise-
independent local sections s1,i, . . . , sr,i : Ui → Ei of unit norm, determining vec-
tor bundle isomorphisms ξi : Ei → Ui × Cr, λksi,k(x) 7→ (x, (λ1, . . . , λr)). The
isomorphisms ϕij determine local transition functions gij : Uij → U(r) such that
ϕij(ξ

−1
i (x, λ)) = ξ−1

j (x, gij(x) · λ). Equivalently, gij(x) is the change of basis in
(Ej)x from {sj,1(x), . . . , sj,r(x)} to {ϕij(si,1(x)), . . . , ϕij(si,r(x))}. The condi-
tion ϕkiϕjkϕij = ζijk ·id is equivalent to gkigjkgij = ζijk ·In. It is straightforward
to verify, as for ordinary vector bundles, that the equivalence class [{gij}], up
to conjugation by {hi : Ui → U(r)}, only depends on the isomorphism class of
E := ({Ei}, {ϕij}), in such a way that we get the natural bijection [E] 7→ [{gij}].
Remark 6.1.8. The class [ζ] is necessarily torsion. In fact, computing the
determinants, we get det(gki) det(gjk) det(gij) = ζrijk; since det(gij) is a U(1)-
valued function, this shows that {ζrijk} is a trivial cocyle, hence [ζ]r = 1. Equiv-

alently, r[ζ] = 0 in H3(X;Z). In particular, the order of [ζ] divides the rank
of the bundle. One can prove that, for any cocycle representing a torsion class,
there exists a corresponding twisted bundle (see [4]).

We denote by VBrζ(X) the set of ζ-twisted vector bundles of rank r up
to isomorphism. The direct sum is defined as ({Ei}, {ϕij}) ⊕ ({Fi}, {ψij}) :=
({Ei ⊕ Fi}, {ϕij ⊕ ψij}). The set VBζ(X) :=

⊕
r∈N VBrζ(X), endowed with

this operation, is a commutative semi-group, hence we can consider the corre-
sponding Grothendieck group, that we call ζ-twisted K-theory group of X and
we denote by Kζ(X).

Dependence on the cocycle.

If ζ and ζ ′ are cohomologous and we fix η, such that ζ ′ = ζ · δ̌1η, the isomor-
phism (6.1) holds for finite-rank bundles too and it extends to the corresponding

Grothendieck groups, defining Φη : Kζ(X)
'−→ Kζ′(X), analogous to (6.3). This

shows that the isomorphism class of the group Kζ(X) only depends on [ζ] in a
non-canonical way. Moreover, since Φη depends on η only up to coboundaries,
the set of isomorphisms of the form Φη is a torsor over Ȟ1(U,U(1)) ' H2(X;Z).
In particular, if H2(X;Z) = 0, then the group K[ζ](X) is canonically defined,
independently of the cover too (see section 6.1.3 below for details), otherwise
only the quotient up to the action of H2(X;Z) depends on [ζ] in a canonical
way.
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6.1.3 Good refinements

Let us suppose that V = {Vα}α∈Λ is a good cover and a refinement of the
fixed good cover U = {Ui}i∈I through the function φ : Λ→ I. This means that
Vα ⊂ Uφ(α) for every α ∈ Λ. We get the induced morphism of cochain complexes

φ∗ : Č•(U,U(1)) → Č•(V,U(1)) and, fixing ζ ∈ Ž2(U,U(1)), we set ζ̂ := φ∗ζ.
We get the function

φ∗ : HBζ(X) −→ HBζ̂(X)

E = ({Ei}, {ϕij}) 7→ φ∗E = ({Fα}, {ψαβ}),
(6.4)

where Fα := Eφ(α)|Vα and ψαβ := ϕφ(α)φ(β)|Vαβ . For every E ∈ HBζ(X), we
have the isomorphism

φ∗
E

: P(E)
'−→ P(φ∗E), (6.5)

whose inverse identifies the projectivized fibre P(Fα)x with the corresponding
one P(Eφ(α))x. Let us show that:

• the isomorphism (6.5) induces the (well-defined) isomorphism

φ∗ : Kζ(X)
'−→ Kζ̂(X); (6.6)

• if H2(X;Z) = 0, then (6.6) induces the (well-defined) isomorphism

φ∗ : K[ζ](X)
'−→ K[ζ̂](X), (6.7)

that does not depend on φ any more, where [ζ] ∈ Ȟ2(U,U(1)) and [ζ̂] ∈
Ȟ2(V,U(1)). This implies that, if H2(X;Z) = 0, then K[ζ](X), with

[ζ] ∈ Ȟ2(X,U(1)) ' H3(X;Z), is canonically defined.

Isomorphism (6.6).

We fix any E ∈ HBζ(X) and we represent Kζ(X) by Γ̄(FP(E)) and Kζ̂(X) by

Γ̄(FP(φ∗E)). Fixing an isomorphism of ζ-twisted Hilbert bundles f : E
'−→ E′,

where E = ({Ei}, {ϕij}), E′ = ({E′i}, {ϕ′ij}) and f = {fi}, we get the induced

isomorphism of ζ̂-twisted bundles φ∗f : φ∗E
'−→ φ∗E′, where φ∗f = {f ′α :=

fφ(α)|Vα}, in such a way that the following diagram commutes:

P(E)
f̄ //

φ∗
E

��

P(E′)

φ∗
E′

��
P(φ∗E)

φ∗f // P(φ∗E′).

(6.8)

The isomorphisms (f̄)∗ : Γ̄(FP(E))→ Γ̄(FP(E′)) and (φ∗f)∗ : Γ̄(FP(φ∗E))→ Γ̄(FP(φ∗E′))
are the natural changes of representative respectively for Kζ(X) and Kζ̂(X).

Therefore, diagram (6.8) shows that
(
φ∗
E )
∗ : Γ̄(FP(E)) → Γ̄(FP(φ∗E)) is com-

patible with the change of representative from E to E′, hence it induces (6.6).
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Changing the refinement function.

Let us choose the same refinement V of U, but another refinement function

ρ : Λ → I. We set
ˆ̂
ζ := ρ∗ζ. Given E = ({Ei}, {ϕij}), we set φ∗E =

({Fα}, {ψαβ}) and ρ∗E = ({F ′α}, {ψ′αβ}). We have the natural isomorphisms

ξα := ϕφ(α)ρ(α)|Vα : Fα
'−→ F ′α, that do not glue to a twisted bundle isomor-

phism from φ∗E to ρ∗E in general, but they do between the corresponding
projective bundles (hence between the corresponding K-theory groups). In fact,
we have:

ψ′αβ ◦ ξα = ϕρ(α)ρ(β) ◦ ϕφ(α)ρ(α) = ϕφ(α)ρ(β) · ζφ(α)ρ(α)ρ(β)

ξβ ◦ ψαβ = ϕφ(β)ρ(β) ◦ ϕφ(α)φ(β) = ϕφ(α)ρ(β) · ζφ(α)φ(β)ρ(β).

Hence, if we set η̂αβ := ζφ(α)ρ(α)ρ(β) · ζ−1
φ(α)φ(β)ρ(β), the following diagram com-

mutes:

Fα
ψαβ ·η̂αβ //

ξα

��

Fβ

ξβ

��
F ′α

ψ′αβ // F ′β .

It follows that
ˆ̂
ζ = ζ̂ · δ̌1η̂, as the reader can verify by direct computation too.

We obtain the isomorphism

ξEφ,ρ := {ξα} : Φη̂(φ∗E)
'−→ ρ∗E, (6.9)

inducing ξ̄Eφ,ρ : P(φ∗E)
'−→ P(ρ∗E), in such a way that the following diagram

commutes:
P(E)

φ∗
E

zz

ρ∗
E

$$
P(φ∗E)

ξ̄Eφ,ρ // P(ρ∗E).

(6.10)

The two morphisms φ∗
E

and ρ∗
E

induce respectively φ∗ and ρ∗ in K-theory, as
we have seen above. Let us see that ξ̄Eφ,ρ induces the isomorphism (6.3) corre-

sponding to η̂, i.e. Φη̂ : Kζ̂(X)
'−→ K ˆ̂

ζ
(X). In fact, the latter is by definition the

identity between Γ̄(FP(φ∗E)) and Γ̄(FP(Φη̂(φ∗E))). Moreover, in K ˆ̂
ζ
(X), we iden-

tify Γ̄(FP(Φη̂(φ∗E))) with Γ̄(FP(ρ∗E)) through any twisted bundle isomorphism,

like ξEφ,ρ, hence (ξ̄Eφ,ρ)∗ is the canonical identification. Therefore, (6.10) induces
the following commutative diagram:

Kζ(X)

φ∗

zz

ρ∗

$$
Kζ̂(X)

Φη̂ // K ˆ̂
ζ
(X).

(6.11)
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Isomorphism (6.7).

