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Abstract. The Monotone Secant Conjecture posits a rich class of polynomial systems,
all of whose solutions are real. These systems come from the Schubert calculus on flag
manifolds, and the Monotone Secant Conjecture is a compelling generalization of the Shapiro
Conjecture for Grassmannians (Theorem of Mukhin, Tarasov, and Varchenko). We present
the Monotone Secant Conjecture, explain the massive computation evidence in its favor,
and discuss its relation to the Shapiro Conjecture.

1. Introduction

A system of real polynomial equations with finitely many solutions has some, but likely
not all, of its solutions real. In fact, sometimes the structure of the equations leads to upper
bounds [2, 11] ensuring that not all solutions can be real. The Shapiro Conjecture and the
Monotone Secant Conjecture posit a family of systems of polynomial equations with the
extreme property of having all their solutions be real.

The Shapiro Conjecture asserts that a zero-dimensional intersection of Schubert subvari-
eties of a flag manifold consists only of real points provided that the Schubert varieties are
given by flags tangent to (osculating) a real rational normal curve. Eremenko and Gabrielov
gave a proof in the special case the Grassmannian of codimension-two planes [3, 5]. The
general case for Grassmannians was established by Mukhin, Tarasov, and Varchenko [13, 14].
A complete story of this conjecture and its proof can be found in [18].

The Shapiro conjecture is false for non-Grassmannian flag manifolds, but in a very inter-
esting manner. This failure was first noticed in [16] and systematic computer experimen-
tation suggested a correction, the Monotone Conjecture [15, 17], that appears to be valid
for flag manifolds. Eremenko, Gabrielov, Shapiro, and Vainshtein [6] proved a result that
implied the Monotone Conjecture for some manifolds of two-step flags. This result con-
cerned codimension-two subspaces that meet flags which are secant to the rational normal
curve along disjoint intervals. This suggested the Secant Conjecture, which asserts that an
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intersection of Schubert varieties in a Grassmannian is transverse with all points real, pro-
vided that the Schubert varieties are defined by flags secant to a rational normal curve along
disjoint intervals. This was posed and evidence was presented for its validity in [9].

The Monotone Secant Conjecture is a common extension of both the Monotone Conjecture
and the Secant Conjecture. We give here the simplest open instance, expressed as a system
of polynomial equations in local coordinates for the variety of flags E2 ⊂ E3 in C

5, where
dim Ei = i. Let x1, . . . ,x8 be indeterminates and consider the polynomials

(1.1) f(s,t,u; x) := det













1 0 x1 x2 x3

0 1 x4 x5 x6

1 s s2 s3 s4

1 t t2 t3 t4

1 u u2 u3 u4













, g(v,w; x) := det













1 0 x1 x2 x3

0 1 x4 x5 x6

0 0 1 x7 x8

1 v v2 v3 v4

1 w w2 w3 w4













,

which depend upon parameters s,t,u and v,w respectively.

Conjecture 1.1. Let s1 < t1 < u1 < · · · < s4 < t4 < u4 < v1 < w1 < · · · < v4 < w4 be real

numbers. Then the system of polynomial equations

f(s1,t1,u1; x) = f(s2,t2,u2; x) = f(s3,t3,u3; x) = f(s4,t4,u4; x) = 0(1.2)

g(v1,w1; x) = g(v2,w2; x) = g(v3,w3; x) = g(v4,w4; x) = 0

has twelve solutions, and all of them are real.

Geometrically, the equation f(s,t,u; x) = 0 is the condition that a general 2-plane E2

(spanned by the first two rows of the matrix) meets the 3-plane which is secant to the
rational normal curve γ : y 7→ (1,y,y2,y3,y4) at the points γ(s),γ(t),γ(u). Similarly, the
equation g(v,w; x) = 0 is the condition that a general 3-plane E3 meets the 2-plane secant
to γ at the points γ(v), γ(w). The monotonicity hypothesis is that the four 3-planes given
by si,ti, ui are secant along intervals [si,ui] which are pairwise disjoint and occur before
the intervals [vi, wi] where the 2-planes are secant. If the order of the intervals [s4,u4] and
[v1, w1] is switched, the evaluation is no longer monotone. We tested 1,000,000 instances
of Conjecture 1.1, finding only real solutions. In contrast, we tested 7,000,000 with the
monotonicity condition relaxed, finding instances in which not all solutions were real.

