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1 Overview

The singular value decomposition (SVD) is a generalization of the

eigen-decomposition which can be used to analyze rectangular

matrices (the eigen-decomposition is defined only for squared ma-

trices). By analogy with the eigen-decomposition, which decom-

poses a matrix into two simple matrices, the main idea of the SVD

is to decompose a rectangular matrix into three simple matrices:

Two orthogonal matrices and one diagonal matrix.

Because it gives a least square estimate of a given matrix by

a lower rank matrix of same dimensions, the SVD is equivalent to

principal component analysis (PCA) and metric multidimensional
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scaling (MDS) and is therefore an essential tool for multivariate

analysis. The generalized SVD (GSVD) decomposes a rectangular

matrix and takes into account constraints imposed on the rows

and the columns of the matrix. The GSVD gives a weighted gener-

alized least square estimate of a given matrix by a lower rank ma-

trix and therefore, with an adequate choice of the constraints, the

GSVD implements all linear multivariate techniques (e.g., canoni-

cal correlation, linear discriminant analysis, correspondence analy-

sis, PLS-regression).

2 Definitions and notations

Recall that a positive semi-definite matrix can be obtained as the

product of a matrix by its transpose. This matrix is obviously square

and symmetric, but also (and this is less obvious) its eigenvalues

are all positive or null, and the eigenvectors corresponding to dif-

ferent eigenvalues are pairwise orthogonal. Let X be a positive

semi-definite, its eigen-decomposition is expressed as

X = UΛUT , (1)

with U being an orthonormal matrix (i.e., UTU = I) and Λ being a

diagonal matrix containing the eigenvalues of X.

The SVD uses the eigen-decomposition of a positive semi-definite

matrix in order to derive a similar decomposition applicable to all

rectangular matrices composed of real numbers. The idea here

is to decompose any matrix into three simple matrices, two or-

thonormal matrices and one diagonal matrix. When applied to a

positive semi-definite matrix, the SVD is equivalent to the eigen-

decomposition.

Formally, if A is a rectangular matrix, its SVD decomposes it as:

A = P∆QT , (2)

with:

• P: the (normalized) eigenvectors of the matrix AAT (i.e., PTP =

I). The columns of P are called the left singular vectors of A.
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• Q: the (normalized) eigenvectors of the matrix ATA (i.e., QTQ =

I). The columns of Q are called the right singular vectors of

A.

• ∆: the diagonal matrix of the singular values, ∆=Λ
1
2 with Λ

being the diagonal matrix of the eigenvalues of matrix AAT

and of the matrix ATA (they are the same).

The SVD is a consequence of the eigen-decomposition of a pos-

itive semi-definite matrix. This can be shown by considering the

eigen-decomposition of the two positive semi-definite matrices

that can be obtained from A: namely AAT and ATA. If we express

these matrices in terms of the SVD of A, we obtain the following

equations:

AAT
= P∆QTQ∆PT

= P∆2PT
= PΛPT , (3)

and

ATA = Q∆PTP∆QT
= Q∆

2QT
= QΛQT . (4)

This shows that ∆ is the square root of Λ, that P are the eigen-

vectors of AAT, and that Q are the eigenvectors of ATA.

For example, the matrix:

A =




1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774


 (5)

can be expressed as:

A = P∆QT

=




0.8165 0

−0.4082 −0.7071

−0.4082 0.7071




[
2 0

0 1

][
0.7071 0.7071

−0.7071 0.7071

]

=




1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774


 . (6)
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We can check that:

AAT
=




0.8165 0

−0.4082 −0.7071

−0.4082 0.7071




[
22 0

0 12

][
0.8165 −0.4082 −0.4082

0 −0.7071 0.7071

]

=




2.6667 −1.3333 −1.3333

−1.3333 1.1667 0.1667

−1.3333 0.1667 1.1667


 (7)

and that:

ATA =

[
0.7071 0.7071

−0.7071 0.7071

][
22 0

0 12

][
0.7071 −0.7071

0.7071 0.7071

]

=

[
2.5 −1.5

−1.5 2.5

]
. (8)

2.1 Technical note:

Agreement between signs

Singular vectors come in pairs made of one left and one right sin-

gular vectors corresponding to the same singular value. They cou-

ld be computed separately or as a pair. Equation 2 requires com-

puting the eigen-decomposition of two matrices. Rewriting this

equation shows that it is possible, in fact, to compute only one

eigen-decomposition. As an additional bonus, computing only

one eigen-decomposition prevents a problem which can arise wh-

en the singular vectors are obtained from two separate eigen-de-

compositions. This problem follows from the fact that the eigen-

vectors of a matrix are determined up to a multiplication by −1,

but that singular vectors being pairs of eigenvectors need to have

compatible parities. Therefore, when computed as eigenvectors, a

pair of singular vectors can fail to reconstruct the original matrix

because of this parity problem.

