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ABSTRACT

Galois Groups of Schubert Problems. (August 2012)

Abraham Martin del Campo Sanchez, B.S.,Universidad Nacional Autónoma de

México;

M.S., Universidad Nacional Autónoma de México

Chair of Advisory Committee: Dr. Frank Sottile

The Galois group of a Schubert problem is a subtle invariant that encodes in-

trinsic structure of its set of solutions. These geometric invariants are difficult to

determine in general. However, based on a special position argument due to Schubert

and a combinatorial criterion due to Vakil, we show that the Galois group of any

Schubert problem involving lines in projective space contains the alternating group.

The result follows from a particular inequality of Schubert intersection numbers

which are Kostka numbers of two-rowed tableaux. In most cases, the inequality fol-

lows from a combinatorial injection. For the remaining cases, we use that these Kostka

numbers appear in the tensor product decomposition of sl2C-modules. Interpreting

the tensor product as the action of certain Toeplitz matrices and using spectral anal-

ysis, the inequality can be rewritten as an integral. We establish the inequality by

estimating this integral using only elementary Calculus.
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CHAPTER I

INTRODUCTION

Galois (monodromy) groups of problems from enumerative geometry were first treated

by Jordan in 1870 [8], who studied several classical problems with intrinsic structure,

showing that their Galois group was not the full symmetric group. The modern theory

began with Harris, who showed that the algebraic Galois group is equal to a geometric

monodromy group [6] and that many problems had Galois group the full symmetric

group. In general, we expect that the Galois group of an enumerative problem is the

full symmetric group and when it is not, then the geometric problem possesses some

intrinsic structure. For instance, the Cayley-Salmon theorem [4, 15] states that a

smooth cubic surface over an algebraic closed field contains 27 lines. These lines are

not general, as they satisfy certain incidence relations (e.g. there are nine triplets of

lines that meet in one point, there are six skew lines, and each line meets ten other

lines), which prevents the corresponding Galois group from being the full symmetric

group. In fact, Jordan [8] computed the Galois group of this problem and showed

that it was contained in the Weyl group W (E6), a subgroup of S27. The equality of

the Galois group with W (E6) was proven by Harris [6, §III.2].

The Schubert calculus of enumerative geometry [10] is a method to compute the

number of solutions to Schubert problems, which are a class of geometric problems in-

volving linear subspaces. The algorithms of Schubert calculus reduce the enumeration

to combinatorics. For example, the number of solutions to a Schubert problem involv-

ing lines is a Kostka number, which counts the number of tableaux for a rectangular

partition with two parts.

The journal model is SIAM Journal on Discrete Mathematics.



2

The prototypical Schubert problem is the classical problem of four lines, which

asks for the number of lines in space that meet four given lines. To answer this, note

that three general lines ℓ1, ℓ2, and ℓ3 lie on a unique doubly-ruled hyperboloid, shown

in Figure 1. These three lines lie in one ruling, while the second ruling consists of

ℓ1

ℓ2

ℓ3

ℓ4

m1

m2

�
�

�
�

�
�
�

p�
�

�
�

�
�
�3

Fig. 1. The two lines meeting four lines in space.

the lines meeting the given three lines. The fourth line ℓ4 meets the hyperboloid in

two points. Each point determines a line in the second ruling, giving two lines m1

and m2 which meet our four given lines. In terms of Kostka numbers, the problem

of four lines reduces to counting the number of tableaux of shape λ = (2, 2) with
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1 2

3 4

1 3

2 4

Fig. 2. The two tableaux corresponding to the problem of four lines.

content (1, 1, 1, 1). There exist only two such tableaux as illustrated in Figure 2.

When the field is the complex numbers, Harris’ result gives one approach to

studying the Galois group—by directly computing monodromy. For instance, the

Galois group of the problem of four lines is the group of permutations which are ob-

tained by following the solutions over loops in the space of lines ℓ1, ℓ2, ℓ3, ℓ4. Rotating

the line ℓ4 180◦ about the point p (shown in Figure 1) gives a loop which interchanges

the two solution lines m1 and m2, showing that the Galois group is the full symmetric

group on two letters.

Leykin and Sottile [11] followed this approach, using numerical homotopy contin-

uation [17] to compute monodromy for many simple Schubert problems, showing that

in each case the Galois group was the full symmetric group. (The problem of four

lines is simple.) Billey and Vakil [1] gave an algebraic approach based on elimination

theory to compute lower bounds on Galois groups. When the ground field is alge-

braically closed, Vakil [20] gave a combinatorial criterion, based on classical special

position arguments and group theory, which can be used recursively to show that a

Galois group contains the alternating group. With this criterion and his geometric

Littlewood-Richardson rule [19], he showed that the Galois group of every Schubert
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problem involving lines in projective space Pn for n < 16 contains the alternating

group. We tested Vakil’s criterion using his own methods, to find that if n < 40, then

every Schubert problem involving lines in projective space Pn has at least alternating

Galois group. Inspired by this evidence, we show that for any n, the Galois group of

any Schubert problem involving lines in Pn contains the alternating group. This is

Theorem 3.5 in § III.B, and it is the main result of this thesis. This result suggests

the absence of intrinsic structure in Schubert problems involving lines.

By Vakil’s criterion and a special position argument of Schubert, Theorem 3.5 re-

duces to a certain inequality among Kostka numbers of two-rowed tableaux. For most

cases, the inequality follows from a combinatorial injection of Young tableaux. For

the remaining cases, we work in the representation ring of sl2C, where these Kostka

numbers also occur. We interpret the tensor product by irreducible sl2C-modules in

terms of commuting Toeplitz matrices. Using the eigenvector decomposition of the

Toeplitz matrices, we express these Kostka numbers as certain trigonometric integrals.

In this way, the inequalities of Kostka numbers become inequalities of integrals, which

we establish by estimation.

In contrast with Theorem 3.5, we remark that Galois groups of Schubert problems

may not necessarily be full symmetric or alternating in general, in which case we

say that the Galois group is deficient. Derksen gave a Schubert problem in the

Grassmannian of 4-planes in 8-dimensional space whose Galois group is deficient [20,

§3.12]. In [14] a Schubert problem with a deficient Galois group was found in the

manifold of flags in 6-dimensional space. Both examples generalize to infinite families

of Schubert problems with deficient Galois groups. A more intringuing example is

given by Billey and Vakil [1, §7], where they conjecture that a Schubert problem,

again in the Grassmannian of 4-planes in 8-dimensional space, has the dihedral group

D4 of order 8 as its Galois group.
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CHAPTER II

BACKGROUND

We give an introduction to Schubert calculus based on [5, 7, 12], focusing on those

Schubert problems involving lines. We formally introduce their Galois groups, and

we explain Vakil’s combinatorial criterion to determine if these Galois groups contain

the alternating group.

A. Schubert Calculus

The Schubert calculus of enumerative geometry [16, 10] is a method to compute the

number of solutions to Schubert problems, which are a class of geometric problems

involving linear subspaces of a vector space that have specific positions with respect to

other fixed linear spaces. For instance, what are the 3-planes in C7 meeting 12 (gen-

eral) fixed 4-planes non-trivially? (There are 462 [16]). The solutions to a Schubert

problem are points in the set of k-dimensional linear spaces in Cn.

Definition 2.1. Let K be a field. The Grassmannian Gr(k, V ) is the set of all k-

dimensional linear subspaces of an n-dimensional K-vector space V . Equivalently, a

k-dimensional subspace of V is the same thing as a (k−1)-plane in the corresponding

projective space PV ; in this case we write G(k−1,PV ). When V is the vector space

Kn we just write Gr(k, n) and G(k−1, n−1).

For a vector space V with basis {v1, . . . , vn} and any positive integer k, we denote

by
∧k V the kth exterior power of V , which is generated by 〈vi1∧· · ·∧vik〉, and satisfies

vi1 ∧ · · · ∧ vij ∧ · · · ∧ vil ∧ · · · ∧ vik = −vi1 ∧ · · · ∧ vil ∧ · · · ∧ vij ∧ · · · ∧ vik .

In this way, we realize the Grassmannian as a projective variety as follows. LetW ⊂ V



6

be a linear subspace of dimension k with basis {w1, . . . , wk}, we define the Plücker

embedding Gr(k, V ) → P(
∧k V ), by sending W to the point K · (w1 ∧ · · · ∧wk). This

map is well-defined for if {u1, . . . , uk} is another basis for W , then w1 ∧ · · · ∧ wk =

det(A) · u1 ∧ · · · ∧ uk, where A is the matrix of change of basis.

Proposition 2.2. The Plücker map Gr(k, V ) → P(
∧k V ) is an embedding.

Proof. For w = w1∧· · ·∧wk define a map ψw : V −→ ∧k+1 V given by ψw(v) = v∧w.

Notice that the map ψw is linear and v ∧ w = 0 if and only if v ∈ W ; it follows that

W = ker(ψw). From this, we see the Plücker map is an embedding as follows. For

U ∈ Gr(k, V ) with basis {u1, . . . , uk}, let u = u1 ∧ · · · ∧ uk. If K · u = K · w, then

ker(ψu) = ker(ψw), which implies U = W .

Moreover, Gr(k, V ) is a closed subset of P(
∧k V ), as K · w ∈ P(

∧k V ) lies in

Gr(k, V ) if and only if rank(ψw) ≤ n−k, which is a polynomial condition in the co-

ordinates in P(
∧k V ) of w. Thus, the Grassmannian Gr(k, V ) is an algebraic variety.

We now consider a cover of Gr(k, V ) by Zariski open sets each isomorphic to the

affine space Kk(n−k). For this, let U ⊂ V be a fixed subspace of dimension n−k, and

set

UU = {W ∈ Gr(k, V ) | U ∩W = {0}}. (2.1)

If W ∈ Gr(k, V ) has basis {w1, . . . , wk}, we can extend this to a basis {w1, . . . , wn}

of V . Let U = 〈wk+1, . . . , wn〉, and notice that W ∈ UU . Therefore, we see that

Gr(k, V ) is covered by the union
⋃

U UU for all U ∈ Gr(n−k, V ). We would like to

show that this union is an affine open cover.

Proposition 2.3. Let U ⊂ V be a fixed subspace of dimension n−k. Then, the set

UU defined in (2.1) is open in Gr(k, V ) and UU
∼= K

k(n−k).

Proof. Suppose that {u1, . . . , un−k} is a basis for U and let u = u1 ∧ · · · ∧ un−k. We
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can view u as a linear form on P(
∧k V ) as follows. For w ∈ ∧k V define u(w) :=

u ∧ w ∈ ∧n V ∼= K. If W ⊂ Gr(k, V ) corresponds to w ∈ ∧k V , then u ∧ w 6= 0

if and only if U ∩W = {0}, if and only if U ⊕W = V . In other words, UU is the

complement of the zero set of u in Gr(k, V ), so UU is an open subset of Gr(k, V ).

To see that UU is affine, let W0 be a fixed complement to U , then we will show

that UU
∼= Hom(W0, U) ∼= Kk(n−k). For f ∈ Hom(W0, U) we associate to it its

graph Vf := {(x, f(x)) | x ∈ W0}, which is a subset of W0 ⊕ U = V , and thus, a

subspace of V . Notice that Vf ∩ U = 0 and if {w1, . . . , wk} is a basis for W0, then

{(w1, f(w1)), . . . , (wk, f(wk))} is an independent set in Vf , showing that dim Vf = k.

Also, given W ∈ Gr(k, V ) such that W ⊕U = V , we can see that W arises as a graph

of some f ∈ Hom(W0, U). For w ∈ W0, write w = x + y, with x ∈ W and y ∈ U .