The cochain η̂ (hence the isomorphism Φη̂) is uniquely determined by the pair

(φ, ρ). If H2(X;Z) = 0, then η̂ is uniquely determined by ζ̂ and
ˆ̂
ζ up to

coboundaries. In this case, as we have seen above, Φη̂ does not depend on η̂
and it is the natural isomorphism between Kζ̂(X) and K ˆ̂

ζ
(X).

Maintaining the hypothesis H2(X;Z) = 0, let us fix ζ, ζ ′ ∈ Ž2(U,U(1))
cohomologous and the unique (up to coboundaries) ν ∈ Č1(U,U(1)) such that
ζ ′ = ζ · δ̌1ν. Fixing a refinement V of U, through the function φ : Λ→ I, we set
ζ̂ := φ∗ζ, ζ̂ ′ := φ∗ζ ′ and ν̂ := φ∗ν. The following diagram commutes:

Kζ(X)
Φν //

φ∗

��

Kζ′(X)

φ∗

��
Kζ̂(X)

Φν̂ // Kζ̂′(X).

(6.12)

In fact, choosing a ζ-twisted bundle E to represent Kζ(X) and Φν(E) to repre-
sent Kζ′(X), we get the following commutative diagram:

P(E)

φ∗
E

��

P(Φν(E))

φ∗
Φν (E)

��
P(φ∗E) P(φ∗Φν(E)),

(6.13)

where, in the bottom-right position, we have φ∗Φν(E) = Φν̂(φ∗E). This proves
the commutativity of (6.12).

Joining (6.11) and (6.12), we get the following diagram:

K
ζ′ (X)

φ∗

zz

ρ∗

$$
Kζ(X)

φ∗

{{

ρ∗

##

Φν

33

K
ζ̂′ (X)

Φ
η̂′ // K ˆ̂

ζ′
(X)

K
ζ̂

(X)

Φη̂ //

Φν̂
33

K ˆ̂
ζ

(X).

Φˆ̂ν

33

(6.14)

The isomorphisms Φ are the natural changes of representative in K-theory, hence

the commutativity of (6.14) shows that the isomorphism φ∗ : Kζ(X)
'−→ Kζ̂(X)

is compatible both with change of representative and with change of refinement
function (from φ to ρ), hence it induces (6.7). It follows that we can take
the direct limit over U and we get the well-defined group K[ζ](X), with [ζ] ∈
Ȟ2(X; U(1)) ' H3(X;Z), without fixing any (good) cover of X.
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Finite order

If the order of [ζ] is finite, we get the function

φ∗ : VBζ(X)
'−→ VBζ̂(X), (6.15)

defined as (6.4) (up to isomorphism in the domain and in the codomain),
that is a bijection (see [31, Theorem 3.6]). It easily follows that it induces
the isomorphism (6.6) between the corresponding finite-dimensional models
of twisted K-theory, i.e. between the corresponding Grothendieck groups. As
above, let us choose the same refinement V of U, but another refinement func-

tion ρ : Λ → I. We set
ˆ̂
ζ := ρ∗ζ. Given E = ({Ei}, {ϕij}), we set φ∗E =

({Fα}, {ψαβ}) and ρ∗E = ({F ′α}, {ψ′αβ}). We have the natural isomorphisms

ξα := ϕφ(α)ρ(α)|Vα : Fα
'−→ F ′α, that glue to the isomorphism (6.9), in such a

way that diagram (6.11) commutes. It is easy to verify that diagram (6.12)
commutes too, hence we get diagram (6.14). If H2(X;Z) = 0, then the same
argument of section 6.1.3 shows that (6.7) is well-defined in the finite-order
setting too, hence we get K[ζ](X), with [ζ] ∈ Ȟ2(X,U(1)) ' H3(X;Z).

6.2 Isomorphism

We explicitly construct a natural isomorphism between the two models of twisted
K-theory considered above. Starting from the fixed good cover U = {Ui}i∈I ,
we choose a good finite refinement V = {V1, . . . , Vm}, through a refinement
function φ : {1, . . . ,m} → I, such that V̄k ⊂ Uφ(k) for every k.2 We fix a cocy-

cle ζ ∈ Ž2(U,U(1)), that represents a finite-order cohomology class, and we set

ζ̂ := φ∗ζ. Moreover, we fix a ζ-twisted rank-N vector bundle Ẽ, for any suitable
N ∈ N, endowed with a fixed set of local trivializations, so that we can naturally
represent it in the form Ẽ := ({Ui × CN}, {gij}), with gij : Uij → U(N). We

consider the ζ-twisted Hilbert bundle E := Ẽ ⊗ H, where H actually denotes
the trivial bundle X ×H. This means that E := ({Ui × (CN ⊗H)}, {gij ⊗ 1}).
Since CN ⊗ H ' H, the bundle E satisfies definition 6.1.2. Applying the map
(6.4), we get the ζ̂-twisted bundle Ê := φ∗E = ({Vk× (CN ⊗H)}, {ĝkh}), where
ĝkh = gφ(k)φ(h)|Vkh ⊗ 1.

Let us consider a section s ∈ Γ(FP(E)), projecting to [s] ∈ Γ̄(FP(E)), the
latter group representing Kζ(X) up to canonical identification. Since the local
bundles Ui × (CN ⊗ H) are already trivialized, the section s corresponds to a
family of functions si : Ui → Fred(CN⊗H) such that si = (gij⊗1) ·sj ·(g−1

ij ⊗1).

2It is always possible to find such a refinement V of U under our hypotheses (see notation
6.1.1). In fact, since X is (para)compact, there exists a refinement W = {Wi}i∈I of U such
that W̄i ⊂ Ui for every i ∈ I (see [37, Lemma 41.6]). Since good covers are cofinal, we choose
a good refinement V′ = {V ′α}α∈Λ of W and we extract a finite (necessarily good) sub-cover
V = {V1, . . . , Vm} of V′. It follows that Vk = V ′

α(k)
⊂Wφ(k) for every k = 1, . . . ,m and for a

suitable function φ : {1, . . .m} → I, hence V̄k ⊂ W̄φ(k) ⊂ Uφ(k).
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The isomorphism (6.5) induces

φ# :=
(
φ∗
E )
∗ : Γ(FP(E))

'−→ Γ(FP(φ∗E)), (6.16)

hence we get t := φ#s ∈ Γ(FP(φ∗E)), represented by the family tk := sφ(k)|Vk : Vk →
Fred(CN ⊗H). We have the natural identification CN ⊗H ' H⊕N and we de-
note by π1, . . . , πN : H⊕N → H the canonical projections. By construction the
functions tk can be extended to V̄k (the extension being sφ(k)|V̄k), hence, for each
x ∈ V̄k and for every k ∈ {1, . . . ,m}, we consider the following space Vx,k ⊂ H:

Vx,k :=
(
π1(Ker tk(x))

)⊥ ∩ . . . ∩ (πN (Ker tk(x))
)⊥
.

Such a space is closed and finite-codimensional. In fact, Ker tk(x) is finite-
dimensional, since tk(x) is Fredholm, hence each projection πh(Ker tk(x)) is
finite-dimensional too. It follows that the orthogonal complement is closed
and finite-codimensional, hence the same holds about the finite intersection
Vx,k. Thus, V⊕Nx,k is closed and finite-codimensional in H⊕N . Moreover, we

have (V⊕Nx,k ) ∩ Ker tk(x) = {0}, since V⊕Nx,k ⊂ (Ker tk(x))⊥. In fact, if v :=

(v1, . . . , vN ) ∈ V⊕Nx,k and w := (w1, . . . , wN ) ∈ Ker tk(x), then, for every h =

1, . . . , N , we have vh ∈
(
πh(Ker tk(x))

)⊥
and wh ∈ πh(Ker tk(x)), hence 〈vh, wh〉 =

0. This immediately implies 〈v, w〉 = 0.
Following the proof of [2, Prop. A5], for each x ∈ V̄k there exists a neigh-

bourhood Wx,k ⊂ V̄k such that V⊕Nx,k ∩ Ker tk(y) = {0} for every y ∈ Wx,k.