We formulate the Monotone Secant Conjecture, explain its relation to the other conjec-
tures, and present overwhelming computational evidence that supports its validity. These
data are obtained in an experiment we are conducting on a supercomputer at Texas A&M
University whose day job is Calculus instruction. Our data can be viewed online; these data
and the code can be accessed from our website [8]. The design and execution of this kind of
large-scale experiment was described in [10].

This paper is organized as follows. In Section 2 we illustrate the rich geometry behind
Schubert problems and we make use of the classical problem of four lines to depict the
Monotone Secant Conjecture. Section 3 provides a primer on flag manifolds, states the
Shapiro, Secant, and Monotone conjectures and there we state in detail the Monotone Secant
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Conjecture. In Section 4 we discuss the results collected from the observations of our data.
and we give a brief guide to our data. Lastly, in Section 5 we describe the methods we used
to test the conjecture

2. The problem of four lines

The classical problem of four lines asks for the finitely many lines m that meet four given
general lines ℓ1, ℓ2, ℓ3, ℓ4 in (projective) three-space. Three general lines ℓ1, ℓ2, ℓ3 lie in one
ruling of a doubly-ruled quadric surface Q, with the other ruling consisting of all lines that
meet the first three. The line ℓ4 meets Q in two points, and through each of these points
there is a line in the second ruling. These two lines, m1, m2, are the solutions to this problem.

ℓ1

ℓ3

ℓ2

ℓ4

m1

m2

Q

If the lines ℓ1, ℓ2, ℓ3, ℓ4 are real, then so is Q, but the intersection of Q with ℓ4 may consist
either of two real points or of a complex conjugate pair of points. In the first case, the
problem of four lines has two real solutions, while in the second, it has no real solutions.

The Shapiro Conjecture asserts that if the four given lines are tangent to a rational normal
curve, then both solutions are real. We illustrate this. Set γ(t) := (6t2−1, 7

2
t3+ 3

2
t, − 1

2
t3+ 3

2
t),

a rational normal curve γ : R → R
3. Write ℓ(t) for the line tangent at the point γ(t). Our

given lines will be ℓ(−1), ℓ(0), ℓ(1), and ℓ(s) for s ∈ (0,1). The first three lines lie on the
quadric Q defined by x2 − y2 + z2 = 1. The line ℓ(s) meets the quadric in two real points, as
illustrated in Figure 1, giving two real solutions to this instance of the problem of four lines.

For the problem of four lines, the Secant Conjecture replaces the four tangent lines by
four lines that are secant to γ. Suppose that the four are close to four tangents in that the
intervals along γ given by their points of secancy are disjoint. Figure 2 shows three lines
secant to γ along disjoint intervals and the quadric Q that they lie upon. Their intervals of
secancy are disjoint from the indicated interval I. Any line secant along I will meet Q in
two points, giving two real solutions to this instance of the Secant Conjecture.

Figure 2 also illustrates the Monotone Secant Conjecture. Consider flags of a line lying on
a plane, m ⊂ M . We require that the line m meets three fixed lines secant to γ and that the
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ℓ(1) ℓ(−1)

ℓ(0)m1

m2

Q

γ(s)

γ

ℓ(s)

Figure 1. Four tangent lines give two real solutions.

γ HHHj

6

I

Q

Figure 2. The problem of four secant lines.

plane M meets two points, γ(s) and γ(t), of γ. Since the plane M contains the two points
γ(s) and γ(t), it contains the secant line they span, ℓ(s,t). But the line m also lies in M ,
and therefore it must also meet the secant line ℓ(s,t), in addition to the three original secant
lines. If the three original secant lines are the three lines in Figure 2 and the points γ(s),γ(t)
lie in the interval I, then there will be two real lines m meeting all four secant lines, and for
each line m, the plane M is the span of m and ℓ(s,t).

γ HHHj

-ℓ(s,t)

Q

Figure 3. A non-monotone evaluation.
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If the points γ(s) and γ(t) are chosen as in Figure 3, so that the secant line ℓ(s,t) does
not meet the quadric Q, then the solutions will not be real. Thus the positions of the points
γ(s),γ(t) relative to the other intervals of secancy affect whether or not the solutions are
real. The schematic in Figure 4 illustrates the relative positions of the secancies along γ

(which is homeomorphic to the circle). The idea behind the Monotone Secant Conjecture is

s t
All solutions real

s t

Not all solutions real

Figure 4. Schematic for the secancies.

to attach to each interval the dimension of that part of the flag, 1 for m and 2 for M , which
it affects. Then the schematic on the left has labels 1,1,1,2,2, reading clockwise, starting
just past the point s, while the schematic on the right reads 1,1,2,1,2. In the first, the labels
increase monotonically, while in the second, they do not.