Then, we define f(w) = −y, so x = w+ f(w). Thus, we can identify the set UU with

Hom(W0, U). Moreover, the identification UU
∼= Hom(W0, U) ∼= Kk(n−k) respects the

Zariski topology; therefore, UU
∼= Hom(W0, U) ∼= Kk(n−k).

Since Gr(k, V ) can be covered by dense open sets, each isomorphic to Kk(n−k),

an immediate consequence of Proposition 2.3 is the following.

Corollary 2.4. The dimension of the Grassmannian Gr(k, V ) is k(n−k).

In the Schubert Calculus, we are interested in describing the conditions for a k-

dimensional subspace in Kn to intersect a sequence of linear subspaces in a prescribed

way. The specified positions of the k-planes are in reference to flags in Kn.

Definition 2.5. A (complete) flag F• is a sequence of linear subspaces

F• : F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = K
n, where dimFi = i.

The possible positions in which a k-plane may sit with respect to a flag F• are

encoded by partitions.
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Definition 2.6. A partition λ is a weakly decreasing sequence of integers λ : (n−k) ≥

λ1 ≥ · · · ≥ λk ≥ 0. To a partition λ we associate a Young diagram, which consists of

a set of boxes, arranged in left-justified rows, having λi boxes in the i-th row, and we

define |λ| :=
∑k

i=1 λi.

Example 2.7. For n = 6 and k = 3, the sequence λ = (3, 2, 1) is a partition with

|λ| = 3+2+1 = 6. Its corresponding Young diagram is presented in Figure 3.

Fig. 3. Young diagram for the partition λ = (3, 2, 1).

Definition 2.8. Given a partition λ and a flag F•, we define the Schubert variety

ΩλF• of Gr(k, n), as

ΩλF• := {H ∈ Gr(k, n) | dimH ∩ Fn−k+i−λi
≥ i, i = 1, . . . , k}. (2.2)

A flag F• in V defines a flag E• in PV by letting Ei = PFi+1 for i = 1, . . . , n− 1.

When the Schubert variety Ωλ is considered as a subvariety of G(k − 1, n− 1), then

it consists of the (k−1)-planes H̃ in PV satisfying dim H̃ ∩ En−k+1+i−λi
≥ i for

i = 1, . . . , k−1. This is completely equivalent to (2.2).

Example 2.9. For the partition λ = (1, 0, . . . , 0) = , the corresponding Schubet

variety is Ω F• = {H ∈ Gr(k, n) | dimH ∩Fn−k}. In the space G(1, 3), the Schubert

variety Ω F• consists of the lines meeting a fixed line.
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Schubert varieties contain an important family of affine open subsets, which we

describe next.

Definition 2.10. Given a partition λ and a flag F•, we define the Schubert cell Ω◦
λF•

of Gr(k, n), as

Ω◦
λF• := {H ∈ Gr(k, n) | dimH∩Fj = i, if n−k+i−λi ≤ j ≤ n−k+i−λi+1}. (2.3)

Let {e1, . . . , en} be a basis for Kn, so that the flag F• is defined by letting Fi

be the span of en+1−i, en+2−i, . . . , en−1, en. Then, the Schubert cell Ω◦
λF• consists of

k-planes that are the row span of a reduced row echelon matrix













0 · · ·0 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
0 · · ·0 0 0 · · ·0 1 ∗ · · · ∗ 0 ∗ · · · ∗

...
...

. . .
... ∗ · · · ∗

0 · · ·0 0 0 · · ·0 0 0 · · · 0 1 ∗ · · · ∗













(2.4)

with a 1 in the ith row at column i+λk−i+1, where ∗ represents any number. Note

that if we let H to be the row span of the matrix (2.4) when |λ| = 0 (this is, when

λi = 0, for all i = 1, . . . , k), then the stars in (2.4) give local coordinates of the point

H ∈ Gr(k, n). By changing bases, these give coordinate charts on the Grassmannian,

giving it a manifold structure.

The Schubert variety ΩλF• is the closure of the Schubert cell Ω◦
λF•, thus Schubert

cells are dense open subsets.

Proposition 2.11. For a partition λ and a flag F•, the Schubert variety ΩλF• is an

algebraic subset of Gr(k, n) of codimension |λ|.

Proof. The condition of H ∩ Fn−k+i−λi
having dimension at least i can be expressed,

in terms of local coordinates, as the vanishing of the minors of order n+1−λi of a

matrix representation of the linear span 〈H, Fn−k+i−λi
〉. Since ΩλF• is defined by
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such incidence conditions, it is therefore an algebraic subvariety of Gr(k, n).

To see that the codimension of ΩλF• is |λ|, we consider the Schubert cell Ω◦
λF•,

which is a dense open set in ΩλF•. Since in (2.4), there are k2+|λ| specified entries

and the rest are completely free, we have a homeomorphism Ω◦
λF• ∼= K

k(n−k)−|λ|.

Definition 2.12. A Schubert problem is a list (λ1, . . . , λm) of partitions such that

|λ1| + · · ·+ |λm| = k(n−k).

For a Schubert problem (λ1, . . . , λm), let F 1
• , . . . , F

m
• be fixed flags in general

position and consider the intersection

Ωλ1F 1
• ∩ Ωλ2F 2

• ∩ · · · ∩ ΩλmFm
• . (2.5)

For fields of characteristic zero, Kleiman [9] showed that the intersection (2.5) is trans-

verse. For fields with positive characteristic, the transversality is due to Sottile [18]

when k = 2, and to Vakil [19] in general. Since the codimension of the intersec-

tion (2.5) is precisely the dimension of the Grassmannian (the ambient space), the

transversality implies that the intersection (2.5) consists of finitely many k-planes

(points in Gr(k, n)), as it is a zero-dimensional variety. The number of points in the

intersection (2.5) does not depend upon the choice of general F 1
• , . . . , F

m
• . We call this

number the Schubert intersection number d(λ1, . . . , λm), and we say it is the number

of solutions to the Schubert problem.

Example 2.13. From Example 2.9, the Schubert problem ( , , , ) in G(1, 3),

consists of the lines in P3 that meet four fixed lines. Therefore, d( , , , ) = 2

as explained in the introduction and illustrated in Figure 1.

Example 2.14. The Schubert problem ( , , , ) in Gr(4, 8) asks for the 4-

dimensional subspaces of C8 that meet four general 4-planes in a 2-dimensional sub-

space; in other words, if K1, K2, K3, K4 are four fixed 4-dimensional subspaces of C4,
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how many H ∈ Gr(4, 8) satisfy dimH ∩Ki = 2 for i = 1, . . . , 4? This problem has

six solutions, so d( , , , ) = 6. This is the first Schubert problem known where

the Galois group is not the full symmetric group S6, and it is due to Derksen, who

showed that the Galois group for this problem is in fact S4.

B. Schubert problems of lines in projective space

In this work, we are mainly interested in Schubert problems that involve lines in the

projective space Pn meeting other fixed linear subspaces.

From the discussion of the previous section, the Grassmannian G(1, n) of lines

in Pn is an algebraic manifold of dimension 2n−2. For this case, given a partition

λ = (λ1, λ2) and a flag F•, a Schubert variety is

ΩλF• = {ℓ ∈ G(1, n) | ℓ ∩ Fn−1−λ1 6= ∅ and ℓ ⊂ Fn−λ2}.

We simplify our notation by letting L := Fn−1−λ1 and Λ := Fn−λ2 ; these are the

relevant parts of the flag F• that meet a line ℓ in the Schubert variety Ωλ. Thus we

denote a flag by L ⊂ Λ ⊆ Pn. In this setting, we denote Schubert varieties of G(1, n)

by

Ω(L⊂Λ) := ΩλF• = {ℓ ∈ G(1, n) | ℓ ∩ L 6= ∅ and ℓ ⊂ Λ} . (2.6)

A Schubert problem on G(1, n) asks for the lines that meet a fixed, but general col-

lection of flags L1⊂Λ1, . . . , Lm⊂Λm. This set of lines is described by the intersection

of Schubert varieties

Ω(L1⊂Λ1) ∩ Ω(L2⊂Λ2) ∩ · · · ∩ Ω(Lm⊂Λm) . (2.7)

Schubert [16] gave a recursion for determining the number of solutions to a Schubert

problem in G(1, n), when there are finitely many solutions. The geometry behind his
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recursion is central to our proof, and we will present it in Chapter III.

Definition 2.15. When Λ = P
n, we may omit Λ and write ΩL := Ω(L⊂P

n), which

is a special Schubert variety.

Remark 2.16. Note that Ω(L⊂Λ) = ΩL, the latter considered as a subvariety of

G(1,Λ). Given L⊂Λ and L′⊂Λ′, if we set M := L∩Λ′ and M ′ := L′ ∩Λ, then a line

ℓ ∈ Ω(L⊂Λ) ∩ Ω(L′⊂Λ′) is contained in Λ ∩ Λ′ and it meets both M and M ′; thus,

Ω(L⊂Λ) ∩ Ω(L′⊂Λ′) = ΩM ∩ ΩM ′ ,

the latter intersection taking place in G(1,Λ ∩ Λ′).

Given a Schubert problem (2.7), if we set Λ := Λ1 ∩ · · · ∩ Λm and L′
i := Li ∩ Λ,

for each i = 1, . . . , m, then we may rewrite (2.7) as

ΩL′

1
∩ ΩL′

2
∩ · · · ∩ ΩL′

m
,

inside G(1,Λ). Thus, it will suffice to study intersections of special Schubert varieties.

Suppose that dimL = n−1−a, for some positive integer a. Then ΩL has codi-

mension a in G(1, n). If a• := (a1, . . . , am) is a list of positive integers such that

a1 + · · ·+ am = 2n−2 = dim G(1, n), then a• is a Schubert problem, so if we consider

general linear subspaces L1, . . . , Lm of Pn where dimLi = n−1−ai for i = 1, . . . , m,

then the intersection

ΩL1 ∩ ΩL2 ∩ · · · ∩ ΩLm
(2.8)

is transverse and therefore zero-dimensional. We call a• the type of the Schubert

intersection (2.8).

Remark 2.17. Given positive integers a• = (a1, . . . , am) whose sum is even, set

n(a•) := 1
2
(a1 + · · · + am + 2). Thus, we do not need to specify n. Henceforth, a
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Schubert problem in G(1, n) will be a list a• of positive integers with even sum. Since

we require that dimLi ≥ 0 for all i = 1, . . . , m, we must have ai ≤ n(a•)−1.

Definition 2.18. A Schubert problem a• in G(1, n) is valid if ai ≤ n(a•)−1 for all

i = 1, . . . , m.

For a Schubert problem a• in G(1, n), its intersection number d(a1, . . . , am) is a

Kostka number, which is the number of Young tableaux of shape (n(a•)−1, n(a•)−1)

and content (a1, . . . , am) [5, p.25]. These are arrays consisting of two rows of integers,

each of length n(a•)−1 such that the integers increase weakly across each row and

strictly down each column, and there are ai occurrences of i for each i = 1, . . . , m.

Let K(a•) be the set of such tableaux.

Example 2.19. As observed in Example 2.13, we have d( , , , ) = 2, as it

corresponds to the problem of four lines. The set K( , , , ) consists of the two

tableaux illustrated in Figure 2.

Example 2.20. Figure 4 displays the Young tableaux in K(2, 2, 1, 2, 3), showing that

d(2, 2, 1, 2, 3) = 5.