The family {Wx,k}x∈V̄k is an open cover of the compact space V̄k, hence we
extract a finite sub-cover, that we denote by {Wx1,k, . . . ,Wxnk ,k

}, and we set

Vk := Vx1,k ∩ . . . ∩ Vxnk ,k and V := V1 ∩ . . . ∩ Vm. It follows that V⊕N is closed

and finite-codimensional in H⊕N and that V⊕N ∩ Ker(tk(x)) = {0} for every
x ∈ V̄k and for every k ∈ {1, . . . ,m}. Moreover, (ĝkh)x(V⊕N ) = V⊕N for every
x ∈ V̄kh and for every k, h ∈ {1, . . . ,m}, since the transition functions act as
N ×N invertible complex matrices on H⊕N . Projecting to the quotient, we get
the point-wise isomorphism (ḡkh)x : H⊕N/V⊕N → H⊕N/V⊕N . Since (ḡkh)x is
defined for every x ∈ V̄kh, in particular it is defined for every x ∈ Vkh, hence we
get the following ζ̂-twisted finite-dimensional vector bundle on X:

Ft := ({Vk × (H⊕N/V⊕N )}, {ḡkh}). (6.17)

We set H⊕N/tk(V⊕N ) :=
⊔
x∈Vk H

⊕N/(tk)x(V⊕N ), as a quotient space of Vk ×
H⊕N '

⊔
x∈Vk H

⊕N . By [2, Prop. A3], the space H⊕N/tk(V⊕N ) is a vector
bundle on Vk, hence, since Vk is contractible, it is a trivial vector bundle. More-
over, we get a well-defined isomorphism ¯̄gkh : H⊕N/tk(V⊕N )→ H⊕N/th(V⊕N ),
since (ĝkh)x((tk)x(V⊕N )) = (th)x((ĝkh)x (V⊕N )) = (th)x(V⊕N ), therefore we

get the following ζ̂-twisted finite-dimensional vector bundle on X:

Gt := ({H⊕N/tk(V⊕N )}, {¯̄gkh}). (6.18)
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With these data, calling K
(f)
ζ (X) the finite-dimensional model of Kζ(X), we

get the following bijection:

Θ̂φ∗E : Γ̄(FP(φ∗E))
'−→ K

(f)

ζ̂
(X)

[t] 7→ Ft −Gt.
(6.19)

Denoting by φ# the projection of (6.16) to the quotient up to homotopy, and
applying (6.6) in the finite-order setting, we set

ΘE := φ∗
−1 ◦ Θ̂φ∗E ◦ φ# : Γ̄(FP(E))

'−→ K
(f)
ζ (X). (6.20)

Calling K
(∞)
ζ (X) the infinite-dimensional model of Kζ(X), that we represent

through Γ̄(FP(E)), from (6.20) we get the following group isomorphism:

Θ: K
(∞)
ζ (X)

'−→ K
(f)
ζ (X). (6.21)

Now we have to prove that (6.21) is well-defined. First we prove that it is well-
defined as a group morphism, i.e. that it respects the group operations and it
does not depend on:

• the representative V within the class of closed finite-codimensional vector
subspaces of H, such that V⊕N ∩ Ker(tk(x)) = {0} for every x ∈ V̄k and
for every k ∈ {1, . . . ,m};

• the representative section s in the class [s];

• the refinement function φ;

• the refinement V of U;

• the rank-N ζ-twisted bundle Ẽ, fixed at the beginning.

Afterwards, we prove that it is injective and surjective, following the same line
of the appendix of [2], adapted to the twisted framework. Then we conclude
by showing that, when H2(X;Z) = 0, the isomorphism (6.21) does not depend
on the representative ζ of the cohomology class [ζ] ∈ Ȟ2(X,U(1)) ' H3(X;Z),
hence it induces

Θ̄ : K
(∞)
[ζ] (X)

'−→ K
(f)
[ζ] (X). (6.22)

6.2.1 The morphism Θ is well-defined

We prove the result following the steps we summarized above.
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Independence of V

The argument is essentially identical to the one in [2]. Fixing all of the other
data, let W be another closed and finite-codimensional vector subspace ofH such
that W⊕N ∩ Ker(tk(x)) = {0} for every x ∈ V̄k and for every k ∈ {1, . . . ,m}.
The same property is satisfied by V ∩W, hence we can assume W ⊂ V without
loss of generality. In this case, we get the following ζ̂-twisted vector bundles,
the first two being respectively (6.17) and (6.18):

Ft := ({Vk × (H⊕N/V⊕N )}, {ḡkh}) Gt := ({H⊕N/tk(V⊕N )}, {¯̄gkh})
F ′t := ({Vk × (H⊕N/W⊕N )}, {ḡ′kh}) G′t := ({H⊕N/tk(W⊕N )}, {¯̄g′kh})
F ′′t := ({Vk × (V⊕N/W⊕N )}, {ḡ′′kh}) G′′t := ({tk(V⊕N )/tk(W⊕N )}, {¯̄g′′kh}).

By identifying each quotient with the corresponding orthogonal complement, we
get F ′t ' Ft ⊕ F ′′t and G′t ' Gt ⊕G′′t , hence in K-theory we have F ′′t = F ′t − Ft
and G′′t = G′t−Gt. Moreover, since each tk is injective in V⊕N by construction,
we have F ′′t ' G′′t , thus F ′t −Ft = G′t−Gt, that immediately implies Ft−Gt =
F ′t −G′t. It follows that (6.19) does not change, hence neither (6.20) and (6.21).

Independence of s within [s]

Also in this case the argument is essentially identical to the one in [2]. Fixing all
of the other data, let us consider two homotopic sections s, s′ ∈ Γ(FP(E)). We
have the natural projection π : X × I → X, that induces the cocycle ζζζ := π∗ζ,
relative to the open cover UUU := π∗U. We get the ζζζ-twisted bundle Ẽ̃ẼE := π∗Ẽ,
inducing EEE := Ẽ̃ẼE⊗H. Since FP(EEE) ' π∗FP(E), a homotopy between s and s′ can

be thought of as a section sss ∈ Γ(FP(EEE)), where EEE := Ẽ̃ẼE ⊗H, that restricts to s
and s′ respectively in X × {0} and X × {1}. Considering the pull-back from UUU
to its good refinement VVV := π∗V, through the refinement function φφφ := π∗φ, we
apply (6.19) to φφφ∗EEE and we get the class FFF ttt−GGGttt ∈ Kζζζ(X× I), where ttt := φφφ#sss,
that restricts to Ft −Gt in X ×{0} and to Ft′ −Gt′ in X ×{1} (here Ft = Ft′ ,
since the vector subspace V is the same, i.e. the one chosen for ttt). Since the
embeddings i0, i1 : X ↪→ X × I, defined by iε(x) := (x, ε), induce the same pull-
back i∗0 = i∗1 : Kζζζ(X × I)→ Kζ(X), we get Ft −Gt = Ft′ −Gt′ . It follows that
(6.19) does not change, hence neither (6.20) and (6.21).

Independence of φ

Let us choose the same refinement V, but another refinement function ρ. We

set
ˆ̂
ζ := ρ∗ζ and we call

ˆ̂
Θρ∗E the isomorphism (6.19) with respect to the

ˆ̂
ζ-

twisted bundle ρ∗E. Moreover, we fix any cochain η̂ such that
ˆ̂
ζ = ζ̂ · δ̌1η̂.

In order to show that (6.20) does not depend on φ, we have to show that

φ∗
−1 ◦ Θ̂φ∗E ◦ φ# = ρ∗

−1 ◦ ˆ̂
Θρ∗E ◦ ρ#. This follows from the commutativity

of the following diagram, that we are going to prove:
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Γ̄(FP(E))

φ#

$$

ρ#

��

ΘE // K(f)
ζ

(X)

φ∗

zz

ρ∗

��

Γ̄(FP(φ∗E))

Θ̂φ∗E //

ξ#

��

K
(f)

ζ̂
(X)

Φη̂

��
Γ̄(FP(ρ∗E))

ˆ̂
Θρ∗E // K(f)

ˆ̂
ζ

(X).

The vertical morphism ξ# is defined as follows: we start from (6.9), that we
denote by ξ for simplicity, we consider the induced morphism ξ# : Γ(FP(φ∗E))→
Γ(FP(ρ∗E)) and we project it to the quotient up to homotopy of sections. The left
and right triangles of the previous diagram are instances of diagram (6.11) (the
left one fixing the representatives and the right one in the finite-order setting),
hence we already know that they commute. Let us show that the rectangle
commutes too. We fix [t] ∈ Γ̄(FP(φ∗E)), represented by the local functions

tk : Vk → Fred(CN ⊗H). The latter satisfy the condition tk = ĝkhthĝ
−1
kh , where

ĝkh := gφ(k)φ(h) ⊗ 1. By construction, Θ̂φ∗E [t] = Ft − Gt, where Ft and Gt
are defined respectively by (6.17) and (6.18) with respect to a suitable vector

subspace V. We set ˆ̂gkh := gρ(k)ρ(h)|Vkh ⊗ 1 and ξk := gφ(k)ρ(k)|Vk ⊗ 1. The class

ξ# [t] is represented by uk := ξktkξ
−1
k and

ˆ̂
Θρ∗E(ξ# [t]) = F ′t − G′t, where F ′t

and G′t are defined respectively by (6.17) and (6.18) with respect to a suitable
vector subspace W, replacing the transition functions ḡkh and ¯̄gkh, that are the
projections of ĝkh, respectively by ḡ′kh and ¯̄g′kh, that are the projections of ˆ̂gkh.
The vector subspaces V and W have to satisfy the following conditions:

• V and W are closed and finite-codimensional in H;

• V⊕N ∩ Ker(tk(x)) = {0} and W⊕N ∩ Ker(uk(x)) = {0} for every x ∈ V̄k
and for every k ∈ {1, . . . ,m}.

