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1 Introduction

As the title shows the main object of study in this paper is the class of real valued
self-similar Markov processes, and in fact much of the results that will be summarised
here concern the class of positive self-similar Markov processes. Before going into the
detail we lift the following definition from Lamperti’s pioneering work [43].

Definition 1. A stochastic processX = {Xt, t ≥ 0} defined on (Ω,F , (Ft)t≥0, (Px)x∈IRd)

and IRd-valued is said semi-stable, now a days called self-similar, if there exists an
α ∈ IR, such that for any c > 0,

Law ({cXc−αt, t ≥ 0},Px) = Law ({Xt, t ≥ 0},Pcx)

that is, both processes have the same finite dimensional laws, viz. for any 0 < t1 <
t2 < · · · < tn <∞

Px (cXc−αt1 ∈ dx1, cXc−αt2 ∈ dx2, . . . , cXc−αtn ∈ dxn)

= Pcx (Xt1 ∈ dx1, Xt2 ∈ dx2, . . . , Xtn ∈ dxn) ,
(1.1)

where by Px we understand the law of the process stating at x. Whenever α 6= 0 we
will say that the process is 1/α-self-similar.
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Lamperti’s main contribution in [43] has been to fully answer the question: which
are all the stochastic processes that can be obtained as the weak limit of some process
on which we have applied an infinite sequence of contractions of the scale of time and
space? This question has been motivated by some rather transcendental results about
weak convergence of normalised processes as for instance the famous result by Donsker
[23] about convergence of random walk towards a Brownian motion. Lamperti’s [43]
main results are summarised in the following theorem.

Theorem 1. Let Y = {Yt, t > 0} be a stochastic process IRd-valued and f : IR→ IR a
function such that the process Y ζ defined by

Y ζ
t =

Yζt
f(ζ)

, t > 0,

converges in the sense of finite dimensional laws, towards a non degenerated process,
X, that is for any 0 < t1 < t2 < · · · < tn <∞, the convergence in law between random
vector holds (

Y ζ
t1 , Y

ζ
t2 , . . . , Y

ζ
tn

)
W−−−→

ζ→∞
(Xt1 , Xt2 , . . . , Xtn) . (1.2)

Then, the process X is self-similar with an index α, for some α ∈ IR. The function f
is regularly varying with index α, that is f(ζ) = ζαL(ζ), with L a function such that

lim
ζ→∞

L(cζ)

L(ζ)
= 1, for all c > 0.

In this case it is nowadays said that X is the scaling limit of Y . Furthermore, any
self-similar Markov process can be obtained this way.

Among the class of self-similar processes there are several important sub-families
that permit a better understanding of these. Some of them are the self-similar Gaussian
processes; the class of additive self-similar processes, that is those with independent
increments, those with homogeneous increments, and, those which are of particular
interest to us, which have the strong Markov property. For properties and references
about the former classes of processes see for instance the thorough survey by Embrechts
and Maejima [26]. In the sequel we will restrict ourselves to the class of real valued
self-similar Markov processes.

A real valued self-similar Markov process X(x), starting from x is a càdlàg strong
Markov process which fulfills the above described scaling property. Real valued self-
similar processes often arise in various parts of probability theory as limit of re-scaled
processes. These processes are involved for instance in branching processes, Lévy pro-
cesses, coalescent processes and fragmentation theory. Some particularly well known
examples are Brownian motion, Bessel processes, stable subordinators, stable processes,
stable Lévy processes conditioned to stay positive, etc.

Our main purpose in this paper is to give a panorama of properties of rssMp that
have been obtained since the early sixties under the impulse of Lamperti’s work [44],
where the study of the case of positive self-similar Markov processes is initiated, and we
will put particular emphasis in topics where the authors of this note have contributed.
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2 Positive self-similar Markov processes

Throughout this paper we will assume that the self-similarity index, say 1/α, is strictly
positive so α > 0. When we restrict self-similar Markov processes to take values on the
positive half-line we have an interesting relationship between this class and IR∪{−∞}-
valued Lévy processes, such relation was obtained by Lamperti [44] and it is now known
as the Lamperti representation of positive valued self-similar Markov processes, pssMp
for short.