1 1 2 2 3

4 4 5 5 5

1 1 2 2 4

3 4 5 5 5

1 1 2 3 4

2 3 5 5 5

1 1 2 4 4

2 3 5 5 5

1 1 3 4 4

2 2 5 5 5

Fig. 4. The five Young tableaux in K(2, 2, 1, 2, 3).
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C. Reduced Schubert problems

A simple geometric argument shows that it suffices to consider only certain types of

Schubert problems.

Definition 2.21. A Schubert problem a• is reduced if ai+aj < n(a•) for any i < j.

We may assume that Schubert problems in G(1, n) are reduced.

Lemma 2.22. Every Schubert problem in G(1, n) may be recast as an equivalent

reduced Schubert problem.

Proof. Let a• = (a1, . . . , am) be a Schubert problem in G(1, n). If a• is not reduced,

we assume without loss of generality that a1+a2 ≥ n(a•) and set n := n(a•). Suppose

that L1, . . . , Lm ⊂ Pn are linear subspaces in general position with dimLi = n−1−ai

for i = 1, . . . , m. Since a1 + a2 > n−1, then

dimL1 + dimL2 = 2(n−1) − (a1+a2) < 2(n−1)−(n−1) = n−1;

as the subspaces L1 and L2 are in general position, they are disjoint and do not span

Pn. Every line ℓ in

ΩL1 ∩ ΩL2 = {ℓ ∈ G(1, n) | ℓ ∩ Li 6= ∅ for i = 1, 2}

is spanned by its intersections with L1 and L2. Thus ℓ lies in the linear span 〈L1, L2〉,

which is a proper linear subspace of Pn. Let Λ be a general hyperplane containing

〈L1, L2〉. If we set L′
i := Li ∩ Λ for i = 1, . . . , m, then a line ℓ that meets each Li

must lie in Λ, thus it must meet L′
i for i = 1, . . . , m. Therefore, we have

ΩL1 ∩ ΩL2 ∩ · · · ∩ ΩLm
= ΩL′

1
∩ ΩL′

2
∩ · · · ∩ ΩL′

m
, (2.9)



15

the latter intersection in G(1,Λ) ∼= G(1, n−1). For i = 1, 2, we have L′
i = Li and so

dimL′
i = n−1−ai = (n−1)−1−(ai−1) = dim Λ−1−(ai−1) ,

and if i > 2, then

dimL′
i = n−1−ai − 1 = (n−1)−1−ai = dim Λ−1−ai . (2.10)

Thus the righthand side of (2.9) is a Schubert problem of type ‘a′• := (a1−1, a2−1,

a3, . . . , am), and so we have

d(a1, . . . , am) = d(a1−1, a2−1, a3, . . . , am) .

Notice that a′1+a
′
2 = a1+a2 − 2 and n(a′•) = n(a•)− 1, so the difference a′1+a

′
2−n(a′•)

is strictly smaller than a1+a2−n(a•). The lemma follows by applying recursively this

procedure to a′• until we obtain a reduced Schubert problem.

We may also understand Lemma 2.22 combinatorially: the condition a1 + a2 ≥

n(a•) implies that the first column of every tableaux in K(a•) consists of a 1 on top

of a 2. Removing this column gives a tableaux in K(a′•), and this defines a bijection

between these two sets of tableaux. This is illustrated in the following example.

Example 2.23. For a• = (3, 3, 2, 2) let us consider K(3, 3, 2, 2), which is depicted in

Figure 5. Notice that n(3, 3, 2, 2) = 6, and that the first two entries satisfy a1+a2 >

n(a•)−1. Consider a′• = (a1−1, a2−1, a3, a4) = (2, 2, 2, 2). The set K(2, 2, 2, 2) is also

presented in Figure 5.

Since the first column of each tableaux in K(3, 3, 2, 2) consists of a 1 on top of a 2,

we give a bijection between K(3, 3, 2, 2) and K(2, 2, 2, 2), by erasing the first column

in each tableaux of K(3, 3, 2, 2).
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1 1 1 2 2

2 3 3 4 4

1 1 1 2 3

2 2 3 4 4

1 1 1 3 3

2 2 2 4 4

1 1 2 2

3 3 4 4

1 1 2 3

2 3 4 4

1 1 3 3

2 2 4 4

Fig. 5. The tableaux in K(3, 3, 2, 2) and K(2, 2, 2, 2).

D. Galois groups

Associated to a Schubert problem is its Galois group, which is a geometric invari-

ant that encodes intrinsic structure of the problem. Not much is known about

these geometric invariants for enumerative problems. However, based on his geomet-

ric Littlewood-Richardson rule [19] and a simple group theoretical argument, Ravi

Vakil [20] deduced a combinatorial criterion to determine when these Galois groups

contain the alternating group. We summarize Vakil’s presentation in [20, § 5.3]. We

start by recalling some algebraic geometry.

Given an irreducible variety X and an open set U ⊂ X, let OX(U) be the ring

of regular functions on U . Then OX(U) is an integral domain. A rational function

on X is an equivalence class of pairs (U, f), where U is a non-empty open set in X

and f ∈ OX(U). Two pairs (U, f) and (V, g) are equivalent if f = g in U ∩ V . The

function field K(X) is the field of rational functions. We can realize the field K(X)

also as the field of fractions of OX(U) for every open U .

Definition 2.24. A morphism f : W → X of irreducible algebraic varieties is called

dominant if the image of f is dense in X.



17

A dominant morphism f : W → X induces a morphism of function fields

K(X) → K(W ), because for every g ∈ K(X), there is a neighborhood U ∈ X

such that g ∈ OX(U). Since f is dense, the image of W is dense, thus the pre-image

f−1(U) is a non-empty open set in W . Therefore, define K(X) → K(W ) by f 7→ f ∗g,

where f ∗g := g ◦ f ∈ OW (f−1(U)) ⊂ K(W ). This map is well defined as the pullback

f ∗ sends different representatives of an element in K(X) to representatives of the

same element in K(W ).

Definition 2.25. A f : W → X is a dominant morphism is of degree d if the induced

morphism K(X) → K(W ) is a finite degree d field extension.

Suppose that π : W → X is a dominant morphism of degree d between irreducible

algebraic varieties of the same dimension defined over an algebraically closed field

K. We will assume here and throughout that π is generically separable in that the

corresponding extension π∗(K(X)) →֒ K(W ) of function fields is separable. In this

case, define the Galois group GalW→X of this map to be the Galois group of the Galois

closure of the field extension K(W )/π∗(K(X)). This is a subgroup of the symmetric

group Sd on d letters. We say that GalW→X is at least alternating if it is Sd or

its alternating subgroup. Vakil’s criterion addresses how GalW→X is affected by the

Galois group of a restriction of π : W → X to a subvariety Z ⊂ X.

Suppose that K is the field complex numbers C and x is a regular value of π.

Replacing W and X by Zariski open subsets if necessary, we can realize the map

π : W → X as a degree d covering. A loop in X based at x has d lifts to W ,

one for each point in the fiber π−1(x). Associating a point in the fiber π−1(x) to

the endpoint of the corresponding lift gives a permutation in Sd. This defines the

usual permutation action of the fundamental group of X on the fiber π−1(x). The

monodromy group of the map π : W → X is the group of permutations of π−1(X)
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which are obtained by lifting closed paths based at x that lie in the set of regular

values of π. Harris [6] showed that GalW→X equals the monodromy group.

A divisor is a formal linear combination of irreducible subvarieties of X of codi-

mension one. A divisor Z is Cartier if it is locally defined by a single equation (that

is locally around each point, each component of Z is the zero locus of a regular func-

tion). Given a Cartier divisor Z of X, we say that X is smooth along Z if each

irreducible component of Z meets the smooth locus of X.

The key point of considering Cartier divisors is that they pullback to Cartier

divisors under dominant maps: for a given a dominant morphism π : W → X of

degree d, the image of W does not lie on any Cartier divisor Z (as π(W ) is dense),

then we can define a Cartier divisor on W by the pullback of the defining equations

of Z.

Suppose that we have a fiber diagram

Y −֒−→ W

π
? ?

π

Z −֒−→ X

(2.11)

where Z →֒ X is the closed embedding of a Cartier divisor Z of X, X is smooth

in codimension one along Z, and π : Y → Z is a generically separable, dominant

morphism of degree d.

Theorem 2.26 (Vakil’s Criterion). Suppose that Y is either irreducible or has two

components, we have the following.

(a) If Y is irreducible and GalY →Z is at least alternating, then GalW→X is at least

alternating.

(b) If Y has two components, Y1 and Y2, each of which maps dominantly to Z of

respective degrees d1 and d2. If GalY1→Z and GalY2→Z are at least alternating,
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and if either d1 6= d2 or d1 = d2 = 1, then GalW→X is at least alternating.

Vakil’s Criterion follows by the following group-theoretic argument based on

Goursat’s Lemma, which we recall first.

Lemma 2.27 (Goursat’s Lemma). Let H ⊂ G1 × G2 be a subgroup such that the

projections H → Gi (i = 1, 2) are surjective. Then there are normal subgroups

Ni ⊳ Gi (i = 1, 2) and an isomorphism φ : G1/N1
∼−→ G2/N2 such that (g1, g2) ∈ H

if and only if φ(g1N1) = g2N2.

Proposition 2.28 (Proposition 5.7 in [20]). Let G be a transitive subgroup of Sa+b.

Suppose there is a subgroup H ⊂ G ∩ (Sa × Sb) such that the projection H → Si

(i=a,b) contains the alternating group Ai.

1. If a 6= b, then G contains the alternating group Aa+b.

2. If a = b = 1, then G = S2.

Sketch of the proof of Vakil’s criterion. We only give the proof when K = C, for the

general proof refer to [20, Remark 3.5]. In this case, we use Harris’ approach and

we realize GalW→X as the monodromy group. In Case (a), Y is irreducible and

π : Y → Z is a generically separable, dominant morphism of degree d. We obtain

the Galois group GalY →Z by lifting closed paths in the smooth locus of Z based

on a regular point x ∈ Z to a permutation of π−1(x) ⊂ Y . Since X is smooth in

codimension one along Z, closed paths in the smooth locus of Z at x are also paths in

the smooth locus ofX. This provides an inclusion GalY →Z →֒ GalW→X. In particular,

if the first group is at least alternating, so is the second.

In Case (b), Y has two components Y1 and Y2 that map dominantly to Z. Lifting

closed paths in the smooth locus of Z produces a subgroup H of GalY1→Z ×GalY2→Z ,

such that the projections GalYi→Z (for i = 1, 2) are surjective. The group H injects
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into GalW→X via the induced inclusion Sd1 × Sd2 →֒ Sd. Notice that W is connected

as it is irreducible. Therefore, GalW→X is transitive (any two points in the fiber of

a regular value x ∈ X are connected by a path, which is the lift of the loop coming

from the projection of the path to X). By Proposition 2.28, if GalYi→Z is at least

alternating (for i = 1, 2), so it is GalW→X.

Remark 2.29. This criterion applies to more general inclusions Z →֒ X of an irre-

ducible variety into X. All that is needed is that X is generically smooth along Z,

for then we may replace X by an affine open set meeting Z and there are subvarieties

Z = Z0 ⊂ Z1 ⊂ · · · ⊂ Zm = X with each inclusion Zi−1 ⊂ Zi that of a Cartier divisor

where Zi is smooth in codimension one along Zi−1.

Given a Schubert problem a•, let n := n(a•), and set

X := {(L1, . . . , Lm) | Li ⊂ P
n is a linear space of dimension n−1−ai} .

Consider the total space of the Schubert problem a•,

W := {(ℓ, L1, . . . , Lm) ∈ G(1,Pn) ×X | ℓ ∩ Li 6= ∅ , i = 1, . . . , m} .