It follows that V ∩W is a suitable (equivalent) choice in both cases. With
this choice, the only difference between Ft and F ′t on one side, and between Gt
and G′t on the other side, is encoded in the transition functions. Let us show
that Φη̂(Ft) ' F ′t and Φη̂(Gt) ' G′t. From these isomorphisms, it follows that

Φη̂ ◦ Θ̂φ∗E [t] = Φη̂(Ft −Gt) = F ′t −G′t =
ˆ̂
Θρ∗E ◦ ξ# [t], as required.

We have the isomorphism (6.9), i.e. Φη̂(φ∗E) ' ρ∗E, that in this framework
coincides with the conjugation by {ξk}. We show the explicit computation,
leaving the restrictions and ‘⊗1’ implicit:

ξk ˆ̂gkhξ
−1
h = gφ(k)ρ(k)gρ(k)ρ(h)gρ(h)φ(h) = ζφ(k)ρ(k)ρ(h)gφ(k)ρ(h)gρ(h)φ(h)

= ζφ(k)ρ(k)ρ(h)ζφ(k)ρ(h)φ(h)gφ(k)φ(h) = η̂khĝkh.

Projecting to the quotient in (6.17) and (6.18), we obtain the desired isomor-
phisms Φη̂(Ft) ' F ′t and Φη̂(Gt) ' G′t.
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Independence of V

Let us replace V by another good finite refinement W = {W1, . . . ,Wq} of U,
through a refinement function ψ : {1, . . . , q} → I, such that W̄k ⊂ Uψ(k) for
every k. We consider the common refinement formed by the corresponding
intersections, i.e. X := {Vi ∩Wj}(i,j)∈{1,...,m}×{1,...,q}. We have Vi ∩Wj ⊂ V̄i ∩
W̄j ⊂ Uφ(i) ∩ Uψ(j), hence X is a suitable refinement, through the function
φ′(i, j) := φ(i) or equivalently ψ′(i, j) := ψ(j).

The argument above shows that, in order to prove the independence of V, it
is not restrictive to choose another good finite refinement W = {W1, . . . ,Wq},
supposing that it is a refinement of V through ψ : {1, . . . , q} → {1, . . . ,m}. The
refinement function from U to W can be chosen to be η := φ ◦ ψ without loss

of generality. We set
ˆ̂
ζ := ψ∗ζ̂ = η∗ζ and we call

ˆ̂
Θη∗E the isomorphism (6.19)

with respect to the
ˆ̂
ζ-twisted bundle η∗E. In order to show that (6.20) does not

depend on V, we have to show that φ∗
−1 ◦ Θ̂φ∗E ◦ φ# = η∗

−1 ◦ ˆ̂
Θη∗E ◦ η#. This

follows from the commutativity of the following diagram, that we are going to
prove:

Γ̄(FP(E))

φ#

$$

η#

��

ΘE // K(f)
ζ

(X)

φ∗

zz

η∗

��

Γ̄(FP(φ∗E))

Θ̂ψ∗E //

ψ#

��

K
(f)

ζ̂
(X)

ψ∗

��
Γ̄(FP(η∗E))

ˆ̂
Θη∗E // K(f)

ˆ̂
ζ

(X).

The commutativity of the triangles is straightforward from the definitions of
φ∗ and φ#. Let us show that the rectangle commutes too. As above, we fix
[t] ∈ Γ̄(FP(φ∗E)), represented by the local functions tk : Vk → Fred(CN ⊗ H).

The latter satisfy the condition tk = ĝkhthĝ
−1
kh , where ĝkh := gφ(k)φ(h) ⊗ 1.

By construction, Θ̂ψ∗E [t] = Ft − Gt, where Ft and Gt are defined respectively
by (6.17) and (6.18) with respect to a suitable vector subspace V. We set
ˆ̂gkh := ĝψ(k)ψ(h)|Wkh

= gη(k)η(h)|Wkh
⊗1. The class ψ# [t] is represented by uk :=

tψ(k)|Wk
, hence the same vector subspace V is a suitable choice for ψ# [t] too. It

follows that
ˆ̂
Θη∗E(ψ# [t]) = F ′t−G′t, where F ′t and G′t are defined respectively by

(6.17) and (6.18), replacing Vk by Wk, tk by uk and the transition functions ḡkh
and ¯̄gkh by their restrictions to Wkh. This easily implies that F ′t = ψ∗(Ft) and

G′t = ψ∗(Gt), so that F ′t −G′t = ψ∗(Ft −Gt), i.e.
ˆ̂
Θη∗E ◦ ψ# [t] = ψ∗ ◦ Θ̂ψ∗E [t],

as required.
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Behaviour under direct sum

We consider two ζ-twisted bundles Ẽ1 and Ẽ2, each one endowed with a fixed
set of local trivializations,3 so that we can naturally represent them in the form
Ẽ1 := ({Ui×CN1}, {gij}) and Ẽ2 := ({Ui×CN2}, {hij}). We set E1 := Ẽ1⊗H
(as above) and E2 := Ẽ2 ⊗H. We fix any isomorphism ϕ : E1

'−→ E2, so that
the two representatives Γ̄(FP(E1)) and Γ̄(FP(E2)) of Kζ(X) are identified through

the isomorphism ϕ∗ : Γ̄(FP(E1))
'−→ Γ̄(FP(E2)), the latter being independent of

ϕ. Moreover, we set Ẽ3 := Ẽ1 ⊕ Ẽ2 and E3 := Ẽ3 ⊗H, thus E3 ' E1 ⊕E2. We
denote by ΘE1

, ΘE2
and ΘE3

the corresponding morphisms (6.20). It is easy to
verify that, given s1 ∈ Γ(FP(E1)) and s2 ∈ Γ(FP(E2)), we have

ΘE3
[s1 ⊕ s2] = ΘE1

[s1] + ΘE2
[s2], (6.23)

where

s1 ⊕ s2 =

[
s1 0
0 s2

]
∈ Γ(FP(E3)).

In fact, adapting in the straightforward way the notation of formulas (6.17)–
(6.21), if V1 and V2 are suitable subspaces for t1 and t2, then the intersection
V := V1 ∩ V2 is a common suitable choice. In this way, the bundles (6.17) and
(6.18), induced by [t1 ⊕ t2], split as Ft3 = Ft1 ⊕ Ft2 and Gt3 = Gt1 ⊕Gt2 , since
the transition functions split correspondingly, hence Θ̂φ∗E3 [t1 ⊕ t2] = (Ft1 ⊕
Ft2) − (Gt1 ⊕ Gt2) = Ft1 + Ft2 − Gt1 − Gt2 = Θ̂φ∗E1

[s1] + Θ̂φ∗E2
[s2]. Formula

(6.23) immediately follows.
Let us show that s1⊕s2 is homotopic to (s1·ϕ#s2)⊕1, where ϕ# : Γ(FP(E2))→

Γ(FP(E1)) is naturally induced by ϕ. In fact, we have the following homotopy:

t 7→
[
s1 0
0 1

] [
cos
(
π
2 t
)
1 − sin(π2 t

)
ϕ−1

sin(π2 t
)
ϕ cos(π2 t

)
1

] [
1 0
0 s2

] [
cos
(
π
2 t
)
1 − sin(π2 t

)
ϕ−1

sin(π2 t
)
ϕ cos(π2 t

)
1

]−1

.

It follows that ΘE3
[s1 ⊕ s2] = ΘE3

[(s1 · ϕ#s2) ⊕ 1], therefore formula (6.23)
implies

ΘE1
[s1] + ΘE2

[s2] = ΘE1
[s1 · ϕ#s2]. (6.24)

We applied the property ΘE(1) = 0 of the morphism (6.20), that easily follows
by observing that, in this case, we can choose V = H, so that both bundles
(6.17) and (6.18) vanish.4

Independence of Ẽ

We choose any two ζ-twisted bundles Ẽ1 := ({Ui × CN1}, {gij}) and Ẽ2 :=

({Ui × CN2}, {hij}), and we set E1 := Ẽ1 ⊗ H and E2 := Ẽ2 ⊗ H. The

3In particular, this includes the possibility of choosing the same bundle with two distinct
sets of local trivializations.

4We remark that the zero-bundle is ζ-twisted for every ζ, since the identity of rank 0
coincides with the zero-map, hence the multiplication by ζijk is immaterial.
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two corresponding representatives of K∞ζ (X) are identified through any iso-

morphism ϕ : E1
'−→ E2. In particular, [s2] ∈ Γ̄(FP(E2)) is identified with

[ϕ#s2] ∈ Γ̄(FP(E1)). Therefore, with the notation of section 6.2.1, in order to

prove that (6.20) does not depend on Ẽ, we have to show that ΘE2
= ΘE1

◦ϕ#.

Choosing s1 = 1 in formula (6.24), we get ΘE2 [s2] = ΘE1 [ϕ#s2] = ΘE1 ◦ϕ# [s2],
as required.

Multiplicativity (or additivity)

By choosing Ẽ1 = Ẽ2 = Ẽ (so that E1 = E2 = E) and ϕ = 1 in section 6.2.1,
formula (6.24) becomes ΘE [s1] + ΘE [s2] = ΘE [s1 · s2], as required.