To state a precise result we recall that an IR∪{−∞}-valued stochastic process ξ =
(ξt, t ≥ 0) is a Lévy process if its paths are càdlàg, the state {−∞} is an absorbing point,
and it has stationary and independent increments. The state {−∞} is understood as
an isolated point and hence the process hits this state and dies at an independent
exponential time ζ, with some parameter q ≥ 0, the case q = 0 is included to allow this
time to be infinite a.s. The law of ξ is characterized completely by its Lévy-Khintchine
exponent Ψ, which takes the following form

log E
[
ezξ1 , 1 < ζ

]
= Ψ(z) = −q + bz +

σ2

2
z2 +

∫ ∞
−∞

(
ezy − 1− zyI{|y|<1}

)
Π(dy), (2.3)

for any z ∈ iIR, where σ, b ∈ IR and Π is a Lévy measure satisfying the condition∫
R(y2 ∧ 1)Π(dy) <∞. For background about Lévy processes see [4], [40], [57].

Hereafter, for x > 0 the measure Px denotes the law of a pssMp issued from x, and
to refer to a pssMp issued from x > 0 we will use indistinctly (X,Px), (X(x),Px) and
X(x).

Lamperti representation of self-similar R+–valued Markov processes killed at their
first hitting time of 0, enables us to construct the paths of any such process starting from
a strictly positive point from those of a Lévy process, and viceversa. More precisely,
Lamperti [44] found the representation

X
(x)
t =

{
x exp ξτ(tx−α), 0 ≤ t ≤ xαI(αξ),

0, t ≥ xαI(αξ),
(2.4)

under Px, for x > 0, where

τ(t) = inf{s > 0 : Is(αξ) ≥ t} , Is(αξ) =

∫ s

0

expαξu du , I(αξ) = lim
t→ζ

It(αξ) ,

and where ξ is a IR∪{−∞}–Lévy process with law P. Note that for t < I(αξ), we have

the equality τt =
∫ t

0

(
Xs

)−α
ds, so that (3.4) is invertible. Indeed, any IR∪{−∞}-valued

Lévy process ξ can be represented as

ξt =

{
log
(
Xγt
X0

)
, 0 ≤ t <

∫ T0−
0

X−αs ds,

−∞,
∫ T0−

0
X−αs ds ≤ t,

where X is some 1/α-pssMp, {γt, t ≥ 0} is the inverse of the additive functional∫ t

0

X−αs ds, 0 ≤ t < T0 = inf{u > 0 : Xu = 0}.
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Observe that the process ξ does not depend on the starting point of X. Hence, we
will denote the law of ξ by P, and it is obtained as the image measure of Px under the
latter transformation, independently of the starting point x > 0. Reciprocally given a
Lévy process (ξ,P) using the former transformation we construct a family of Markovian
measures (Px)x>0, sharing the same semigroup. Hence Lamperti’s transformation yields
a one to one relation between the class of pssMp killed at their first hitting time of 0
and the one of Lévy processes. Unless otherwise stated, in the sequel we will denote a
1/α-pssMp by (X, (Px)x>0), and by (ξ,P) the Lévy process associated to it.

A first implication of Lamperti’s transformation is that the first hitting time of 0,
for a 1/α–pssMp and the exponential functional of a Lévy process, I(αξ), are equal in
law, more precisely

(T0,Px)
Law
= (xαI(αξ),P).

Another useful consequence is the following classification of pssMp’s:

(LC1) ζ <∞ P–a.s. if and only if

Px(T0 <∞, XT0− > 0, XT0+s = 0, ∀s ≥ 0) = 1, (2.5)

for all x > 0.