Let p : W → G(1,Pn) be the projection to the first coordinate. The fiber over a point

ℓ ∈ G(1,Pn) is

p−1(ℓ) = Ωa1F• × Ωa2F• × · · · × Ωam
F• ,

where each Ωai
F• is a Schubert variety in G(n−1−ai) with respect to a flag F• such

that F1 = ℓ. Thus, p realizes W as a fiber bundle of G(1, n) with irreducible fibers.

As G(1, n) is irreducible, W is irreducible. Let π : W → X be the other projection.

Its fiber over a point (L1, . . . , Lm) ∈ X is

π−1(L1, L2, . . . , Lm) = ΩL1 ∩ ΩL2 ∩ · · · ∩ ΩLm
. (2.12)
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In this way, the map π : W → X contains all Schubert intersections of type (a1, . . . , am).

As the general Schubert problem is a transverse intersection containing d(a1, . . . , am)

points, π is generically separable, and it is a dominant (in fact surjective) map of

degree d(a1, . . . , am).

Definition 2.30. The Galois group Gal(a•) of the Schubert problem of type a• is

the Galois group of π : W → X, where W and X are as defined above.
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CHAPTER III

SCHUBERT’S DEGENERATION

We present the main result of this thesis which states that the Galois group of Schu-

bert problems involving lines is at least alternating. We explain how a special position

argument of Schubert [16] together with Vakil’s criterion reduces the proof of the main

result to establishing an inequality of Kostka numbers. In many cases, the inequality

follows from simple counting. The remaining cases are treated in Chapter IV. We

also give two infinite families of Schubert problems whose Galois groups are the full

symmetric group.

A. Schubert’s degeneration

Suppose that M1 and M2 are linear subspaces of Pn in general position such that

for i = 1, 2, we have dimMi = n−1−bi for some positive integers b1, b2. Note that

M1, M2 correspond to linear subspaces N1, N2 of Kn+1 of dimension n−b1 and n−b2
respectively. If we assume that dimN1+ dimN2 ≥ dim Kn+1, then n−b1 + n−b2 ≥

n+1, which is equivalent to assume b1+b2 ≤ n−1. In this case N1 and N2 linearly

span Kn+1. Equivalently, if b1+b2 ≤ n−1, then the linear span of M1 and M2 is Pn

We begin with a simple observation due to Schubert [16].

Lemma 3.1. Let b1, b2 be positive integers with b1 + b2 ≤ n−1, and suppose that

M1,M2 ⊂ Pn are linear subspaces with dimMi = n−1−bi for i = 1, 2. If M1 and M2

are in special position in that their linear span 〈M1,M2〉 is a hyperplane Λ, then

ΩM1 ∩ ΩM2 = ΩM1∩M2

⋃

Ω(M1⊂Λ) ∩ ΩM ′

2
, (3.1)

where M ′
2 is any linear subspace of dimension n−b2 of Pn with M ′

2 ∩ Λ = M2. Fur-
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thermore, the intersection ΩM1 ∩ΩM2 is generically transverse, (3.1) is its irreducible

decomposition, and the second intersection of Schubert varieties is also generically

transverse.

Proof. Let M1, M2 be in special position. First notice thatM1 ⊂ Λ implies M ′
2∩M1 =

M ′
2 ∩ (Λ∩M1) = M2 ∩M1. If ℓ meets both M1 and M2, then either it meets M1 ∩M2

or it lies in their linear span (as ℓ is spanned by its intersection with M1 and M2).

Hence ℓ ⊂ Λ and ℓ meets Λ ∩M ′
2 showing

ΩM1 ∩ ΩM2 ⊆ ΩM1∩M2

⋃

Ω(M1⊂Λ) ∩ ΩM ′

2
.

Let ℓ ∈ Ω(M1 ⊂ Λ)∩ΩM ′

2
. By definition Ω(M1 ⊂ Λ) = ΩM1 ∩Gr(1,Λ), thus ℓ ∈ ΩM1

and ℓ ⊂ Λ. Now suppose also that ℓ ∈ ΩM ′

2
, then ℓ meets both M ′

2 and Λ, thus

ℓ ∈ ΩM ′

2∩Λ = ΩM2 . Lastly, by definition ΩM1∩M2 ⊆ ΩM1 ∩ ΩM2 . For the proof of the

transversality statement we refer the reader to [18, Lemma 2.4].

Remark 3.2. Suppose that a• is a reduced Schubert problem. Set n := n(a•). Let

L1, . . . , Lm be linear subspaces with dimLi = n−ai−1 in Pn such that Lm−1 and Lm

span a hyperplane Λ, but otherwise L1, . . . , Lm are in general position. By Lemma 3.1

we have

ΩL1 ∩ · · · ∩ ΩLm
= ΩL1 ∩ · · · ∩ ΩLm−2 ∩ ΩLm−1∩Lm

⋃

ΩL1 ∩ · · · ∩ ΩLm−2 ∩ Ω(Lm−1⊂Λ) ∩ ΩL′

m
,

where L′
m ∩ Λ = Lm, and so L′

m has dimension n−am.

The first intersection has type (a1, . . . , am−2, am−1+am) and the second, once we

apply the reduction of Remark 2.16, has type (a1, . . . , am−2, am−1−1, am−1). This
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gives Schubert’s recursion for Kostka numbers

d(a1, . . . , am) = d(a1, . . . , am−2, am−1 + am) + d(a1, . . . , am−2, am−1−1, am−1) .

(3.2)

As a• is reduced, the two Schubert problems obtained are both valid. Observe

that this recursion holds even if a• is not reduced. The only modification in that case

is that the first term in (3.2) may be zero, for (a1, . . . , am−2, am−1 + am) may not be

valid (in this case, Lm−1 ∩ Lm = ∅).

We consider this recursion for d(2, 2, 1, 2, 3), illustrated in Figure 4. The first

tableau in Figure 4 has both 4s in its second row (along with its 5s), while the

remaining four tableaux have last column consisting of a 4 on top of a 5. If we

replace the 5s by 4s in the first tableau and erase the last column in the remaining

four tableaux, we obtain K(2, 2, 1, 5) and K(2, 2, 1, 1, 2), illustrated in Figure 6.

1 1 2 2 3

4 4 4 4 4

1 1 2 2

3 4 5 5

1 1 2 3

2 3 5 5

1 1 2 4

2 3 5 5

1 1 3 4

2 2 5 5

Fig. 6. The tableaux K(2, 2, 1, 5) and K(2, 2, 1, 1, 2)

This shows that d(2, 2, 1, 2, 3) = d(2, 2, 1, 5) + d(2, 2, 1, 1, 2).

In Section C, we use this recursion to prove the following lemma.

Lemma 3.3. Suppose that a• is a valid Schubert problem. Then d(a•) 6= 0 and m > 1.
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If m = 2 or m = 3, then d(a•) = 1. If m = 4, then

d(a•) = 1 + min{ai , n(a•)−1−aj | i, j = 1, . . . , 4} . (3.3)

There are no reduced Schubert problems with m < 4. If a• is reduced and m = 4, then

a1 = a2 = a3 = a4.

B. Galois groups are at least alternating

We state the main result of this thesis, and we use Vakil’s criterion and Schubert’s

degeneration to deduce the main result from a key combinatorial lemma. We start

by defining a rearrangement of a Schubert problem (a1, . . . , am) simply as a listing of

the integers (a1, . . . , am) in some order.

Lemma 3.4. Let a• be a reduced Schubert problem involving m ≥ 4 integers. Unless

a• = (1, 1, 1, 1), then there is a rearrangement (a1, . . . , am) such that

d(a1, . . . , am−2, am−1+am) 6= d(a1, . . . , am−2, am−1−1, am−1) , (3.4)

and both terms are nonzero. When a• = (1, 1, 1, 1), we have equality in (3.4) with

both terms equal to 1.

The proof of Lemma 3.4 will occupy most of the remainder of this thesis. We

use it to deduce our main theorem, which we now state.

Theorem 3.5. Let a• be a Schubert problem in G(1, n). Then Gal(a•) is at least

alternating.

Proof. We use a double induction on the dimension n of the ambient projective space

and the number m of conditions. The initial cases are when one of n or m is less

than four, for by Lemma 3.3, d(a1, . . . , am) ≤ 2 and the trivial subgroups of these
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small symmetric groups are alternating. Only in case a• = (1, 1, 1, 1) with n = 3 is

d(a•) = 2.

Given a non-reduced Schubert problem, the associated reduced Schubert prob-

lem is in a smaller-dimensional projective space, and so its Galois group is at least

alternating, by our induction hypothesis. We may therefore assume that (a1, . . . , am)

is a reduced Schubert problem, so that for 1 ≤ i < j ≤ m, we have ai + aj ≤ n−1,

where n := 1
2
(a1 + · · · + am + 2). Let π : W → X be as in Section II.D, so that the

fibers of π are intersections of Schubert problems (2.12). Define Z ⊂ X by

Z := {(L1, . . . , Lm) ∈ X | Lm−1, Lm do not span P
n} .

This subvariety is proper, for if Lm−1, Lm are general and am−1 + am ≤ n−1, they

span P
n. Moreover, X is smooth.

Let Y be the pullback of the map π : W → X along the inclusion Z →֒ X.

By Remark 3.2, Y has two components Y1 and Y2 corresponding to the two compo-

nents of (3.2). The first component Y1 is the total space of the Schubert problem

(a1, . . . , am−2, am−1+am), and so by induction GalY1→Z is at least alternating. For

the second component Y2 → Z, first replace Z by its dense open subset in which

Lm−1, Lm span a hyperplane Λ = 〈Lm−1, Lm〉. Observe that under the map from Z

to the space of hyperplanes in Pn given by

(L1, L2, . . . , Lm) 7−→ 〈Lm−1, Lm〉 ,

the fiber of Y2 → Z over a fixed hyperplane Λ is the total space of the Schubert

problem (a1, . . . , am−2, am−1−1, am−1) in G(1,Λ). Again, our inductive hypothesis

and Case (a) of Vakil’s criterion (as elucidated in Remark 2.29) implies that GalY2→Z

is at least alternating.

We conclude by an application of Vakil’s criterion that GalW→X is at least alter-
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nating, which proves Theorem 3.5.

C. Some Schubert intersection numbers

We prove Lemma 3.3 by showing that if a• is a valid Schubert problem, then d(a•) 6= 0,

and we also compute d(a•) for m ≤ 4. Observe that there are no valid Schubert

problems with m = 1.

1. m = 2

Valid Schubert problems when m = 2 necessarily have the form (a, a) with n(a•) =

a+1. The corresponding geometric problem asks for the lines meeting two general

linear spaces of dimension n−a−1 = 0, that is, the lines meeting two general points.

Thus d(a, a) = 1.

2. m = 3

Let (a, b, c) be a valid Schubert problem; thus, a ≤ 1
2
(a+b+c), which implies that

a ≤ b+c. We may assume that a < b+c so that d(a, b, c) = d(a, b−1, c−1) by (2.10).

Iterating this will lead to a Schubert problem with m = 2, and so we see that

d(a, b, c) = 1.

3. m = 4

Suppose that (a1, a2, a3, a4) is a valid Schubert problem, and suppose that a1 ≤ a2 ≤

a3 ≤ a4. If it is reduced, then we have

a3 + a4 ≤ 1

2
(a1 + a2 + a3 + a4) ≤ a3 + a4 ,
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which implies that the four numbers are equal, say to a. Write a• = (a4) in this case.

By (3.2),

d(a4) = d(a, a, 2a) + d(a, a, a−1, a−1) = 1 + d((a−1)4) ,

as d(a, a, 2a) = 1 and d(a, a, a−1, a−1) = d((a−1)4), by (2.10). Since d(14) = 2, as

this is the problem of four lines, we have inductively shown that d(a4) = a+1, which

proves (3.3) when a• is reduced.