3. Background

We develop the background for the statement of the Monotone Secant Conjecture, defining
flag varieties and their Schubert problems. Fix positive intgers α := (a1 < · · · < ak) and n

with ak < n. A flag E• of type α is a sequence of subspaces

E• : {0} ⊂ Ea1
⊂ Ea2

⊂ · · · ⊂ Eak
⊂ C

n , where dim(Eai
) = ai .

The set of all such flags forms the flag manifold Fℓ(α; n), which has dimension dim(α) :=
∑k

i=1(n − ai)(ai − ai−1), where a0 := 0. When α = (a) is a singleton, Fℓ(α; n) is the
Grassmannian of a-planes in Cn, written Gr(a,n). Flags of type 1 < 2 < · · · < n − 1 in Cn

are complete. The positions of flags of type α relative to a fixed complete flag F• stratify
Fℓ(α; n) into cells whose closures are Schubert varieties. These positions are indexed by
certain permutations. The descent set δ(σ) of a permutation σ ∈ Sn is the set of numbers
i such that σ(i) > σ(i+1). Given a permutation σ ∈ Sn with descent set a subset of α, set
rσ(i,j) := |{l ≤ i | j + σ(l) > n}|. Then the Schubert variety XσF• is

XσF• = {E• ∈ Fℓ(α; n) | dim Eai
∩ Fj ≥ rσ(ai,j), i = 1, . . . , k, j = 1, . . . ,n}.

Flags E• in XσF• have position σ relative to F•. A permutation σ with descent set contained
in α is a Schubert condition on flags of type α. The Schubert variety XσF• is irreducible
with codimension ℓ(σ) := |{i < j | σ(i) > σ(j)}|. A Schubert problem for Fℓ(α; n) is a list
of Schubert conditions (σ1, . . . , σm) for Fℓ(α; n) satisfying ℓ(σ1) + · · ·+ ℓ(σm) = dim(α).
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Given a Schubert problem (σ1, . . . , σm) for Fℓ(α; n) and complete flags F 1
•
, . . . , F m

•
, con-

sider the intersection

(3.1) Xσ1
F 1
•
∩ · · · ∩ Xσm

F m
•

.

When the flags are in general position, this intersection is transverse and zero-dimensional [12],
and it consists of all flags E• ∈ Fℓ(α; n) having position σi relative to F i

•
, for each i =

1, . . . , m. Such a flag E• is a solution to the Schubert problem.
The degree of a zero-dimensional intersection (3.1) is independent of the choice of the

flags and we call this number d(σ1, . . . , σm) the degree of the Schubert problem. When the
intersection is transverse, the number of solutions to a Schubert problem equals its degree.

When the flags F 1
•
, . . . , F m

•
are real, the solutions to the Schubert problem need not be

real. The Monotone Secant Conjecture posits a method to select the flags F• so that all
solutions are real, for a certain class of Schubert problems.

Let γ : R → Rn be a rational normal curve, which is affinely equivalent to the moment
curve γ(t) := (1,t,t2, . . . ,tn−1). A flag F• is secant along an interval I of γ if every subspace
in the flag is spanned by its intersection with I. A list of flags F 1

•
, . . . ,Fm

•
secant to γ is

disjoint if the intervals of secancy are pairwise disjoint. Disjoint flags are naturally ordered
by order in which their intervals of secancy lie within R.

A permutation σ is Grassmannian of type δ(σ) := ai if its only descent is at position ai.
A Grassmannian Schubert problem is one that involves only Grassmannian Schubert condi-
tions. A list of disjoint secant flags F 1

•
, . . . ,F m

•
is monotone with respect to a Grassmannian

Schubert problem (σ1, . . . ,σm) if the function F i
•
7→ δ(σi) is monotone; in other words, if

δ(σi) < δ(σj) =⇒ F i < F j , for all i,j .

Monotone Secant Conjecture 3.1. For any Grassmannian Schubert problem (σ1, . . . , σm)
on the flag manifold Fℓ(α; n) and any disjoint secant flags F 1

•
, . . . ,F m

•
that are monotone with

repsect to the Schubert problem, the intersection

Xσ1
F 1
•
∩ Xσ2

F 2
•
∩ · · · ∩ Xσm

F m
•

is transverse with all points real.