This problem is illustrated by the following example: The ma-
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trix

A =




1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774


 (9)

can be decomposed in two equivalent ways:

A = P∆QT

=




0.8165 0

−0.4083 −0.7071

−0.4083 0.7071




[
2 0

0 1

][
0.7071 0.7071

−0.7071 0.7071

]

=



−0.8165 0

0.4083 0.7071

0.4083 0.7071




[
2 0

0 1

][
−0.7071 −0.7071

0.7071 −0.7071

]

=




1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774


 . (10)

But when the parity of the singular vectors does not match, the

SVD will fail to reconstruct the original matrix as illustrated by

A 6=



−0.8165 0

0.4083 0.7071

0.4083 0.7071




[
2 0

0 1

][
0.7071 0.7071

−0.7071 0.7071

]

=




−1.1547 −1.1547

0.0774 1.0774

1.0774 0.0774


 . (11)

By computing only one matrix of singular vectors, we can rewrite

Equation 2 in a manner that expresses that one matrix of singular

vectors can be obtained from the other:

A = P∆QT
⇐⇒ P = AQ∆

−1 . (12)
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For example:

P = AQ∆
−1

=




1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774




[
0.7071 0.7071

−0.7071 0.7071

][1
2

0

0 1

]

=




0.8165 0

−0.4082 −0.7071

−0.4082 0.7071


 . (13)

3 Generalized singular value decomposition

For a given I × J matrix A, generalizing the singular value decom-

position, involves using two positive definite square matrices with

size I × I and J × J respectively. These two matrices express con-

straints imposed respectively on the rows and the columns of A.

Formally, if M is the I × I matrix expressing the constraints for the

rows of A and W the J × J matrix of the constraints for the columns

of A. The matrix A is now decomposed into:

A = Ũ∆̃ṼT with: ŨTMŨ = ṼTWṼ = I . (14)

In other words, the generalized singular vectors are orthogonal un-

der the constraints imposed by M and W.

This decomposition is obtained as a result of the standard sin-

gular value decomposition. We begin by defining the matrix Ã as:

Ã = M
1
2 AW

1
2 ⇐⇒ A = M−

1
2 ÃW−

1
2 . (15)

We then compute the standard singular value decomposition as Ã

as:

Ã = P∆QT with: PTP = QTQ = I . (16)

The matrices of the generalized eigenvectors are obtained as:

Ũ = M−
1
2 P and Ṽ = W−

1
2 Q . (17)
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The diagonal matrix of singular values is simply equal to the matrix

of singular values of Ã:

∆̃=∆ (18)

We verify that:

A = Ũ∆̃ṼT

by substitution:

A = M−
1
2 ÃW−

1
2

= M−
1
2 P∆QTW−

1
2

= Ũ∆ṼT (from Equation 17) . (19)

To show that Condition 14 holds, suffice to show that:

ŨTMŨ = PTM−
1
2 MM−

1
2 P = PTP = I (20)

and

ṼTWṼ = QTW−
1
2 WW−

1
2 Q = QTQ = I . (21)

4 Mathematical properties

It can be shown that (see, e.g., Strang, 2003; Abdi & Valentin 2006)

that the SVD has the important property of giving an optimal ap-

proximation of a matrix by another matrix of smaller rank. In par-

ticular, the SVD gives the best approximation, in a least square sense,

of any rectangular matrix by another rectangular of same dimen-

sions, but smaller rank.