6.2.2 Injectivity

Let us suppose that ΘE [s] = 0. Since, in definition (6.20), φ∗ is an isomorphism,
this is equivalent to Θ̂φ∗E [t] = 0, where t = φ#s, hence to Ft − Gt = 0. This

means that Ft = Gt as K-theory classes, i.e. there exists a ζ̂-twisted bundle P̂
such that Ft⊕P̂ ' Gt⊕P̂ . Since (6.15) is an isomorphism, there exists a unique
ζ-twisted bundle P̃ such that P̂ = φ∗P̃ . We set M := dim(H/V), where V is a
suitable choice for t, and we deduce from (6.17) that

Ft ' ({Vk × (H/V)⊕N}, {ḡkh}) ' ({Vk × (CN ⊗H/V)}, {gφ(k)φ(h) ⊗ 1})
' ({Vk × (CN ⊗ CM )}, {gφ(k)φ(h) ⊗ 1}) ' φ∗Ẽ ⊗ CM ,

where, in the last term, CM actually denotes the trivial bundle X×CM . Hence,
from Ft ⊕ P̂ ' Gt ⊕ P̂ we deduce5

Ft ⊕ P̂ ⊕
M times· · · ⊕ P̂ ' Gt ⊕ P̂ ⊕

M times· · · ⊕ P̂
Ft ⊕ (P̂ ⊗ CM ) ' Gt ⊕ (P̂ ⊗ CM ) (6.25)

φ∗(Ẽ ⊕ P̃ )⊗ CM ' Gt ⊕ φ∗(P̃ ⊗ CM ).

Now we replace Ẽ by Ẽ⊕ P̃ and s by ϕ#s, where ϕ : Ẽ⊗H '−→ (Ẽ⊕ P̃ )⊗H is
any isomorphism. It follows from section 6.2.1 that the corresponding class in
the finite-dimensional model does not change. Moreover, identifying (Ẽ⊕P̃ )⊗H
with (Ẽ⊗H)⊕ (P̃ ⊗H), the section ϕ#s is homotopic to s⊕ 1, as we will show
below, therefore we consider the latter. Summarizing, the two following choices
are equivalent:

I. Ẽ as the initial bundle and s ∈ Γ(FP(E)), where E := Ẽ ⊗H;

II. Ẽ ⊕ P̃ as the initial bundle and s⊕ 1 ∈ Γ(FP(E⊕P )), where P := P̃ ⊗H.

5It is not restrictive to suppose M ≥ 1, since, if M = 0, we can replace H = V by any
subspace of codimension 1.
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Moreover, if V is a suitable choice for s, then it is suitable for s ⊕ 1 too. In
this way, if Ft and Gt are the bundles (6.17) and (6.18) under choice I, then
the corresponding bundles under choice II are respectively Ft ⊕ (P̂ ⊗ CM ) and
Gt ⊕ (P̂ ⊗ CM ). In fact, under choice II, definition (6.17) becomes ({Vk ×
((H/V)⊕N⊕(H/V)⊕M )}, {ḡkh⊕p̄kh}) ' Ft⊕(P̂⊗CM ), where pkh are the transi-
tion functions of P̂ . Similarly, definition (6.18) becomes ({Vk× ((H⊕N/tk(V))⊕
(H/V)⊕M )}, {¯̄gkh ⊕ p̄kh}) ' Gt ⊕ (P̂ ⊗ CM ).

We set F̂t := Ft ⊕ (P̂ ⊗ CM ) and Ĝt := Gt ⊕ (P̂ ⊗ CM ). By (6.25), there

exists an isomorphism Φ: F̂t
'−→ Ĝt. Through Φ, we can construct a section

u ∈ Γ(FP(φ∗(E⊕P ))), such that ux is an invertible operator for every x, as follows.
For every x ∈ Vk and for every k, we split H⊕N+M ' V⊕N+M ⊕ (H/V)⊕N+M

in the domain and H⊕N+M ' (tk⊕1)x(V⊕N+M )⊕H⊕N+M/(tk⊕1)x(V⊕N+M )
in the codomain. We get the splitting φ∗(E ⊕ P ) ' F̂ ′t ⊕ F̂t in the domain

and φ∗(E ⊕ P ) ' Ĝ′t ⊕ Ĝt, where the ζ̂-twisted bundles F̂ ′t and Ĝ′t are defined
by restricting the transition functions (ghk ⊕ phk) ⊗ 1 of φ∗(E ⊕ P ) to the

corresponding subspaces ofH⊕N+M . We have the isomorphisms t⊕1: F̂ ′t
'−→ Ĝ′t

and Φ: F̂t
'−→ Ĝt, hence we get u := (t⊕ 1)|F̂ ′t ⊕Φ: φ∗(E ⊕P )

'−→ φ∗(E ⊕P ).

Let us construct a homotopy from t ⊕ 1 to u. We call τ ∈ I the variable
of the homotopy. First we construct a homotopy from t ⊕ 1 to (t ⊕ 1)|F̂ ′t ⊕ 0,

by setting τ 7→ (t ⊕ 1)|F̂ ′t + (1 − τ)(t ⊕ 1)|F̂t . Then, we construct a homotopy

from (t ⊕ 1)|F̂ ′t ⊕ 0 to u, by setting τ 7→ (t ⊕ 1)|F̂ ′t + τΦ. Since the space of

invertible operators is contractible, it follows that u is homotopic to 1, hence
t⊕1 ' u ' 1. By applying φ#, we deduce that s⊕1 is homotopic to 1, therefore
ϕ#s ' s⊕ 1 ' 1. By applying ϕ#, we conclude that s ' 1, as required.

It remains to show that ϕ#s ' s ⊕ 1, as stated in the paragraph after
formula (6.25). The choice of the isomorphism ϕ is immaterial, since, as we
have seen above, any two twisted-bundle isomorphisms induce projective-bundle
isomorphisms that belong to the same connected component. Hence, we choose

ϕ as follows. We fix a Hilbert-space isomorphism ψ : H '−→ H ⊕ H, inducing

ψ∗ : Fred(H)
'−→ Fred(H ⊕ H). We get 1 ⊗ ψ : Ẽ ⊗ H '−→ Ẽ ⊗ (H ⊕ H) '

(Ẽ⊕ Ẽ)⊗H. Afterwards, we choose any isomorphism η : Ẽ⊗H '−→ P̃ ⊗H and

we set ϕ := (1 ⊕ η) ◦ (1 ⊗ ψ) : Ẽ ⊗ H '−→ (Ẽ ⊕ P̃ ) ⊗ H. It is enough to prove
that (1 ⊗ ψ)#s ' s ⊕ 1, since (1 ⊕ η)#(s ⊕ 1) = 1#s ⊕ η#1 = s ⊕ 1. This is
equivalent to prove that (1 ⊗ ψ)#t ' t ⊕ 1, where t = φ∗s (we used the same
notation 1⊗ ψ for its pull-back on V). Let V ⊂ H be a suitable choice for t in
Ẽ ⊗H. We consider the following splittings:

• H ' V⊕V⊥, so that H⊕N ' (V⊕N )⊕(V⊕N )⊥, where (V⊕N )⊥ ' (V⊥)⊕N .
For every x ∈ Vk and every k, the operator (tk)x ⊕ 1, that we denote
by tk,x ⊕ 1: H⊕N ⊕ H⊕N → H⊕N ⊕ H⊕N , sends A := V⊕N ⊕ H⊕N
isomorphically to Bk,x := tk,x(V⊕N )⊕H⊕N , where A and Bk,x are closed
and finite-codimensional, and its kernel has trivial intersection with A.

• CN ⊗(H⊕H) ' (1⊗ψ)(CN ⊗V)⊕(1⊗ψ)(CN ⊗V⊥), that is equivalent to
H⊕2N ' ψ(V)⊕N ⊕ψ(V⊥)⊕N . For every x ∈ Vk and every k, the operator
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(1 ⊗ ψ)#(tk,x) : H⊕2N → H⊕2N sends A′ := ψ(V)⊕N isomorphically to
B′k,x := (1 ⊗ ψ)#(tk,x)(ψ(V)⊕N ). Since (1 ⊗ ψ)#(tk,x) = (1 ⊗ ψ) ◦ tk,x ◦
(1⊗ψ)−1 and ψ(V)⊕N = CN ⊗ψ(V ) = (1⊗ψ)(CN ⊗V) = (1⊗ψ)(V⊕N ),
it follows that B′k,x = (1 ⊗ ψ)(tk,x(V⊕N )). Again A′ and B′k,x are closed
and finite-codimensional, and the kernel of (1 ⊗ ψ)#(tk,x) has trivial in-
tersection with A′.