Now suppose that a• is not reduced, and set

α(a•) := min{ai | i = 1, . . . , 4} , and

β(a•) := min{n(a•)−1−ai | i = 1, . . . , 4} .

Since a• is not reduced and a1 ≤ a2 ≤ a3 ≤ a4, we have a1 + a2 < n(a•) < a3 + a4

and (2.10) gives

d(a•) = d(a1, a2, a3−1, a4−1) .

Set a′• := (a1, a2, a3−1, a4−1). We prove (3.3) by showing that

min{α(a•), β(a•)} = min{α(a′•), β(a′•)} . (3.5)

Note that n(a′•) = n(a•)−1. Since a1 ≤ a3, we have α(a′•) = α(a•) = a1

unless a1 = a3, in which case a• = (a, a, a, a+2γ) for some γ ≥ 1. Thus a′• =

(a−1, a, a, a+2γ−1), and so α(a′•) = α(a•)−1. But then β(a′•) = β(a•) = a−γ ≤

α(a′•), which proves (3.5) when α(a′•) 6= α(a•).

Since a2 ≤ a4, we have β(a′•) = β(a•) = n(a•)−1−a4, unless a2 = a4, in which

case a• = (a, a+2γ, a+2γ, a+2γ) for some γ ≥ 1. Therefore a′• = (a, a+2γ−1,

a+2γ−1, a+2γ), and so β(a′•) = β(a•)−1. But then α(a′•) = α(a•) = a, which

proves (3.5) when β(a′•) 6= β(a•).
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D. Some Schubert problems with symmetric Galois group

While Theorem 3.5 asserts that all Schubert problems involving lines have at least

alternating Galois group, we conjecture that these Galois groups are always the full

symmetric group. We present some evidence for this conjecture.

The first computation of a Galois group of a Schubert problem that we know

of was for the problem a• = (16) in G(1, 4) where K(a•) = 5. Byrnes and Stevens

showed that Gal(a•) is the full symmetric group [3] and [2, §5.3]. In [11] problems

a• = (12n−2) for n = 5, . . . , 9 were shown to have Galois group the full symmetric

group. Both demonstrations used numerical methods.

We describe two infinite families of Schubert problems, each of which has the full

symmetric group as Galois group. Both are generalizations of the problem of four

lines.

1. Lines that meet four (a−1)-planes in P2a−1

In [18, §8.1], the Schubert problem ((a−1)4) in G(1, 2a−1) was studied and solved.

We use its equivalent description in the Grassmannian Gr(2, 2a) of two-dimensional

linear subspaces of a 2a-dimensional space, V (which is identical to G(1, 2a−1)). It

involves the 2-planes meeting four general a-dimensional linear subspaces in V . If the

a-dimensional subspaces are H1, . . . , H4, then any two are in direct sum, as they are

in general position. It follows that H3 and H4 are the graphs of linear isomorphisms

ϕ3, ϕ4 : H1 → H2.

If we set ψ := ϕ−1
4 ◦ ϕ3, then ψ ∈ GL(H1). Note that for any vector v ∈ H1, the

linear span 〈v, φ3(v)〉 is a 2-plane in V that meets H1, H2, and H3. However, if v is an

eigenvector of ψ, then ψ(v) = c · v for some c ∈ K. Thus, φ−1
4 ◦ φ3(v) = c · v, which is

equivalent to φ3(v) = φ4(c · v) = c · φ4(v). Therefore, ϕ3(v) and ϕ4(v) span the same
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line in H2. Thus the span 〈v, φ3(v)〉 equals the span 〈v, φ4(v)〉. Therefore, 〈v, φ3(v)〉

meets H4. The condition that these four planes are generic is that ψ has distinct

eigenvalues and therefore exactly a eigenvectors v1, . . . , va ∈ H1, up to a scalar. Then

the solutions to the Schubert problem are given by the linear span 〈vi, ϕ3(vi)〉 for each

i = 1, . . . , a. Every element ψ ∈ GL(H1) with distinct eigenvalues may occur, which

implies that the Galois group is the full symmetric group.

2. Lines that meet a fixed line and n (n−2)-planes in Pn

We exhibit another infinite family of Schubert problems with full symmetric Galois

group. The solutions of these problems were described in [18, §8.2] in terms of rational

normal scrolls, which we recall next. Let Λ1, . . . ,Λn−r+1 be n−r+1 general (n−2)-

planes in Pn. For every i = 1, . . . , n−t+1, let {Γi(p)}p∈P1 be the pencil of hyperplanes

that contain Λi The (n−2)-planes are in general position if for every p ∈ P1, the

hyperplanes Γi(p), for 1 ≤ i ≤ n−r, intersect in an r-dimensional plane. The union

S1,n−2 :=
⋃

p∈P1

Γi(p) ∩ · · · ∩ Γn−r(p). (3.6)

is a rational normal scroll, which is an irreducible determinantal varieties [7, §9].

We now present another family of Schubert problems with full symmetric Galois

group. These are given by the problem a• = (1n, n−2) in G(1,Pn), which looks for

the lines meeting a fixed line ℓ and n planes of dimension (n−2) in Pn. Fixing the

line ℓ and all but one (n− 2)-plane, the lines they meet form a rational normal scroll

S1,n−2 (taking r = 1 and p ∈ ℓ in (3.6)), parametrized by their intersections with

ℓ. A general (n−2)-plane will meet the scroll in n−1 points, each of which gives a

solution to the Schubert problem. These points correspond to n−1 points of ℓ, and

thus to a homogeneous degree n−1 form on ℓ. The main consequence of [18, §8.2] is
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that every such form can arise, which shows this Schubert problem has Galois group

the full symmetric group.

E. Inequality of Lemma 3.4 in most cases

We give a combinatorial injection of sets of Young tableaux to establish Lemma 3.4,

when we have ai 6= aj for some i, j.

Lemma 3.6. Suppose that b1, . . . , bm, α, β, γ is a reduced Schubert problem where

α ≤ β ≤ γ with α < γ. Then

d(b1, . . . , bm, α, β + γ) < d(b1, . . . , bm, γ, β + α) . (3.7)

To see that this implies Lemma 3.4 in the case when ai 6= aj , for some i, j, we ap-

ply Schubert’s recursion to to obtain two different expressions for d(b1, . . . , bm, α, β, γ),

d(b1, . . . , bm, α, β+γ) + d(b1, . . . , bm, α, β−1, γ−1)

= d(b1, . . . , bm, γ, β + α) + d(b1, . . . , bm, γ, β−1, α−1) .

By the inequality (3.7), at least one of these expressions involves unequal terms. Since

all four terms are from valid Schubert problems, none is zero, and so this implies

Lemma 3.4 when not all ai are identical.

Example 3.7. We illustrate Lemma 3.6 and motivate the ideas behind its proof.

Consider the reduced Schubert problem (2, 2, 2, 1, 2, 3). In this case, α = 1, β = 2,

and γ = 3. We verify that d(2, 2, 2, 1, 5) < d(2, 2, 2, 2, 4) by noting that K(2, 2, 2, 1, 5)

contains only three tableaux, as illustrated in Figure 7, whereas K(2, 2, 2, 2, 4) consists

of six tableaux, as shown in Figure 8. As in the proof Lemma 3.6, we give a

combinatorial injection ι : K(2, 2, 2, 1, 5) →֒ K(2, 2, 2, 2, 4). If we replace the first
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1 1 2 2 3 3

4 5 5 5 5 5

1 1 2 2 3 4

3 5 5 5 5 5

1 1 2 3 3 4

2 5 5 5 5 5

Fig. 7. The tableaux K(2, 2, 2, 1, 5)

1 1 2 2 3 3

4 4 5 5 5 5

1 1 2 2 3 4

3 4 5 5 5 5

1 1 2 3 3 4

2 4 5 5 5 5

1 1 2 2 4 4

3 3 5 5 5 5

1 1 2 3 4 4

2 3 5 5 5 5

1 1 3 3 4 4

2 2 5 5 5 5

Fig. 8. The tableaux K(2, 2, 2, 2, 4)

5 (marked in red in Figure 7) in each tableaux of K(2, 2, 2, 1, 5) by a 4, we obtain

the first three tableaux of K(2, 2, 2, 2, 4) in Figure 8. Similarly, replacing the last 4

in the second row (marked in red in Figure 8) by a 5 in the first three tableaux of

K(2, 2, 2, 2, 4), we obtain all the tableaux of K(2, 2, 2, 1, 5).

We bring the ideas presented in the previous example into a proof of Lemma 3.6.
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Proof of Lemma 3.6. We establish the inequality (3.7) via a combinatorial injection

ι : K(b1, . . . , bm, α, β + γ) −֒→ K(b1, . . . , bm, γ, β + α) ,

which is not surjective.

Let T be a tableau in K(b1, . . . , bm, α, β + γ) and let A be its sub-tableau con-

sisting of the entries 1, . . . , m. Then the skew tableau T \A has a bloc of (m+1)’s of

length a at the end of its first row and its second row consists of α−a many (m+1)’s

followed by a bloc of (m+2)’s of length β+γ. Form the tableau ι(T ) by changing the

last row of T \A to a bloc of (m+1)’s of length γ−a followed by β+α many (m+2)’s.

This is illustrated in Figure 9. Since a ≤ α < γ, this map is well-defined.

T =
a

α−a β+γ
A 7−→ a

γ−a β+α
A = ι(T ) .

Fig. 9. The map ι

To show that ι is not surjective, set b• := (b1, . . . , bm, γ−α−1, β−1), which is a

valid Schubert problem. Hence d(b•) 6= 0 and K(b•) 6= ∅. For any T ∈ K(b•), we may

add α+1 columns to its end consisting of a m+1 above a m+2 to obtain a tableau

T ′ ∈ K(b1, . . . , bm, γ, β+α). As T ′ has more than α many (m+1)’s in its first row, it

is not in the image of the injection ι, which completes the proof of the lemma.
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CHAPTER IV

THE INEQUALITY IN THE REMAINING CASES

We prove Lemma 3.4 in the remaining case when a1 = · · · = am = a. Our method

will be to first recast Kostka numbers as certain integrals, converting the inequality

of Lemma 3.4 into the non-vanishing of an integral, which we establish by induction.

A. Representations of sl2C

Kostka numbers of two-rowed tableaux appear as the coefficients in the decomposition

of the tensor products of irreducible sl2C-modules. The Lie algebra sl2C consists

of the complex 2×2-matrices whose trace is zero, with the Lie bracket defined by

[x, y] := xy−yx. The elements

e =







0 1

0 0






, h =







1 0

0 −1






, f =







0 0

1 0







generate sl2C as a vector space. These elements have the following relation with

respect to the Lie bracket [e, f ] = h, [h, f ] = −2f, [h, e] = 2e. Similarly, if V is

a finite-dimensional vector space over C, the general Lie algebra gl(V ) consists of all

the linear maps from V to V endowed with the Lie bracket [x, y] = x ◦ y − y ◦ x.

Definition 4.1. A sl2C-representation is a pair (V, ρ) where ρ : sl2C → gl(V ) is a

linear map that preserves the Lie bracket.

For any vector space V , the trivial representation is the pair (V, ρ) with ρ = 0

the zero map. For a finite-dimensional sl2C-representation (V, ρV ) (not necessarily

irreducible), we regard V as a module by setting x · v := ρV (x)v for all x ∈ sl2C.