Conjecture 1.1 is the Monotone Secant Conjecture for a Schubert problem on Fℓ(2,3; 5)
involving the Schubert conditions σ := (1 3 2 4 5) and τ := (1 2 4 3 5). Then δ(σ) = 2,
δ(τ) = 3, and ℓ(σ) = ℓ(τ) = 1, so that (σ,σ,σ,σ,τ,τ,τ,τ) = (σ4,τ 4) is a Schubert problem for
Fℓ(2,3; 5), as dim(Fℓ(2,3; 5)) = 8. The corresponding Schubert varieties are

XσF• = {E• ∈ Fℓ(2,3; 5) | dim E2 ∩ F3 ≥ 1} ,

XτF• = {E• ∈ Fℓ(2,3; 5) | dim E3 ∩ F2 ≥ 1} ,

that is, the set of flags E• whose 2-plane E2 meets a fixed 3-plane F3 non-trivially, and the
set of E• where E3 meets a fixed 2-plane F2 non-trivially, respectively. For s,t,u,v,w ∈ R, let
F3(s,t,u) be the linear span of γ(s), γ(t), and γ(u) and F2(v,w) be the linear span of γ(v) and
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γ(w); these are a secant 3-plane and a secant 2-plane to the rational normal curve, respec-
tively. The condition f(s,t,u; x) = 0 of Conjecture 1.1 implies that E• ∈ XσF•(s,t,u), where
we ignore the larger subspaces in the flag F•(s,t,u). Similarly, the condition g(v,w; x) = 0
implies that E• ∈ XτF•(v,w). Lastly, the condition on the ordering of the points si,ti,ui,vi,wi

in Conjecture 1.1 implies that the flags F•(si,ti,ui) and F•(vi,wi) are disjoint secant flags that
are monotone with respect to this Schubert problem.

Three conjectures that have driven progress in enumerative real algebraic geometry are spe-
cializations of the Monotone Secant Conjecture. Observe that in the Grassmannian Gr(a; n),
any list of disjoint secant flags F 1

•
, . . . ,F m

•
is monotone with respect to any Schubert problem

(σ1, . . . ,σm), as all the conditions have the same descent. In this way, the Monotone Secant
Conjecture reduces to the Secant Conjecture, when the flag manifold is a Grassmannian.

Secant Conjecture 3.2. For any Schubert problem (σ1, . . . , σm) on a Grassmannian Gr(a; n)
and any disjoint secant flags F 1

•
, . . . , F m

•
, the intersection

Xσ1
F 1
•
∩ Xσ2

F 2
•
∩ · · · ∩ Xσm

F m
•

is transverse with all points real.

We studied this conjecture in a large-scale experiment whose results are described in [9],
solving 1,855,810,000 instances of 703 Schubert problems on 13 different Grassmannians,
verifying the Secant Conjecture in each of the 448,381,157 instances checked. This took
1.065 terahertz years of computing.

The limit of any family of flags whose intervals of secancy shrink to a point γ(t) is the
osculating flag F•(t). This is the flag whose j-dimensional subspace is the span of the first j

derivatives γ(t), γ′(t), . . . ,γ(j−1)(t) of γ at t. In this way, the limit of the Monotone Secant
Conjecture, as the secant flags become osculating flags, is a similar conjecture where we
replace monotone secant flags by monotone osculating flags.

Monotone Conjecture 3.3. For any Schubert problem (σ1, . . . , σm) on the flag manifold

Fℓ(α; n) and any flags F 1
•
, . . . , Fm

•
osculating a rational normal curve γ at points that are

monotone with respect to the Schubert problem, the intersection

Xσ1
F 1
•
∩ Xσ2

F 2
•
∩ · · · ∩ Xσm

F m
•

is transverse with all points real.

Ruffo, et al. [15] formulated and studied this conjecture, establishing special cases and
giving substantial experimental evidence in support of it.

The specialization of the Monotone Secant Conjecture that both restricts to the Grass-
mannian and to osculating flags is the Shapiro Conjecture which was posed around 1995
by Boris Shapiro and Michael Shapiro, studied in [16], and for which proofs were given by
Eremenko and Gabrielov for Gr(n−2; n) [5] and in complete generality by Mukhin, Tarasov,
and Varchenko [13, 14].
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Shapiro Conjecture 3.4. For any Schubert problem (σ1, . . . , σm) in Gr(a; n) and any dis-

tinct real numbers t1, . . . , tm, the intersection

Xσ1
F•(t1) ∩ Xσ2

F•(t2) ∩ · · · ∩ Xσm
F•(tm)

is transverse with all points real.