(LC2) ζ =∞ and limt→∞ αξt = −∞ P–a.s. if and only if

Px (T0 <∞, XT0− = 0, XT0+s = 0, ∀s ≥ 0) = 1, (2.6)

for all x > 0.

(LC3) ζ =∞ and lim supt→∞ αξt =∞ P–a.s. if and only if

Px(T0 =∞) = 1, for all x > 0. (2.7)

Furthermore, a useful way to characterise the pssMp associated to a Lévy process ξ is
via its infinitesimal generator. Indeed, Volkonskii’s Theorem allow us to ensure that
the infinitesimal generator of X, say L, evaluated in a function f : IR+ → IR, such
that f̃(·) = f(e·) is in the domain of the infinitesimal generator of ξ, that we denote
A, takes the form

Lf(x) = x−αAf̃(log x)

= −qx−αf(x) + x1−α(−b+
1

2
σ2)f ′(x) + x2−α1

2
σ2f ′′(x)

+ x−α
∫

IR

(
f(xey)− f(x)− yxf ′(x)1{|y|<1}

)
Π(dy),

where (b, σ,Π) is the characteristic triple of ξ, and q is the rate at which it is killed.
Using this characterisation we can easily obtain the following examples.

Example 1 (Continuous pssMp and Bessel processes). Given that the totality of Lévy
processes with continuous paths is necessarily of the form ξt = εBt + µt, t ≥ 0, with
(Bt, t ≥ 0) a standard Brownian motion and some ε, µ ∈ IR, we get that the totality
of pssMp with continuous paths killed at its first hitting time of zero is obtained as a
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Lamperti transformation of a process of the latter form, with ε, µ and the self-similarity
index appropriately chosen. For instance, when X is a standard Brownian motion killed
at its first hitting time of 0, the self-similarity index is 1/2, and the Lévy process is
ξt = Bt− t

2
, t ≥ 0. Furthermore, taking ε = 1, and µ = d

2
−1, with d > 0, and α = 2 we

obtain a d-dimensional Bessel process. It is also an interesting exercise to prove this
assertion using stochastic calculus.

Example 2 (Stable subordinators). Let X be an α-stable Lévy process with non-
decreasing paths, 0 < α < 1. X is a 1/α-pssMp. Its infinitesimal generator is

Ãf(x) =

∫ ∞
0

(
f(x+ y)− f(x)

)
αc

dx

x1+α
, c > 0.

By a change of variables

Ãf(x) = x−α
∫ ∞

0

(f(xez)− f(x))
cαez

(ex − 1)1+α
dx,

and by Volkonskii’s formula we obtain that the underlying Lévy process has jump
measure

Π(dx) =
cαez

(ex − 1)1+α
dx.

A family of processes associated to stable processes will be described in Section 3.2.

Remark 1. Although this will not be used in what follows, it is worth pointing out
that the assumption made at the beginning of this section asking that the self-similarity
index 1/α is strictly positive is not essential. Indeed, if in Lamperti’s transformation
we take α < 0, in order to make things consistent, we should just change the absorbing
state of the pssMp to {∞}, which will be reached in a finite time when the Lévy process
αξ will either jump in a finite time or drift towards −∞. So, for a general self-similarity
index 1/α we should consider (0,∞)∪{∆}-valued pssMp where ∆ is a cemetery state,
that it is interpreted as 0 if α > 0, and as ∞ if α < 0.

An useful property of pssMp is that the self-similarity property remains valid when
we take powers or we make time changes with power functions. More precisely, given
a 1/α-pssMp and a β ∈ IR \ {0}, the process Y defined by

Yt := (Xt)
β , t ≥ 0,

with 1/0 taken as ∞, is a α/β-pssMp and it is the Lamperti transform of the Lévy
process βξ. This makes that in most of the cases there is no loss of generality in
assuming that the self-similarity index equals 1. Now, for a γ 6= −α, define a time
change

Dγ
t = inf{u > 0 :

∫ u

0

(Xs)
γ ds > t}, t ≥ 0.