Consider the basis element h of sl2C. Let v be an eigenvector of ρV (h) with
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eigenvalue a. We define the weight space

Va := {v ∈ V | h · v = av}.

In this case, v is a weight vector, and a its weight. Moreover, for the other basis

elements e, f and any v ∈ Va we have

(a) e · v = 0 or e · v is an eigenvector of h with eigenvalue a+2.

(b) f · v = 0 or f · v is an eigenvector of h with eigenvalue a−2.

Proposition 4.2. Let V be a finite-dimensional sl2C-module, then there exists an

eigenvector v ∈ V such that e · v = 0.

Proof. Since C is algebraically closed, ρV (h) has at least one eigenvalue and hence

at least one eigenvector w with eigenvalue a. If non-zero, the vector ek · w (for k =

1, 2, . . .) is an eigenvector for ρV (h) with eigenvalue a+2k. Therefore, the sequence

w, e · w, e2 · w, . . . is an infinite sequence of linearly independent eigenvectors in V .

However V is finite-dimensional, so these cannot all be non-zero, hence there exists

a k ≥ 0 such that ek · w 6= 0 and ek+1 · w = 0. Set v = ek · w, so from the relation

[h, e] = he− eh = 2e we have

h · v = h(ek · w) = he · ek−1 · w = (eh + 2e) · ek−1 · w

= e(h+ 2) · ek−1 · w = e(he+ 2e) · ek−2 · w

= · · · = ek(h+ 2k) · w = (a+ 2k)ek · w = (a+2k)v.

Thus v is an eigenvalue satisfying e · v = 0.

Definition 4.3. Let V be a finite-dimensional sl2C-module. A highest weight is a

weight a for which its weight space satisfies Va 6= {0} but Va+2 = {0}. A highest

weight vector is a weight vector v with weight the highest weight.
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A finite-dimensional irreducible sl2C-module is determined by its highest weight:

if v is a maximal vector of an irreducible module V with highest weight a, then

v, f · v, f 2 · v, · · · , fa · v form a basis for V . Weyl’s complete reducibility theorem

states that every finite-dimensional sl2C-module can be written as a direct sum of

irreducible modules, thus it is parametrized by its highest weights.

Knowing the weight decompositions of given representations tells us the weight

decomposition of all their tensor products. The Clebsch-Gordan formula describes the

tensor product of irreducible sl2C-modules. If Va and Vb are irreducible sl2C-modules

with highest weights a and b respectively, then the Clebsch-Gordan formula is

Va ⊗ Vb = Vb+a ⊕ Vb+a−2 ⊕ · · · ⊕ V|b−a|. (4.1)

B. Kostka numbers as integrals

Let Va be the irreducible module of sl2C with highest weight a, for a = 0, 1, 2, . . . . Ac-

cording to Young’s rule [5, Corollary 1, p.92] for a Schubert problem a• = (a1, . . . , am),

the Kostka number K(a•) appears as the multiplicity of the trivial sl2C-module V0

in the tensor product Va1 ⊗ · · · ⊗ Vam
.

The representation ring R of sl2C is the free abelian group on the isomorphism

classes [Va] of irreducible modules, modulo the relations [Va]+ [Vb]− [Va⊕Vb]. Setting

[Va]·[Vb] := [Va⊗Vb] equips R with the structure of a ring with unit [V0]. Multiplication

by [Va] is a linear operator Ma on R,

Ma([Vb]) := [Va] · [Vb] = [Vb+a]+[Vb+a−2] + · · ·+ [V|b−a|] , (4.2)

by the Clebsch-Gordan formula (4.1). In the basis {[Va]}, the operator Ma is repre-

sented by an infinite Toeplitz matrix with entries 0 and 1 given by the formula (4.2).
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For instance,

M2 =

































0 0 1 0 0 0 0

0 1 0 1 0 0 0

1 0 1 0 1 0 0 · · ·

0 1 0 1 0 1 0

0 0 1 0 1 0 1

...
. . .

































, M3 =

































0 0 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 1 0 1 0 1 0 0 · · ·

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

...
. . .

































.

Since R is a commutative ring, the operators {Ma | a ≥ 0} commute. If we extend

scalars to RC := R ⊗Z C, then the {Ma} are a system of commuting operators on a

complex vector space. We describe their system of joint eigenvectors and eigenvalues.

Proposition-Definition 4.4. For each 0 ≤ θ ≤ π and integer a ≥ 0, set

v(θ) := (sin θ, sin 2θ, . . . , sin (j+1)θ, . . .)⊤ =
∑

j

sin (j+1)θ [Vj ] ,

λa(θ) :=
sin (a+1)θ

sin θ
.

Then v(θ) is an eigenvector of Ma with eigenvalue λa(θ).

Proof. Let us compute Ma(v(θ)), which is

(

sin (a+1)θ , . . .

j
∑

i=0

sin (a+1−j+2i)θ , . . . ,

a
∑

i=0

sin (k+1−a+2i)θ , . . .
)⊤

,

where the sum with upper index j is the coefficient of [Vj ] in Ma(v(θ)) for 0 ≤ j ≤ a,

and the sum involving k+1−a+2i is the coefficient of [Vk] for k ≥ a.

Recall that sinα sin β = 1
2
(cos (α− β)− cos (α + β). Thus if c > 0 and b ≥ 0, we
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have

sin θ ·
b

∑

i=0

sin (c+2i)θ =
1

2

b
∑

i=1

(

cos (c−1+2i)θ − cos (c+1+2i)θ
)

=
1

2
(cos (c−1)θ − cos (c+2b+1)θ) = sin (b+1)θ sin (c+b)θ .

Using this, we see that sin θMav(θ) equals

(sin θ sin (a+1)θ , . . . , , sin (j+1)θ sin (a+1)θ , . . . , sin (a+1)θ sin (k+1)θ , . . . )⊤ ,

which completes the proof of the proposition.

Recall that for b, c > 0 we have

∫ π

0

sin bθ sin cθ dθ =











0 if b 6= c

π/2 if b = c
.

This computation shows that our system of eigenvectors is complete.

Proposition 4.5. For any a = 0, 1, 2, . . . , we have

[Va] =
2

π

∫ π

0

sin (a+1)θ v(θ) dθ .

We express the Kostka numbers as integrals.

Theorem 4.6. For any a ≥ 1, we have

Ma([V0]) =
2

π

∫ π

0

λa(θ) sin θ v(θ) dθ .

Let a• = (a1, . . . , am) be any valid Schubert problem. Then

d(a•) =
2

π

∫ π

0

(

m
∏

i=1

λai
(θ)

)

sin2 θ dθ . (4.3)

Proof. The first part of the theorem follows from Proposition 4.5, as Ma(v(θ)) =

λa(θ)·v(θ). Note thatMa([V0]) = [Va], thus for the second part we use that the Kostka
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number d(a•) appears as the coefficient of [V0] in the product [Va1 ⊗ Va2 ⊗ · · · ⊗ Vam
],

which is equivalent to find the coefficient of [V0] in the following composition

Ma1 ◦Ma2 ◦ · · · ◦Mam
([V0]) =

2

π

∫ π

0

(

m
∏

i=1

λai
(θ)

)

sin θ v(θ) dθ .

The equality (4.3) follows from Proposition-Definition 4.4, as the coefficient of [V0] in

v(θ) is sin θ.

Example 4.7. In Example 2.13 we saw that the problem of 4 lines a• = ( , , , )

has Kostka number d( , , , ) = 2. Theorem 4.6 rewrites this number as

d( , , , ) =
2

π

∫ π

0

λ1(θ)
4 sin2 θ dθ =

2

π

∫ π

0

sin4 2θ

sin2 θ
dθ

=
32

π

∫ π

0

sin2 θ cos4 θ dθ =
32

π

∫ π

0

(cos4 θ − cos6 θ) dθ = 2.

C. Inequality of Lemma 3.4 when a• = (am)

We complete the proof of Theorem 3.5 by establishing the inequality of Lemma 3.4

for Schubert problems not covered by Lemma 3.6. For these, every condition is the

same, so a• = (a, . . . , a) = (am).

If a = 1, then we may use the hook-length formula [5, §4.3]. If µ+b = 2c is even,

then the Kostka number d(1µ, b) is the number of Young tableaux of shape (c, c−b),

which is

d(1µ, b) =
µ!(b+1)

(c−b)!(c+1)!

When m = 2c is even, the inequality of Lemma 3.4 is that d(12c−2) 6= K(12c−2, 2).

We compute

d(12c−2) =
(2c− 2)!(1)

c!(c+ 1)!
and d(12c−2, 2) =

(2c− 2)!(3)

(c− 2)!(c+ 1)!
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and so

d(12c−2, 2)/K(12c−2) = 3
c!(c+1)!

(c−2)!(c+1)!
= 3

c−1

c+1
6= 1 , (4.4)

when c > 2, but when c = 2 both Kostka numbers are 1, which proves the inequality

of Lemma 3.4, when each ai = 1.

We now suppose that a• = (aµ+2) where a > 1 and µ · a is even. (We write

m = µ + 2 to reduce notational clutter.) The case a = 2 is different because in the

inequality (3.4), we will show that

d(2µ, 4) − d(2µ, 1, 1) 6= 0 ,

and the left-hand side is negative for µ ≤ 13 and otherwise positive. This is shown

in Table I.

Lemma 4.8. For all µ ≥ 2, we have d(2µ, 4) 6= d(2µ, 1, 1), and both terms are

nonzero. If µ < 14 then d(2µ, 4) < d(2µ, 1, 1) and if µ ≥ 14, then d(2µ, 4) > d(2µ, 1, 1).

The remaining cases a ≥ 3 have a uniform behaviour.

Lemma 4.9. For a ≥ 3 and for all µ ≥ 2 with a · µ even we have

d(aµ, 2a) < d(aµ, (a−1)2) . (4.5)

We establish Lemma 4.8 in Subsection D and Lemma 4.9 when µ ≥ 4 in Subsec-

tion E. Now, we compute d(aµ, (a−1)2) for µ = 3 and a is even.

Lemma 4.10. For a = 2b with b ≥ 1 we have

d(a3, (a−1)2) =
(5b2 + 3b)

2
. (4.6)
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Table I. The inequality (3.4) for the case a• = (2µ+2)

µ d(2µ, 4) d(2µ, 1, 1) Difference

2 1 2 −1

3 2 4 −2

4 6 9 −3

5 15 21 −6

6 40 51 −11

7 105 127 −22

8 280 323 −43

9 750 835 −85

10 2025 2188 −163

11 5500 5798 −298

12 15026 15511 −485

13 41262 41835 −573

14 113841 113634 207

15 315420 310572 4848

16 877320 853467 23853

17 2448816 2356779 92037

18 6857307 6536382 320925

19 19259046 18199284 1059762

20 54237210 50852019 3385191
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Proof. We apply Schubert’s recursion (3.2) to write

d(a3, (a−1)2) = d(a3, 2(a−1)) + d(a3, (a−2)2)

= d(a3, 2(a−1)) + d(a3, 2(a−2)) + d(a3, (a−3)2)

= · · · =
a

∑

j=1

d(a3, 2(a−j)).

Note that n(a3, 2(a−j)) = n((2b)3, 2(2b−j)) = 5b−j+1 for j = 1, . . . , a. We use

Lemma 3.3 to compute d(a3, 2(a−j)) by computing

min{a, 2(a− 2j), n(a•)−1−a, n(a•)−1−2(a−j)} for j = 1, . . . , a.