4. Results

The Secant Conjecture (like the Shapiro Conjecture before it) cannot hold for flag man-
ifolds. The monotonicity condition seems to correct this failure in both conjectures. Here,
we give more details on the relation of the Monotone Conjecture to the Monotone Secant
Conjecture, and then discuss some of our data in an ongoing experiment testing both con-
jectures.

4.1. The Monotone Conjecture is the limit of the Monotone Secant Conjecture.

The osculating plane Fi(s) is the unique i-dimensional subspace having maximal order of
contact with the rational normal curve γ at the point γ(s), and therefore it is a limit of
secant flags.

Proposition 4.1. Let {s
(j)
1 . . . , . . . , s

(j)
i } for j = 1,2, . . . be a sequence of lists of i distinct

complex numbers with the property that for each p = 1, . . . , i, we have

lim
j→∞

s(j)
p = s,

for some number s. Then,

lim
j→∞

span{γ(s
(j)
1 ), . . . , γ(s

(j)
i )} = Fi(s).

As explained in the provious section, the Monotone Conjecture is implied by the Monotone
Secant Conjecture by this proposition. There is a partial converse which follows from a
standard limiting argument.

Theorem 4.2. Let (σ1, . . . , σm) be a Schubert problem on Fℓ(a; n) for which the Monotone

Conjecture holds. Then, for any distinct real numbers that are monotone with respect to

(σ1, . . . , σm), there exists a number ǫ > 0 such that, if for each i = 1, . . . ,m, F i
•

is a flag

secant to γ along an interval of length ǫ containing ti, then the intersection

Xσ1
F 1
•
∩ Xσ2

F 2
•
∩ · · · ∩ Xσm

F m
•

is transverse with all points real.
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4.2. Experimental evidence for the Monotone Secant Conjecture. While its relation
to existing conjectures led to positing the Monotone Secant Conjecture, we believe the im-
mense weight of empirical evidence is the strongest support for it. Our ongoing experiment
is testing this conjecture and related notions for many computable Schubert problems. As of
4 February 2011, we have solved 4,090,490,116 instances of 775 Schubert problems. About
4.5% of these (176,809,563) were instances of the Monotone Secant Conjecture, and in every
case, it was verified by symbolic computation. Other computations tested the Monotone
conjecture for comparison. The remaining instances involved disjoint secant flags, but with
the monotonicity condition violated.

Table 1 shows the data we obtained for the Schubert problem (σ4,τ 4) with 12 solutions on
the Flag manifold Fℓ(2,3; 5) introduced in Conjecture 1.1. We computed 8,000,000 instances

Real Solutions

N
ec

k
la

ce

\ 0 2 4 6 8 10 12 Total

22223333 1000000 1000000
22233233 6 68210 181738 415395 334651 1000000
22322333 70 134436 357068 322668 185758 1000000
22332233 147 267567 399979 216682 115625 1000000
22323323 354 23116 100299 313296 374515 188420 1000000
22323233 11148 316401 419371 186548 54634 11898 1000000
22232333 31172 95108 153468 336276 249805 134171 1000000
23232323 295403 284925 276937 99691 34520 7807 717 1000000

Total 295403 327599 711785 1243042 1809425 1641506 1971240 8000000

Table 1. Necklaces vs. real solutions for (σ4,τ 4) in Fℓ(2,3; 5).

of this problem, all involving flags that were secant to the rational normal curve along disjoint
intervals. This took 15.058 gigahertz-years. The columns are indexed by even integers
numbers from 0 to 12, indicating the number of real solutions. The rows are indexed by
necklaces, which are sequences {δ(σ1), . . . , δ(σm)}, where δ(σi) denotes the unique descent
of the Grassmannian condition σi, as described in Section 3. Therefore, in our example, a 2
represents the condition on the two-plane E2 given by the permutation σ = (1 3 2 4 5), and
similarly a 3 represents the condition on E3 given by the permutation τ = (1 2 4 3 5).

In Table 1, the first row labeled with 22223333 represents tests of the Monotone Secant
conjecture, since the only entries are in the column for 12 real solutions, the Monotone Secant
conjecture was verified in 1,000,000 instances. This is the only row with only real solutions.

Compare this to the 8,000,000 instances of the same Schubert problem, but with osculating
flags. These data are presented in Table 2. This computation took 67.460 gigahertz-days.
Both tables are similar with nearly identical “inner borders”, except for the shaded box in
Table 2.