Hence, we have:

tk,x ⊕ 1: A⊕A⊥ → Bk,x ⊕ B⊥k,x
(1⊗ ψ)#(tk,x) : A′ ⊕A′⊥ → B′k,x ⊕ B′

⊥
k,x,

where:

A = V⊕N ⊕H⊕N Bk,x := tk,x(V⊕N )⊕H⊕N

A⊥ = (V⊥)⊕N ⊕ 0 B⊥k,x :=
(
tk,x(V⊕N )

)⊥ ⊕ 0

A′ = ψ(V)⊕N B′k,x = (1⊗ ψ)
(
tk,x(V⊕N )

)
A′⊥ = ψ(V⊥)⊕N B′⊥k,x = (1⊗ ψ)

(
(tk,x(V⊕N ))⊥

)
.

If we let k and x vary, we get

t⊕ 1: F̂ ′t ⊕ F̂t −→ Ĝ′t ⊕ Ĝt
(1⊗ ψ)#t : (1⊗ ψ)(F ′t )⊕ (1⊗ ψ)(Ft) −→ (1⊗ ψ)(G′t)⊕ (1⊗ ψ)(Gt).

We set t1 := t⊕ 1 and t2 := (1⊗ψ)#t. We have t1 = t1|F̂ ′t ⊕ t1|F̂t . Considering

the homotopy τ 7→ t1|F̂ ′t ⊕ τt1|F̂t , we see that t1 ' t1|F̂ ′t ⊕ 0. Similarly, t2 '
t2|(1⊗ψ)(F ′t )

⊕0. Therefore, it is enough to prove that t1|F̂ ′t ⊕0 ' t2|(1⊗ψ)(F ′t )
⊕0.

We can construct a section u1 of invertible operators from E ⊕E to E ⊕E,
such that u1(F̂ ′t ) = (1 ⊗ ψ)(F ′t ) and u1(F̂t) = (1 ⊗ ψ)(Ft). This means that,

fixing k and x, we require (u1)k,x(A) = A′ and (u1)k,x(A⊥) = A′⊥. For the
latter condition, it is enough to set (u1)k,x|A′ := 1 ⊗ ψ. About the former

condition, we fix an Hilbert-space isomorphism µ : V ⊕ H ≈−→ V, and we set
(u1)k,x|A := (1 ⊗ ψ) ◦ (1 ⊗ µ). Since the transition functions of F̂ ′t are of the
form gkh ⊗ 1: CN ⊗ (V ⊕ H) → CN ⊗ (V ⊕ H) and the ones of (1 ⊗ ψ)(F ′t )
are of the form gkh ⊗ 1: CN ⊗ ψ(V) → CN ⊗ ψ(V) ⊗ (V ⊕ H), the pointwise
local isomorphisms (u1)k,x glue to the section required section u1. Similarly,
we can construct a section u2 of invertible operators from E ⊕ E to E ⊕ E,
such that u2(Ĝ′t) = (1 ⊗ ψ)(G′t) and u2(Ĝt) = (1 ⊗ ψ)(Gt). This means that,

fixing k and x, we require (u2)k,x(Bk,x) = B′k,x and (u2)k,x(B⊥k,x) = B′⊥k,x. For
the latter condition, it is enough to set (u2)k,x|B⊥k,x := 1⊗ ψ. About the former

condition, we set (u2)k,x|Bk,x := (t2)k,x◦(u1)k,x◦(t1)−1
k,x. The compatibility with

the transition functions is guaranteed again by their form gkh⊗ 1 in B⊥k,x, while
it is automatic in Bk,x, since we composed three global sections. It easily follows
from the construction of u1 and u2 that t2|(1⊗ψ)(F ′t )

⊕ 0 = u2 ◦ (t1|F̂ ′t ⊕ 0) ◦ u−1
1 .

Since the space of bounded invertible operators is contractible, the sections u1

and u2 are homotopic to the identity, hence t2|(1⊗ψ)(F ′t )
' t1|F̂ ′t ⊕0, as required.
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6.2.3 Surjectivity

Let us fix a K-theory class F−G ∈ Kζ(X). We set F̂ := φ∗(F ) and Ĝ := φ∗(G),

so that F̂ −Ĝ = φ∗(F −G) ∈ Kζ̂(X). Now we construct the isomorphism (6.20)

starting from the bundle Ẽ := G, so that E = G ⊗ H. By choosing a set of
local trivializations, we represent G in the form G = ({Ui × CN}, {gij}), as
above. Fixing an orthonormal set {en}n∈N of H, we define the shift operator
T1 : H ↪→ H, en 7→ en+1. It is straightforward to verify that T1 is injective
and Coker(T1) ' 〈e0〉 ' C. We consider the section s := 1 ⊗ T1 ∈ Γ(FP(E)),
represented by si := 1 ⊗ T1. It follows that the section t := φ∗s is repre-
sented by tk = 1 ⊗ T1, hence each tk is injective. For this reason, we can
choose V = H, so that the corresponding bundle (6.17) vanishes. Moreover,
we have tk(V⊕N ) = tk(H⊕N ) = tk(CN ⊗ H) = CN ⊗ ImT1 ' (ImT1)⊕N ,
hence H⊕N/tk(V⊕N ) ' H⊕N/(ImT1)⊕N ' CN . The transition functions ¯̄gkh
of (6.18) are the projections to the quotient of gkh ⊗ 1, hence they act as the
pointwise N ×N matrices gkh on (H/ImT1)⊕N ' CN , therefore they coincide
with the functions ghk themselves. It follows that the bundle (6.18) is Ĝ, thus
Θ[s] = 0−G = −G.

Now we repeat the same construction about F , starting from Ẽ := F . We
get a section s′ ∈ Γ(FP(E′)), where E′ = F ⊗H, such that Θ[s′] = 0−F = −F .

We fix any isomorphism ϕ : E
'−→ E′ and we set s′′ := (ϕ∗s′)∗ · s ∈ Γ(FP(E)).

It follows that Θ[s′′] = −Θ[ϕ∗s′] + Θ[s] = −Θ[s′] + Θ[s] = F −G, as required.

6.2.4 Independence of the cocycle

Let us suppose that H2(X;Z) = 0. We have to prove that (6.22) is well-defined,
with [ζ] ∈ Ȟ2(X,U(1)) ' H3(X;Z).

Fixed cover

First we fix the cover U and we consider [ζ] ∈ Ȟ2(U,U(1)). We fix η ∈
Č1(U,U(1)) and we set ζ ′ := ζ · δ̌1η. We have to show that (6.21) is well-
behaved with respect to change of representative, i.e. that the following diagram
commutes:

K
(∞)
ζ (X)

Θ //

Φη

��

K
(f)
ζ (X)

Φη

��
K

(∞)
ζ′ (X)

Θ // K(f)
ζ′ (X).

(6.26)

This means that (6.20) makes the following diagram commutative:

Γ̄(FP(E))
ΘE // K(f)

ζ (X)

Φη

��
Γ̄(FP(Φη(E)))

ΘΦη(E) // K(f)
ζ′ (X),
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where Φη(E) ' Φη(Ẽ) ⊗ H, since E := Ẽ ⊗ H. The result follows from the
commutativity of the following diagram, that we are going to show:

Γ̄(FP(E))
ΘE //

φ#

&&

K
(f)
ζ

(X)

Φη

��

φ∗

zz
Γ̄(FP(φ∗E))

Θ̂φ∗E // K(f)

ζ̂
(X)

Φη̂

��
Γ̄(FP(φ∗Φη(E)))

Θ̂φ∗Φη(E) // K(f)

ζ̂′
(X)

Γ̄(FP(Φη(E)))

ΘΦη(E) //
φ#

88

K
(f)

ζ′
(X),

φ∗

dd

where η̂′ := φ∗η̂ and ζ̂ ′ := φ∗ζ̂, so that ζ̂ ′ = ζ̂ · δ̌1η̂. The “square” on the right
coincides with diagram (6.12), therefore we already know that it commutes.
Similarly, the “square” on the left follows from diagram (6.13) and definition
(6.16), therefore we already know that it commutes as well. It remains to
consider the central square. Since φ∗Φη(E) = Φη̂(φ∗E), in the upper line we

start from φ∗E = φ∗Ẽ ⊗ H and in the lower line we start from Φη̂(φ∗E) =

Φη̂(φ∗Ẽ) ⊗H. By definition, the transition functions of Φη̂(φ∗Ẽ) are the ones

of φ∗Ẽ multiplied by η̂, hence, if Ft and Gt are the bundles (6.17) and (6.18)
induced by φ∗Ẽ, then the ones induced by Φη̂(φ∗Ẽ) are respectively Φη̂(Ft) and
Φη̂(Gt), thus commutativity follows.

Cover refinement

If we take the direct limit with respect to the good cover, we have to verify the
compatibility with cover refinements. In particular, let us consider a refinement
U′ = {U ′α}α∈Λ of U = {Ui}i∈I , through a refinement function µ : Λ → I. We
fix ζ ∈ Ž2(U,U(1)) and we set ζ ′ := µ∗ζ. We have to verify that the following
diagram commutes:

K
(∞)
ζ (X)

Θ //

µ∗

��

K
(f)
ζ (X)

µ∗

��
K

(∞)
ζ′ (X)

Θ // K(f)
ζ′ (X).