The process W defined by
Wt = XDγt

, t ≥ 0,

is a 1/(α + γ)-pMasp and the underlying Lévy process remains ξ. The proof of this
result is an easy consequence of the fact that time changes with respect to additive
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functionals preserve the strong Markov property and that, in this case, the time change
also preserves the scaling property of the process X. This can also be easily seen by
using Lamperti’s transform and understanding the composition of time changes. These
properties, together with some duality properties, where studied in [60], see also [41].
Other duality properties where obtained in [8].

2.1 Defining a positive self-similar Markov process starting at
0.

In his seminal paper, Lamperti [44] studied the forms in which a self-similar diffusion
could be started from the state 0. Lamperti findings lead to the following question

Given a positive 1/α-self-similar Markov process, (X, (Px)x>0), constructed
via the Lamperti transformation of some Lévy process ξ, when does there
exists a pssMp that behaves like X when it is in (0,∞) and that it is not
trivially started from 0?

In the case where the pssMp (X, (Px)x>0) never hits zero this question has been
answered in full generality by Bertoin and Caballero [5], Bertoin and Yor [8], Caballero
and Chaumont [11], and Chaumont, Kyprianou, Pardo and Rivero [16], by provid-
ing necessary and sufficient conditions for the existence of a probability measure P0+,
that can be obtained as the weak limit of Px as x ↓ 0+, and under which the canon-
ical process has the same transition semigroup as the one associated to (X, (Px)x>0).
Equivalently, we may ask under which conditions there exists a non-degenerate process
X(0) that is the weak limit of X(x) as x→ 0.

Besides, when (X, (Px)x>0) hits zero in a finite time to answer the above posed
question one should look for all the recurrent extensions of it, that is the totality of
positive self-similar Markov process that behave like the latter process before hitting
zero for the first time but for which 0 is a recurrent and regular state. This problem has
been studied by Lamperti [44] and Vuolle-Apiala [59], and solved in whole generality
by Rivero [54, 55] and Fitzsimmons [27].

The main contributions of the papers quoted above will be summarized below.

2.1.1 Entrance laws

Bertoin and Caballero [5] and Bertoin and Yor [8] proved that, whenever the process

drifts towards∞, limt→∞X
(x)
t =∞, Px-a.s., the family of processes X(x) converges, as

x ↓ 0, in the sense of finite dimensional distributions towards X(0) if and only if the
underlying Lévy process ξ in the Lamperti representation is such that

(H) ξ is non lattice and 0 < m =: E(ξ1) ≤ E(|ξ1|) < +∞ .

In fact, the condition of ξ being non-lattice is not essential, whenever the process is
lattice the limit exists when taken along adequately chosen subsequences. As proved
by Caballero and Chaumont in [11], the latter condition is also a NASC for the weak
convergence of the family (X(x)), x > 0 on the Skohorod space of càdlàg trajectories.
In the same article, the authors also provided a path construction of the process X(0).
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The entrance law of X(0) has been described in [5] and [8] as follows: for every t > 0
and for every measurable function f : IR+ → IR+,

E
(
f
(
X

(0)
t

))
=

1

m
E
(
I(−αξ)−1f(tI(−αξ)−1)

)
. (2.8)

Caballero and Chaumont [11] actually studied the more general case where X is only
required to be such that

lim sup
t→∞

X
(x)
t =∞, Px − a.s. ∀x > 0, (2.9)

and they were able to prove that a necessary and sufficient condition for the weak
convergence to hold is that the mean of the upward ladder height process, say h =
(ht, t ≥ 0), associated to ξ, is finite and a further technical condition. For further details
see [11]. Latter Chaumont, Kyprianou Pardo, and Rivero [16] improved the result of
Chaumont and Caballero [11] by showing that the technical condition is irrelevant.
Moreover, these authors obtained an expression for the entrance law which extend that
obtained in [5] and [8], namely