4.3. Lower bounds and inner borders. Probably the most enigmatic phenomenon that
we observe in our data is the presence of an “inner border” for may geometric problems,
as we have pointed out in example of Table 1. That is, for some necklaces (besides the
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Real Solutions

N
ec

k
la

ce

\ 0 2 4 6 8 10 12 Total

22223333 1000000 1000000
22233233 514 123534 290754 291572 293626 1000000
22322333 765 132416 310881 291640 264298 1000000
22332233 4467 108818 430805 251237 204673 1000000
22323323 59935 201234 333260 274979 130592 1000000
22323233 3697 127290 215573 332693 210303 110444 1000000
22232333 12857 68514 113824 207927 212245 384633 1000000
23232323 24493 62798 279201 198460 258211 121806 55031 1000000

Total 24493 79352 540686 1093859 2164531 1653782 2443297 8000000

Table 2. Necklaces vs. real solutions for (σ4,τ 4) in Fℓ(2,3; 5).

monotone ones), there appears to be a lower bound on the number of real solutions. We do
not understand this phenomenon, even conjecturally.

Another common phenomenon is that for many problems, there are always at least some
solutions real, for any necklace. (Note that the last rows of Tables 1 and 2 had instanecs with
no real solutions). Table 3 displays an example of this for a Schubert problem on Fℓ(2,3; 6)
involving three conditions W := (1 3 2 4 5 6) and five involving X := (1 2 4 3 5 6) that has 21

Real Solutions

N
ec

k
la

ce

\ 1 3 5 7 9 11 13 15 17 19 21 Total

WWWXXXXX 80000 80000
WWXWXXXX 921 16549 26267 14475 21788 80000
WWXXWXXX 39 1208 24559 39013 13947 1234 80000
WXWXXWXX 612 9544 43256 23583 2927 78 80000
WXWXWXXX 3244 19887 31931 13688 3632 7618 80000

Total 3895 31560 116295 102551 34981 110718 400000

Table 3. Enumerative Problem W 3X5 = 21 on Fℓ(2, 3; 6)

solutions. Very prominently, it appears that at least 11 of the solutions will always be real.
These lower bounds and inner borders were observed in the computations studying the

Monotone Conjecture [15]. Eremenko and Gabrielov established lower bounds for the Wron-
ski map [4] in Schubert calculus for the Grassmannian, and more recently, Azar and Gabrielov [1]
established lower bounds for some instances of the Monotone Conjecture which were observed
in [15].

5. Method

Our experimentation was possible as instances of Schubert problems are simple to model
on a computer. The procedure we use may be semi-automated and run on supercomputers.
We will not describe how this automation is done, for that is the subject of the paper [10];
instead, we explain here the computations we are performing.
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For a Schubert condition σi, a fixed flag instantiating σi is secant to the rational normal
curve γ along some ti points. Thus, for a Schubert problem (σ1, . . . , σm), we need t :=
t1 + · · · + tm points of γ for the given Schubert problem. We construct secant flags by
choosing t points on γ. With the flags selected, we formulate the Schubert problem as a
system of equations by a choice of local coordinates, whose common zeroes represent the
solutions to the Schubert problem in the local coordinates. This was illustrated in the
Introduction when Conjecture 1.1 was presented. We direct the reader to [7, 15, 16] for
details. We then eliminate all but one variable from the equations, obtaining an eliminant.
If the eliminant is square-free and has degree equals to the expected number of complex
solutions (this is easily verified;) then, the Shape Lemma concludes that the number of real
roots of the eliminant equals the number of real solutions to the Schubert problem.

Instead of solving the Schubert problem, we may determine its number of real solutions
in specific instances with software tools using implementations of Sturm sequences. If the
software is reliably implemented, which we believe, then this computation provides a proof
that the given instance has the computed number of real solutions to the original Schubert
problem.

For each Schubert problem, we perform these steps thousands to millions of times, starting
by selecting t points in γ and constructing flags secant to the rational normal curve and
distributed with respect to a necklace. For every Schubert problem we have a list of necklaces
with the first always being the necklace that creates an instance of the Monotone Secant
conjecture, and the rest being necklaces where the monotonicity is broken.

Our experiment is not only testing the Monotone Secant Conjecture, but is also testing
the Monotone Conjecture by just taking a point of tangency to γ instead of an interval of
secancy. With this, we are not only extending those computations made by Ruffo, et al. [15],
but also comparing the results with those from the Montone Secant Conjecture in order to
understand both conjectures deeply.
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