(6.27)
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This means that, starting from a ζ-twisted bundle Ẽ as above, the following
diagram commutes:

Γ̄(FP(E))
ΘE //

µ#

��

K
(f)
ζ (X)

µ∗

��
Γ̄(FP(µ∗E))

Θµ∗E // K(f)
ζ′ (X).

We apply the construction of Θ starting from U′ and ζ ′. In particular, we
choose a refinement V = {V1, . . . , Vm} of U′ through φ : {1, . . . ,m} → Λ, such
that V̄k ⊂ U ′φ(k) for every k. It follows that V is a suitable refinement of U too

through µ◦φ, since V̄k ⊂ U ′φ(k) ⊂ Uµ(φ(k)). Hence, considering definition (6.20),
the result follows from the commutativity of the following diagram:

Γ̄(FP(E))
ΘE //

µ#

%%

φ#µ#

��

K
(f)
ζ

(X)

µ∗

zz

φ∗µ∗

��

Γ̄(FP(µ∗E))

Θµ∗E //

φ#

��

K
(f)

ζ′
(X)

φ∗

��
Γ̄(FP(φ∗µ∗E))

Θ̂φ∗µ∗E // K(f)

ζ′
(X).

Only the commutativity of the triangles has to be verified, and it is straightfor-
ward.

Refinement function

Finally, if we change the refinement function from µ to µ′, then, setting ζ ′′ :=
µ′
∗
ζ and ζ ′′ = ζ ′ · δ̌1ν, the following diagram commutes:

K
(f)
ζ

(X)

µ∗

zz

µ′∗

$$
K

(∞)
ζ

(X)

µ∗

zz

µ′∗

$$

Θ

33

K
(f)

ζ′
(X)

Φν // K(f)

ζ′′
(X)

K
(∞)

ζ′
(X)

Φν //

Θ
33

K
(∞)

ζ′′
(X).

Θ

33

In fact, the two triangles are instances of diagram (6.11), the rectangle at the
base is an instance of diagram (6.26) and the other two rectangles are instances
of diagram (6.27). It follows that (6.22) is well-defined.
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6.3 Models of differential twisted K-theory

Now we consider the differential extensions of the two models considered in the
previous section, and we explicitly show a natural isomorphism between them.
Again, we consider the groups of degree 0. We will consider the extension to
any degree in the last section.

6.3.1 Model through Schatten Grassmannians

We follow [13] to define the infinite-dimensional model of differential twisted
K-theory. We keep on denoting by H a separable infinite-dimensional Hilbert
space and we denote by B(H) the Banach algebra of bounded linear operators
in H. Moreover, given two such Hilbert spaces H1 and H2, for any p ∈ [1,+∞)
we denote by Lp(H1,H2) the corresponding p-Schatten class, i.e. the space of
compact linear operators A : H1 → H2 such that

‖A‖Lp :=
(

Tr
(
(A†A)

p
2

)) 1
p

<∞, (6.28)

the trace being the sum of the eigenvalues. We set Lp(H) := Lp(H,H).

Schatten Grassmannians.

We use the following notation:

• Ĥ := H⊕H;

• H+ := H⊕ 0 ' H;

• H− := 0⊕H ' H.

It follows that Ĥ is Z2-graded, the corresponding self-adjoint involution being
ε : Ĥ → Ĥ, defined by ε|H+

= 1 and ε|H− = −1. Equivalently, H± is the

corresponding ±1-eigenspace. More generally, given a closed subspace V ⊂ Ĥ,
we get the corresponding decomposition Ĥ = V ⊕ V⊥ and the corresponding
self-adjoint involution εV , defined by ε|V = 1 and ε|V⊥ = −1 (hence, ε = εH+).

Definition 6.3.1. The Grassmannian of Ĥ, that we denote by Gr(Ĥ), is the
subset of B(H) formed by self-adjoint involutions.

We get a natural bijection between the set of closed vector subspaces of Ĥ
and Gr(Ĥ), defined by V 7→ εV .

Definition 6.3.2. The space Grp(Ĥ, ε) is the subset of Gr(Ĥ) formed by the
self-adjoint involutions εV such that εV − ε ∈ Lp(Ĥ). Equivalently:

Grp(Ĥ, ε) := Gr(Ĥ) ∩
(
ε+ Lpsa(Ĥ)

)
,

where Lpsa(Ĥ) denotes the subspace of Lp(Ĥ) formed by the self-adjoint ele-
ments.
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Since Lp(Ĥ), with the norm (6.28), is a Banach space and Lpsa(Ĥ) is a real
vector subspace, the latter is trivially a Banach submanifold, hence the coset
ε + Lpsa(Ĥ) is a Banach manifold too (we remark that we are not considering
the topology induced by the embedding in Gr(Ĥ), the latter being embedded
in B(Ĥ), but the one induced by the Schatten norm).

Proposition 6.3.3. The space Grp(Ĥ, ε) is a Banach submanifold of ε+Lpsa(Ĥ)
and it is smoothly homotopically equivalent to Fred(H). In particular, its ho-
motopy type does not depend on p.

In order to construct a homotopy equivalence between Grp(Ĥ, ε) and Fred(H),
we consider the group GLp(Ĥ, ε), formed by bounded invertible operators on Ĥ
of the form:

A =

[
a b
c d

]
, b ∈ L2p(H−,H+), c ∈ L2p(H+,H−).

This definition implies that a ∈ Fred(H+). From now on we denote Grp(Ĥ, ε)
and GLp(Ĥ, ε) respectively by Grp and GLp, and we identify εV ∈ Grp with

V ⊂ Ĥ when necessary. We have a natural transitive action GLp×Grp → Grp,

(A,V) 7→ A(V). In particular, a closed subspace V ⊂ Ĥ belongs to Grp if and
only if there exists A ∈ GLp such that A(H+) = V. We have the following
natural maps, that turn out to be homotopy equivalences:

Fred(H)
ψ←− GLp

ϕ−→ Grp

a ← [ A =

[
a b
c d

]
7→ A(H+) =

{(
a(x), c(x)

)
: x ∈ H+

}
.

(6.29)
We have a natural action of PU(H) by conjugation on each of the previous
spaces, that we denote respectively by ρ : PU(H)→ C0(Fred(H)), ρ′′ : PU(H)→
C0(GLp) and ρ′ : PU(H)→ C0(Grp). In ρ′ and ρ′′ we are applying the diagonal

embedding PU(H) ↪→ PU(Ĥ). We get the three bundles

FP(E) := PP(E)×ρFred(H) F ′′P(E) := PP(E)×ρ′′GLp F ′P(E) := PP(E)×ρ′Grp.

It is straightforward to verify that the homotopy equivalences ϕ and ψ in (6.29)
commute with the actions of PU(H), therefore we get the induced maps:

FP(E)
ψ∗←− F ′′P(E)

ϕ∗−→ F ′P(E)

[p, ψ(A)] ← [ [p,A] 7→ [p, ϕ(A)].
(6.30)

As above, we denote by Γ(FP(E)) the space of sections of FP(E) and by Γ̄(FP(E))
the corresponding quotient up to homotopy of sections. We use the same
notation for F ′P(E) and F ′′P(E). By definition Kζ(X) := Γ̄(FP(E)) and we set

K ′ζ(X) := Γ̄(F ′P(E)). The maps (6.30) induces the corresponding maps between

sections, that are isomorphisms up to homotopy, since the maps (6.29) are ho-
motopy equivalences. We get the following canonical isomorphism:

θζ := ϕ∗ ◦ ψ−1
∗ : Kζ(X)

'−→ K ′ζ(X). (6.31)
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The group K ′ζ(X) turns out to be more suitable than Kζ(X) in order to define
the corresponding differential extension.

Natural connection on U(H).

Since PU(H) := U(H)/U(1), the projection π : U(H) → PU(H) naturally in-
duces a principal U(1)-bundle structure. A connection on this bundle is a suit-
able equivariant 1-form θ : TU(H)→ R, since R is the Lie algebra of U(1). Here
we have a canonical connection, defined as follows. From the exact sequence

0 // U(1)
i // U(H)

π // PU(H) // 0,

where i is the embedding of U(1) as the centre of U(H), we get the corresponding
one among the Lie algebras, i.e.

0 // R di1 // T1U(H)
dπ1 // T1PU(H) // 0.

We call p : T1U(H)→ R the orthogonal projection to the image of di1, composed
with di−1

1 . Such a map splits the previous sequence. In order to define the
connection θ, given A ∈ U(H) and V ∈ TAU(H), we set θA(V ) := 1

2π p◦dl
−1
A (V ),

where lA is the left multiplication by A in U(H).6 Fixing local trivializations
of π : U(H) → PU(H), we can represent the connection by local potentials Aθ
on PU(H), that are the pull-backs of θ through the trivializations. The same
can be done with respect to the curvature dθ, but, in this case, we get a global
integral 2-form Fθ on PU(H).