This is equivalent to compute

min{2b, 2(2b−j), 3b−j, b+j} for j = 1, . . . , 2b. (4.7)

When 1 ≤ j ≤ b, then the following inequalities hold 2b ≥ b+j, 4b−2j ≥ b+j, and

3b−j ≥ b+j; therefore, the minimum in (4.7) is b+j. When b ≤ j ≤ 2b, in particular

j ≥ b; which implies 2b ≥ 4b−2j, 3b−j ≥ 4b−2j, and b+j ≥ 4b−2j. Thus, the

minimum in (4.7) is 4b−2j. Replacing j by i = j − b, we get 4b−2j = 2(b−i) for

0 ≤ i ≤ b. Therefore, by Lemma (3.3)

a
∑

j=1

d(a3, 2(a−j)) =
b

∑

j=1

d(a3, 2(a−j)) +
2b

∑

j=b+1

d(a3, 2(a−j))

=

b
∑

j=1

(b+j+1) +

b
∑

i=1

(2(b−i) + 1)

=

[

b(b+1) +
b(b+1)

2

]

+
[

2b2−b(b+1) + b
]

= (b+1)

(

3b

2

)

+ b2 =
(5b2 + 3b)

2
.
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Corollary 4.11. For a even and µ = 3 we have

d(a3, 2a) < d(a3, (a−1)2). (4.8)

Proof. Let a = 2b for some b ≥ 1. Notice that for a• = (a3, 2a), we have n(a•) = 5b+1,

so d(a3, 2a) = 1+ b by Lemma 3.3. On the other hand, d(a3, (a−1)2) = 1
2
(5b2+3b) by

Lemma 4.10. The inequality (4.8) follows as b ≥ 1 implies 2(b+1) < (5b2+3b).

Lemma 4.12. For a even and µ = 2 we have

d(a2, 2a) < d(a2, (a−1)2). (4.9)

Proof. From Lemma 3.3, we have d(a2, 2a) = 1 and d(a2, (a−1)2) = a.

Proof of Lemma 3.4 when a• = (am). We established the case when a = 1 by di-

rect computation in (4.4). Lemma 4.8 covers the case when a = 2 as µ = m−2.

The case m ≤ 4 follows from Lemma 3.3, as for this case d(am, 2a) = 1 and ei-

ther d(am, (a−1)2) = 1 or d(am, (a−1)2) = a. The remaining cases are covered by

Lemma 4.12, Corollary 4.11 and Lemma 4.9. This completes the proof of Lemma 3.4

and of Theorem 3.5.

D. Proof of Lemma 4.8

By the computations in Table I, we only need to show that d(2µ, 4) − d(2µ, 1, 1) > 0

for µ ≥ 14. Using (4.3), we have

d(2µ, 4) − d(2µ, 1, 1) =
2

π

∫ π

0

λ2(θ)
µ
(

λ4(θ) − λ1(θ)
2
)

sin2 θ) dθ

=
2

π

∫ π

0

λ2(θ)
µ
(

sin 5θ sin θ − sin2 2θ
)

dθ .
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The integrand f(θ) of the last integral is symmetric about θ = π/2 in that f(θ) =

f(π − θ). Thus it suffices to prove that if µ ≥ 14, then

∫ π/2

0

λ2(θ)
µ(sin 5θ sin θ − sin2 2θ) dθ > 0 . (4.10)

To simplify our notation, set F2(θ) := sin 5θ sin θ − sin2 2θ. We graph the functions

F2(θ) and λ2(θ), and the integrand in (4.10) for µ = 8 in Figure 10.

π
2

π
4

−3
2

−1

−1
2

1
2

1

F2

π
2

π
3

−1

1

2

3

λ2

π
2

π
4

−150

−100

−50

50

λ8
2F2

Fig. 10. The functions F2, λ2, and λ8
2F2.

We have
∫ π

2

0

λµ
2F2 ≥

∫ π
3

0

λµ
2F2 −

∫ π
2

π
3

∣

∣λµ
2F2

∣

∣ .
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We prove Lemma 4.8 by showing that for m ≥ 14, we have

∫ π
3

0

λµ
2F2 >

∫ π
2

π
3

∣

∣λµ
2F2

∣

∣ . (4.11)

We estimate the right-hand side. On [π
3
, π

2
]. the function λ2 is decreasing and negative,

so |λ2| ≤ |λ2(
π
2
)| = 1. Similarly, the function F2 increases from −3/2 at π

3
to 1 at π

2
.

Thus
∫ π

2

π
3

∣

∣λµ
2F2

∣

∣ ≤
∫ π

2

π
3

3

2
=

π

4
.

It is therefore enough to show that

∫ π
3

0

λµ
2F2 >

π

4
, (4.12)

for µ ≥ 14. This inequality holds for µ = 14, as

∫ π
3

0

λ14
2 F2 =

1062882

17017

√
3 + 69π .

Suppose now that the inequality(4.12) holds for some µ ≥ 14. As F2 is positive

on [0, π
12

] and negative on [ π
12
, π

3
], this is equivalent to

∫ π
12

0

λµ
2F2 > −

∫ π
3

π
12

λµ
2F2 +

π

4
,

and both integrals are positive.

For θ ∈ [0, π
12

], F2(θ) ≥ 0 and λ2(θ) ≥ λ2(
π
12

) = 1 +
√

3 as λ2 is decreasing on

[0, π
2
]. Thus

∫ π
12

0

λm+1
2 F2 ≥

∫ π
12

0

(

1+
√

3
)

· λm
2 F2 . (4.13)

Similarly, for θ ∈ [ π
12
, π

3
], F2(θ) ≤ 0 and 1+

√
3 ≥ λ2(θ) ≥ 0, so

−
∫ π

3

π
12

(

1+
√

3
)

· λµ
2F2 ≥ −

∫ π
3

π
12

λm
2 F2 . (4.14)
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From the induction hypothesis and equations (4.13) and (4.14), we have

∫ π
12

0

λm+1
2 F2 ≥

(

1+
√

3
)

·
∫ π

12

0

λm
2 F2 > (1+

√
3)

(

−
∫ π

3

π
12

λm
2 F2 +

π

4

)

> −
∫ π

3

π
12

λm+1
2 F2 +

π

4
.

This completes the proof of Lemma 4.8.

E. Proof of Lemma 4.9

We must show that d(aµ, (a−1)2)− d(aµ, 2a) > 0 when aµ is even and µ ≥ 4. By the

integral formula for Kostka numbers (4.3), this is equivalent to

2

π

∫ π

0

λa(θ)
µ
(

sin2 aθ − sin (2a+1)θ sin θ
)

dθ > 0 . (4.15)

Write

Fa(θ) := 2(sin2 aθ − sin (2a+1)θ sin θ) = 1 − 2 cos 2aθ + cos (2a+ 2)θ .

These functions have symmetry about θ = π
2
,

Fa(θ) = Fa(π − θ) λa(θ) = (−1)aλa(π − θ) .

Thus if aµ is odd, the integral (4.15) vanishes, and it suffices to prove that

∫ π
2

0

λµ
aFa > 0 , for all a ≥ 3 and µ ≥ 4 . (4.16)

As in Subsection D, we establish this inequality by breaking the integral into two

pieces. This is based on the following lemma, whose proof is given below.

Lemma 4.13. For θ ∈ [0, π
a+1

], we have λa(θ) ≥ 0 and Fa(θ) ≥ 0.



47

Thus we have,

∫ π
2

0

λµ
aFa >

∫ π
a+1

0

λµ
aFa −

∫ π
2

π
a+1

|λµ
aFa| ,

and Lemma 4.9 follows from the following estimate.

Lemma 4.14. For every a ≥ 3 and µ ≥ 4, we have

∫ π
a+1

0

λµ
aFa >

∫ π
2

π
a+1

|λµ
aFa| . (4.17)

We prove this inequality (4.17) by induction, first establishing the inductive step

in Subsection 1 and then computing the base case in Subsection 2.

Proof of Lemma 4.13. The statement for λa is immediate from its definition. For Fa,

we use some calculus. Recall that Fa(θ) = 1− 2 cos 2aθ+ cos 2(a+1)θ, which equals

2(sin2 aθ − sin (2a+1)θ sin θ) .

Since the first term is everywhere nonnegative and the second nonnegative on [ π
2a+1

, 2π
2a+1

]

(and π
a+1

< 2π
2a+1

), we only need to show that Fa is nonnegative on [0, π
2a+1

]. Since

Fa(0) = 0, it will suffice to show that F ′
a is nonnegative on [0, π

2a+1
].

As F ′
a = 4a sin 2aθ−2(a+1) sin 2(a+1)θ, we have F ′

a(0) = 0, and so it will suffice

to show that F ′′
a is nonnegative on [0, π

2a+1
]. Since a > 2, we have 8a2 > 4(a + 1)2,

and so

F ′′
a = 8a2 cos 2aθ − 4(a+1)2 cos 2(a+1)θ

> 4(a+1)2(cos 2aθ − cos 2(a+1)θ = 8(a+1)2 sin (2a+1)θ sin θ .

But this last expression is nonnegative on [0, π
2a+1

].

Our proof of Lemma 4.14 will use the following well-known inequalities for the

sine function.
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Proposition 4.15. If 0 ≤ x ≤ π
2
, then 2

π
x ≤ sin x. If 0 ≤ x ≤ π

4
, then 2

√
2

π
x ≤ sin x.

For every x ≥ 0, we have

3
x

π
− 4

x3

π3
≤ sin x ≤ x .

The first two inequalities hold as the sine function is concave on the interval

[0, π
2
], and the last is standard. The most interesting is the cubic lower bound for

sine. It is the Mercer–Caccia inequality [13], which we illustrate in Figure 11.

sin x

3 x
π
− 4 x3

π3

1

0

π
2

π

Fig. 11. The Mercer-Caccia inequality

1. Induction step of Lemma 4.14

Our main tool for the induction step is the following estimation.

Lemma 4.16. For all a, µ ≥ 3, we have

∫ π
a+1

0

λµ+1
a Fa ≥ (a+1)3

3(a+1)2 − 4

∫ π
a+1

0

λµ
aFa . (4.18)



49

Induction step of Lemma 4.14. Suppose that we have

∫ π
a+1

0

λµ
aFa >

∫ π
2

π
a+1

| λµ
aFa | , (4.19)

for some number µ. We use the Mercer-Caccia inequality at x = π
a+1

to obtain

sin π
a+1

≥ 3
π

a+1

π
− 4

( π
a+1

)3

π3
=

3(a+1)2 − 4

(a+1)3
.

For θ ∈ [ π
a+1

, π
2
], we have sin θ ≥ sin π

a+1
and | sin (a+1)θ| ≤ 1, and therefore

|λa(θ)| =

∣

∣

∣

∣

sin (a+1)θ

sin θ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

sin π
a+1

∣

∣

∣

∣

∣

≤ (a + 1)3

3(a+ 1)2 − 4
. (4.20)

This last number, Ca, is the constant in Lemma 4.16. By Lemma 4.16, our induction

hypothesis (4.19), and (4.20), we have

∫ π
a+1

0

λµ+1
a Fa ≥ Ca

∫ π
a+1

0

λµ
aFa ≥ Ca

∫ π
2

π
a+1

∣

∣λµ
aFa

∣

∣ ≥
∫ π

2

π
a+1

∣

∣λµ+1
a Fa

∣

∣ ,

which completes the induction step of Lemma 4.14.

Our proof of Lemma 4.16 uses some linear bounds for λa. To gain an idea of the

task at hand, in Figure 12 we show the integrand λµ
aFa and λa on [0, π

a+1
], for a = 4

and µ = 2.

We estimate λa. Define the linear function

ℓa(θ) := (a+1)2

π
( π

a+1
− θ) ,

which is the line through the points (0, a+1) and ( π
a+1

, 0) on the graph of λa.