Precisely, if A is an I×J matrix of rank L (i.e., A contains L singu-

lar values that are not zero), we denote by P[K ] (respectively Q[K ],

∆[K ]) the matrix made of the first K columns of P (respectively Q,
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∆):

P[K ] =
[
p1, . . . ,pk , . . . ,pK

]
(22)

Q[K ] =
[
q1, . . . ,qk , . . . ,qK

]
(23)

∆[K ] = diag {δ1, . . . ,δk , . . . ,δK } . (24)

The matrix A reconstructed from the first K eigenvectors is de-

noted A[K ]. It is obtained as:

A[K ] = P[K ]∆[K ]Q
T
[K ] =

K∑

k

δk pk qT
k , (25)

(with δk being the k-th singular value).

The reconstructed matrix A[K ] is said to be optimal (in a least

square sense) for matrices of rank K because it satisfies the follow-

ing condition:

∥∥A−A[K ]

∥∥2
= trace

{(
A−A[K ]

)(
A−A[K ]

)T}
= min

X
‖A−X‖2 (26)

for the set of matrices X of rank smaller or equal to K . The quality

of the reconstruction is given by the ratio of the first K eigenvalues

(i.e., the squared singular values) to the sum of all the eigenvalues.

This quantity is interpreted as the reconstructed proportion or the

explained variance, it corresponds to the inverse of the quantity

minimized by Equation 27. The quality of reconstruction can also

be interpreted as the squared coefficient of correlation (precisely

as the Rv coefficient, see entry) between the original matrix and its

approximation.

The GSVD minimizes an expression similar to Equation 27, na-

mely

A[K ] = min
X

[
trace

{
M (A−X)W (A−X)T

}]
, (27)

for the set of matrices X of rank smaller or equal to K .
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4.1 SVD and General linear model

It can be shown that the SVD of a rectangular matrix gives the PCA

of this matrix, with, for example, the factor scores being obtained

as F = P∆.

The adequate choice of matrices M and W makes the GSVD a

very versatile tool which can implement the set of methods of lin-

ear multivariate analysis. For example, correspondence analysis

(see entry) can be implemented by using a probability matrix (i.e.,

made of positive or null numbers whose sum is equal to 1) along

with two diagonal matrices M = Dr and W = Dc representing re-

spectively the relative frequencies of the rows and the columns of

the data matrix. The other multivariate techniques (e.g., discrim-

inant analysis, canonical correlation analysis, discriminant analy-

sis) can be implemented with the proper choice of the matrices M

and W (see, e.g., Greenacre, 1984).

5 An example of

singular value decomposition:

Image compression

Figure 1: The matrix of Equation 28 displayed as a picture.

The SVD of a matrix is equivalent to PCA. We illustrate this prop-

erty by showing how it can be used to perform image compression.

Modern technology use digitized pictures, which are equivalent to

a matrix giving the gray level value of each pixel. For example, the
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Figure 2: A picture corresponding to a matrix in the order of 204×

290 = 59610 pixels.

matrix:



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 0 2 2 2 0 2 2 2 0 2 2 2 1

1 0 2 0 0 2 0 2 0 0 2 0 0 2 0 2 1

1 0 2 0 0 2 0 2 0 0 2 0 0 2 0 2 1

1 0 2 0 0 2 2 2 0 0 2 0 0 2 2 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




(28)

corresponds to the image in Figure 1.

In general, pictures coming from natural images have rather

large dimensions. For example, the picture shown in Figure 2 cor-

responds to a matrix with 204 rows and 290 columns (therefore

204× 290 = 59610 pixels). To avoid the problem of transmitting

or storing the numerical values of such large images we want to

represent the image with fewer numerical values than the original

number of pixels.

Thus, one way of compressing an image is to compute the sin-

gular value decomposition and then to reconstruct the image by
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Figure 3: The picture in Figure 2 built back with 25 pairs of singular
vectors. (compression rate of ≈ 80%)

an approximation of smaller rank. This technique is illustrated

in Figures 4 and 5, which show respectively the terms pk qT

k
and

the terms
∑

pk qT

k
. As can be seen in Figure 4, the image is recon-

structed almost perfectly (according to the human eye) by a rank

25 approximation. This gives a compression ratio of:

1−
25× (1+204+290)

204×290
= 1− .2092 = .7908 ≈ 80% . (29)
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Figure 5: The terms pk qk used to reconstruct the image in Figure 2
(see Figure 4). The eigenvalues (squared singular values) associated
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