We recall some basic properties of θ that we are going to use. First of all,
given two functions f, g : Z → U(H), for any smooth manifold Z, we have

(fg)∗θ = f∗θ + g∗θ, (6.32)

where fg denotes the point-wise product. This can be proven by direct compu-
tation. Moreover, if ζ : Z → U(1), then, thinking of U(1) ⊂ U(H) as the centre,
we have:

ζ∗θ = 1
2πi ζ

−1dζ. (6.33)

Such a formula easily follows from the fact that θ, restricted to the centre,
coincides with the Maurier-Cartan 1-form of U(1). Moreover, for any 1-form
Λ: TZ → R, there exists h : Z → U(H) such that

h∗θ = Λ. (6.34)

In fact, since θ is the universal connection for line bundles and since Λ repre-
sents any connection ∇Λ on Z×C, we can find a homotopically-trivial function
h̄ : Z → PU(H), covering h′ : h̄∗U(H) → U(H), such that the connection ∇Λ

corresponds to (h′)∗θ. Choosing the trivialization s : Z → h̄∗U(H), inducing Λ
as the potential representing ∇Λ, we set h := h′ ◦ i and we get that h∗θ = Λ.

6The normalization constant 1
2π

has been inserted only to make some easy computations
more elegant.
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Realizing a Deligne cocycle.

Given a ζ-twisted Hilbert bundle E = ({Ei}, {ϕij}), let us fix a system of local
sections {sni : Ui → Ei}n∈N, that locally trivializes E (i.e. that trivializes each
Ei). Such sections determine a Deligne cocycle (ζ,Λ) ∈ Ž2(S1

X) as follows.
The first component is determined by E itself, that is ζ-twisted by definition.
Moreover, the fixed sections determine the corresponding transition functions
gij : Uij → U(H), therefore, from the universal connection θ on U(H), we set
Λij := g∗ijθ. It follows from (6.32) and (6.33) that (ζ,Λ) is a cocycle.

Let us show that any cocycle (ζ,Λ) can be reached in this way. In fact, we
already know that for any ζ there exists a ζ-twisted bundle E. Fixing ζ and
inducing any (ζ,Λ) through section {sni }, any other representative of the same
cohomology class is of the form (ζ,Λ) · Ď1(1, λ) = ({ζijk}, {Λij − λi + λj}). We
can replace the sections {sni } through any change of basis hi : Ui → U(H), so
that we get the transition functions g′ij := higijh

−1
j . We choose hi such that

h∗i θ = −λi, that is always possible, as we have shown in the remarks after
formula (6.34). It follows from (6.32) that (g′ij)

∗θ = Λij − λi + λj , as desired.

Differential twisted K-theory.

The spaces Grp and Fred(H) are Banach manifolds, smoothly homotopically
equivalent among each other. In particular, they are all homotopic to the
Hilbert manifold Gr2, therefore their de-Rham cohomology can be defined
through smooth differential forms, as in the finite-dimensional setting, and it
is canonically isomorphic to the real or complex singular one. On Grp, us-
ing Quillen superconnections, we can fix smooth even-degree differential forms
Φ2n ∈ Ω2n(Grp) such that Φev :=

∑∞
n=0 Φ2n represents the Chern character

of the canonical K-theory class, the latter being the class represented by the
identity.

Let us fix a ζ-twisted Hilbert bundle E = ({Ei}, {ϕij}) and a section ψ ∈
Γ(F ′P(E)). Given a Deligne cocycle (ζ,Λ, B), we fix a system of local sections

{sni : Ui → Ei}n∈N, inducing the cocycle (ζ,Λ) as we have seen above. Such
sections identify ψ with a family of local functions ψi : Ui → Grp, therefore we
get the local pull-backs ψ∗i Φev ∈ Ωev(Ui). This implies that the local sections
determine at the same time the local forms ψ∗i Φev and the local potentials Bi
up to a global form B̃, therefore it is not surprising that these two data glue to
the global form exp(Bi) ∧ ψ∗i Φev, that is dH -closed. This justifies the following
definition.

Definition 6.3.4. Given a Deligne 2-cocycle (ζ,Λ, B) on X, with curvature H,
we fix a ζ-twisted bundle E = ({Ei}, {ϕij}) and a set of local trivializations
{sni } inducing Λ as above. We define the group Ǩ(ζ,Λ,B)(X) as follows. An
element of this group is a homotopy class of pairs (ψ, η), where:

• ψ is a smooth section of F ′P(E);

• η ∈ Ωodd(X)/Im(dH);
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• a homotopy between (ψ, η) and (ψ′, η′) is a homotopy of sections Ψ: ψ ∼
ψ′ such that η − η′ ∼dH

∫
I

(
exp(Bi) ∧ Ψ∗iΦev

)
, where ‘∼dH ’ denotes that

they are equal up to a dH -exact form.7

We get the following functors:

• I : Ǩ(ζ,Λ,B)(X) → Kζ(X), [ψ, η] 7→ θ−1
ζ [ψ], where [ψ] ∈ K ′ζ(X) and θζ is

the isomorphism (6.31);

• R : Ǩ(ζ,Λ,B)(X)→ Ωev(X); [ψ, η] 7→ exp(Bi) ∧ ψ∗i Φev − dη;

• a : Ωodd(X)/Im(dH)→ Ǩ(ζ,Λ,B)(X), η 7→ [ψ, η]− [ψ, 0] for any section ψ.

Dependence on the cocycle.

Fixing a cocycle (ζ,Λ, B), we have to consider the dependence on the bundle E
and on the sections s.

I. Bundle. Given a triple (E, s,B) and another ζ-twisted bundle E′, we
set s′ := f∗s and we consider the triple (E′, s′, B). We fix an isomorphism

f : E → E′, inducing f̄ : P(E) → P(E′) and ¯̄f : FP(E) → FP(E′), and we get the
isomorphism:

f# : K(E,s,B)(X)→ K(E′,s′,B)(X)

[(ψ, η)] 7→ [( ¯̄f ◦ ψ, η)].
(6.35)

The reader can verify that it is well-defined, since, if Ψ: (ψ1, η1) ∼ (ψ2, η2),

then ¯̄f ◦ Ψ: ( ¯̄f ◦ ψ1, η1) ∼ ( ¯̄f ◦ ψ2, η2). For this reason, we can fix E up to
isomorphism.

II. Sections. If we consider two triples (E, s,B) and (E, s′, B), in general
there not exists an isomorphism sending s to s′ (this happens if and only if the
induced transition functions coincide, but the condition g∗ijθ = Λij does not fix
gij completely). In this case, we fix a base change {hi : Ui → U(H)} from s to
s′ and we set αi := h∗i θ. Calling g and g′ the transition functions induced by s
and s′ respectively, since g∗ijθ = g′

∗
ijθ = Λij and g′ij = higijh

−1
j , it follows that

h∗iα = h∗jα, hence the local forms αi glue to a global 1-form α on X. We get
the following isomorphism:

h : K(E,s,B)(X)→ K(E,s′,B)(X)

[(ψ, η)] 7→ [(ψ, η ∧ edα)].
(6.36)

The reader can verify that, if Ψ: (ψ1, η1) ∼ (ψ2, η2) with respect to s, then
Ψ: (ψ1, η1 ∧ edα) ∼ (ψ2, η2 ∧ edα) with respect to s′, hence h is well-defined.

If we change representative in the Deligne cohomology class [(ζ,Λ, B)], we
consider separately coboundaries of the form (η, 0) and of the form (1, λ).

7Of course we are identifying Bi and H with π∗Bi and π∗H, where π : X × I → X is the
natural projection. Moreover, Ψi comes from the obvious local trivialization of π∗E, induced
by the one of E.
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Action of (η, 1). We consider a triple (E, s,B), relative to (ζ,Λ, B). More-
over, we set (ζ ′,Λ′, B) := (ζ,Λ, B) · Ď1(η, 1) and we fix a ζ ′-twisted bundle
E′. We have that ζ ′ = ζ · δ̌1η and Λ′ = Λ + d̃η. We fix an isomorphism
f̄ : P(E) → P(E′) and we consider the triple (E′, s′, B), where s′ is any lift of
f̄∗s̄ such that g′

∗
ijθ = Λ′ij .

8

Action of (1, λ). We consider a triple (E, s,B), relative to (ζ,Λ, B). More-
over, we set (ζ,Λ′, B′) := (ζ,Λ, B) · Ď1(1, λ). We have that Ǩ(E,s,B)(X) =

Ǩ(E,s′,B′)(X), where s′ is such that the change of basis hi : Ui → U(H) from s
to s′ verifies h∗i θ = λi.

Global B-field variation. If we reply B by B+ B̃, where B is a global
form (even changing the cohomology class), then we have the isomorphism

[(ψ, η)] 7→ [(ψ, η ∧ eB̃ ].

8The transition functions ḡij are fixed, since f is an isomorphism, hence dΛ = dΛ′ is fixed,
since it is determined by ḡij . Any variation by an exact form can be reach by choosing a
suitable lift.
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