Lemma 4.17. For θ in the interval [0, π
a+1

], we have ℓa(θ) ≤ λa(θ).
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π
5

2π
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4F4

5

4

3

2

1

0
π
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π
5

b

Ca

ℓa

(b, 2π(a+1)
π

)

La

λ4

Fig. 12. The integrand λ2
4F4 and λ4

Proof. We need some information about the derivatives of λa(θ). First observe that

λa(θ) =
sin(a+1)θ

sin θ
=

ei(a+1)θ − e−i(a+1)θ

eiθ − e−iθ
=

a
∑

j=0

ei(a−2j)θ

= 2 cos aθ + 2 cos(a−2)θ + · · · +















2 cos θ if a is odd

1 if a is even

.

From this, we see that λ′a(0) = 0 and λ′a is negative on (0, π
a+1

). Moreover, λ′′a is a

sum of terms of the form −2(a−2j)2 cos(a−2j)θ, for 0 ≤ j < a
2
. Thus λ′′a is increasing
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on [0, π
a+1

], as each term is increasing on that interval.

Since ℓa has negative slope and λ′a(0) = 0, we have ℓa(θ) < λa(θ) for θ ∈ [0, π
a+1

]

near 0. We compute λ′a(
π

a+1
). Since

λ′a(θ) =
(a+1) cos(a+1)θ

sin θ
− cos θ sin(a+1)θ

sin2 θ
,

we have

λ′a(
π

a+1
) =

−(a+1)

sin π
a+1

<
−(a+1)2

π
,

as 0 < sin π
a+1

< π
a+1

. Thus at θ = π
a+1

, we have λa(θ) = ℓa(θ) = 0 and λ′a(θ) < ℓ′a(θ)

and so ℓa(θ) < λa(θ) for θ ∈ [0, π
a+1

] near π
a+1

.

If ℓa(θ) > λa(θ) at some point θ ∈ (0, π
a+1

), then we would have ℓa(θ) = λa(θ)

for at least two points θ in (0, π
a+1

). Since ℓa(θ) = λa(θ) at the endpoints, Rolle’s

Theorem would imply that λ′′a has at least two zeroes in (0, π
a+1

), which is impossible

as λ′′a is increasing.

Proof of Lemma 4.16. By Lemma 4.17, we have

∫ π
a+1

0

λµ+1
a Fa ≥

∫ π
a+1

0

ℓaλ
µ
aFa ,

and so it suffices to prove

∫ π
a+1

0

ℓaλ
µ
aFa ≥ Ca

∫ π
a+1

0

λµ
aFa .

This is equivalent to showing that

∫ π
a+1

0

(ℓa − Ca)λ
µ
aFa ≥ 0. (4.21)

As La := ℓa −Ca is linear, this is the difference of two integrals of positive functions.

We establish the inequality (4.21) by estimating each of those integrals.
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The function La is a line with slope − (a+1)2

π
and zero at

b :=
2(a2 + 2a− 1)π

(a+ 1)(3a2 + 6a− 1)
∈

[

π

2(a+1)
,

π

a+1

]

.

The inequality (4.21) is equivalent to

∫ b

0

La λ
µ
aFa ≥

∫ π
a+1

b

|La| λµ
aFa . (4.22)

For θ ∈ [0, π
2(a+1)

], the linear inequalities of Proposition 4.15 give

sin (a+1)θ ≥ 2

π
(a+1)θ and sin θ ≤ θ ,

and thus

λa(θ) =
sin (a+1)θ

sin θ
≥ 2(a+1)

π
.

Since Laλ
µ
aFa is nonnegative on [0, b] and π

2(a+1)
< b, we have

∫ b

0

La λ
µ
aFa ≥

∫ π
2(a+1)

0

La λ
µ
aFa ≥ 2µ(a+1)µ

πµ

∫ π
2(a+1)

0

La Fa .

We may exactly compute this last integral to obtain

∫ π
2(a+1)

0

La Fa =
1

8πa2(3a2+6a−1)
·
(

(5π2a4+(10π2−24)a3−(7π2+60)a2−16a+4)

+ cos
aπ

a + 1
· (12a4 + 48a3 + 56a2 + 16a− 4)

+ sin
aπ

a + 1
· (−4πa4 − 12πa3 + 4πa2 + 12πa)

)

.

As a > 1, we have cos aπ
a+1

> −1 and sin aπ
a+1

> 0. Substituting these values into this

last formula and multiplying by (2(a+1)/π)µ gives a lower bound for the integral on

the left of (4.22),

A :=
2µ(a+ 1)µ((5π2−12)a4 + (10π2−72)a3 − (7π2+116)a2 − 32a+ 8)

8πµ+1a2(3a2 + 6a− 1)
. (4.23)

For the integral on the right of (4.22), consider the line through the points ( π
a+1

, 0)
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and (b, 2(a+1)
π

),

La :=
2(3a2 + 6a− 1)

π2

(

π

a+1
− θ

)

.

We claim that λa < La in the interval [b, π
a+1

]. To see this, first note that the slope

of a secant line through ( π
a+1

, 0) and a point (θ, λa(θ)) on the graph of λa is

sin (a+1)θ

(θ − π
a+1

) sin θ
. (4.24)

Observe that sin (a+1)θ is bounded above by the parabola

sin (a+1)θ ≤ 4(a+1)2

π2
θ

(

π

a+1
− θ

)

,

We use this bound and the Mercer–Caccia inequality for sin θ to bound the slope (4.24),

sin (a+1)θ

(θ − π
a+1

) sin θ
≤ 4π(a+1)2

(3π2 − 4θ2)
≤ 4(a+1)4

π(3a2 + 6a− 1)
,

with the second equality holding as the minimum of the denominator (3π2 − 4θ2) on

the interval [b, π
a+1

] occurs at θ = π
a+1

. When a ≥ 3 we have,

4(a+ 1)4

π(3a2 + 6a− 1)
<

2(3a2 + 6a− 1)

π2
,

which so it follows that λa < La on [b, π
a+1

].

Using this and the easy inequality Fa < 4, we bound the integral on the right

of (4.22),
∫ π

a+1

b

|La| λµ
aFa <

∫ π
a+1

b

|La| LµFa <

∫ π
a+1

b

4|La| Lµ .

The last integral is not hard to compute,

B :=

∫ π
a+1

b

4|La| Lµ
a =

2µ+2(a + 1)µ+3[µ+ 1 − (a+ 1)(µ+ 2)]

πµ−1(µ+ 1)(µ+ 2)(3a2 + 6a− 1)2
.

We claim that A−B > 0, which will complete the proof of Lemma 4.16 and therefore

the induction step for Lemma 4.14. For this, we observe that if multiply A − B by
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their common (positive) denominator, we obtain an expression of the form 2µ(a +

1)µP (a, µ), where P is a polynomial of degree six in a and two in µ. After making

the substitution P (3 + x, 3 + y), we obtain a polynomial in x and y in which every

coefficient in positive, which implies that A − B > 0 when a,m ≥ 3, and completes

the proof.

2. Base of the induction for Lemma 4.14

We establish the inequality (4.17) of Lemma 4.14 when µ = 4, which is the base case

of our inductive proof. This inequality is

∫ π
a+1

0

λ4
a Fa >

∫ π
2

π
a+1

|λ4
a Fa| for every a ≥ 3 . (4.25)

We establish this inequality by replacing each integral in (4.25) by one which we may

evaluate in elementary terms, and then compare the values.

We first find an upper bound for the integral on the right. Recall that

λa(θ) =
sin(a+1)θ

sin θ
and Fa(θ) = 1 − 2 cos 2aθ + cos 2(a+1)θ .

Since |λa(θ)| ≤ 1
sin θ

and |Fa(θ)| ≤ 4 for θ ∈ [ π
a+1

, π
2
], we have

∫ π
2

π
a+1

|λ4
a Fa| ≤ 4

∫ π
2

π
a+1

1

sin4 θ
=

4

3
cot π

a+1

(

2 + csc2 π
a+1

) .

For a ≥ 3, we have 0 < π
a+1

≤ π
4
. As we observed in Proposition 4.15, this implies

that sin π
a+1

≥ π
a+1

2
√

2
π

= 2
√

2
a+1

, and so 1
sin π

a+1
≥ a+1

2
√

2
. Since 0 ≤ cos π

a+1
≤ 1, we have

4

3
cot π

a+1

(

2 + csc2 π
a+1

) ≤ 4(a+1)

3
√

2
+

(a+1)3

12
√

2
=: B . (4.26)

We now find a lower bound for the integral on the left. We use the estimate from
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Lemma 4.17, that for θ ∈ [0, π
a+1

], we have

λa(θ) ≥ ℓa(θ) =
(a+ 1)2

π

(

π

a + 1
− θ

)

.

Using this gives the estimate,

∫ π
a+1

0

λ4
aFa >

(a+ 1)8

π4

∫ π
a+1

0

(

π
a+1

− θ
)4 (

1 − 2 cos 2aθ + cos 2(a+1)θ
)

.

This may be evaluated in elementary terms to give

3(a+1)8

2a5π4
sin 2π

a+1
+
π(a+ 1)3

5
− 2(a+ 1)5

πa2
+

3(a+ 1)7

π3a4
+

(a+ 1)3

π
− 3(a+ 1)3

2π3
. (4.27)

Since, for a ≥ 3, 0 ≤ 2π
a+1

≤ π
2
, we have the bound from Proposition 4.15 of sin 2π

a+1
≥

4
a+1

. Thus the expression (4.27) is bounded below by

A :=
6(a+1)7

πa5
+
π(a+ 1)3

5
− 2(a+ 1)5

πa2
+

3(a+ 1)7

π3a4
+

(a+ 1)3

π
− 3(a+ 1)3

2π3
. (4.28)

Then the difference A − B of the expressions from (4.28) and (4.26) is a rational

function of the form

(a + 1) · P (a)

120π4a5
,

where P (a) is a polynomial of degree seven. If we expand P (3+x) in powers of x, then

we obtain a polynomial of degree seven in x with poisitve coefficients. This establishes

the inequality (4.25) for all a ≥ 3, which is the base case of the induction proving

Lemma 4.14. This completes the proof of Lemma 4.14 and therefore of Lemma 4.9,

and ultimately of Theorem 3.5.
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CHAPTER V

CONCLUSION

Galois groups of enumerative problems are algebraic invariants that encode some

structure of the geometry of the problems. In general, we expect these groups to be

the full symmetric group, and when they are not, the geometric problem posses some

intrinsic structure. We show that the Galois group of Schubert problems involving

lines are either the alternating group or the full symmetric group. In addition, we

conjecture these groups should be the full symmetric group. We provided two infi-

nite families of Schubert problems with full symmetric Galois group, which provides

evidence for our conjecture.

An immediate consequence of our theorem is that Schubert problems of lines

do not have intrinsic structure. Moreover, the technique developed in the proof of

Lemma 3.4 is by itself interesting. By interpreting the number of solutions (Kostka

numbers) as integrals of certain trigonometric functions, we were able to bring contin-

uous and analytical tools to a purely discrete and combinatorial problem. We believe

our method generalizes to other Schubert problems in higher dimensional Grassman-

nians. We are working on the details of this generalization.

In his paper, Vakil conjectured that Schubert problems involving planes in P3

have Galois groups at least alternating. Vakil tested his criterion for all Schubert

problems in G(2, n) for n ≤ 8, verifying this conjecture. We are developing software

to test Vakil’s criterion for Schubert problems in G(k, n) in general, trying to extend

Vakil’s investigation in a more general setting. This is part of a long-term project

devoted to understand the Galois groups of Schubert problems in general.
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