E0+ (f(Xt)) =

∫ ∞
0

f

(
t1/α

x1/α

)
1

x
η(dx),

where η is a measure defined by

η(f) =
1

αµ+

∫
R3

+

P(Ĩ ∈ dt)V̂(dx) P†x

(∫ ς0

0

e−αξudu ∈ ds

)
f (eαx (t+ s)) ,

and
∫∞

0
x−1η (dx) = 1, with Ĩ the exponential functional of the negative of the Lévy

process ξ conditioned to stay positive, V̂ the renewal measure of the downward ladder
height process associated to ξ, and P† being the law of ξ conditioned to hit zero
continuously.

Knowing the results of Bertoin and Caballero [5] and Bertoin and Yor [8], it may
result surprising that the searched necessary and sufficient condition for the weak
convergence to hold is the finiteness of the mean of the upward ladder height process.
An heuristic for the necessity of this condition is as follows. Assume there is a process
X(0) that is obtained as a weak limit of X(x) as x ↓ 0 + . This process has the scaling
property and hence for any c > 0

(cX
(0)

tc−α , t ≥ 0)
Law
= (X

(0)
t , t ≥ 0).

For a > 0, let Ta = inf{t > 0 : X
(0)
t > a}, this r.v. is a finite stopping time because

the original process satisfies (3.9). By the scaling property we have the equality in law

X
(0)
Ta

Law
= cX

(0)
Ta/c

, for all c > 0.

Making c→∞ and some elementary manipulations we get

X
(0)
Ta

Law
= a exp

{
lim
c→∞

(
log(X

(0)
Ta/c

)− log(a/c)
)}

. (2.10)
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Finally, the process logX(0) should have the same hitting probabilities as ξ, because
logX(·) is obtained by time changing ξ, and hence we should have the equality in law

lim
c→∞

(
log
(
X

(0)
Ta/c

)
− log(a/c)

}
Law
= lim

z→∞
ξT+

log(z)
− log(z),

with T+
log(z) = inf{t > 0 : ξt > log(z)}. We conclude from (3.10) that the latter limit

exists and it is not degenerate. It is well known that this is equivalent to the weak
convergence of the overshoots of the underlying upward ladder height subordinator.
The latter condition is in turn equivalent to the finiteness of the mean of the upward
ladder height subodinator, see for instance [22]. The details about the whole argument
can be found in [42] where the authors obtain precise descriptions about the distribution
of random variables associated to the events of first passage above a level and last
passage below a level, among other results.

Besides, observe that if the mean of the upward ladder height is finite then by the
results in [5] and [11] the pssMp, H = (Ht, t ≥ 0), associated to the upward ladder
height subordinator has a non-degenerate weak limit, H(0), and so one may wonder
whether it is possible to understand the limit process X(0) using the process H(0). We
remark that we may understand the process H as the process of the past supremum of
X in an adequate time scale. The main motivation of the paper [16] was to construct
the process H from the process X, via a time change, establish the convergence of H,
and finally construct the limit process X(0) from H(0), by hanging into the paths of
H(0) the excursions from the supremum. One of the main results in [16] is the following
description.

Theorem 2. Let X be the Lamperti transform of a L.p. ξ that does not jump or drift
towards −∞, and define the maximum process (Ms, s ≥ 0), by Mt := sups≤tXs, t ≥ 0.
We have the following facts.

(i) There exists a function j(ε) for ε > 0, such that

lim
ε→0

1

j(log(1 + ε))

∫ t

0

1{MsXs ∈[1,1+ε[}ds = LΘ
t ,

uniformly over bounded intervals in probability. The process LΘ is a local time at
the past supremum for X, i.e. and additive functional whose support is given by
the closure of the random set

Θ := {t ≥ 0 : Xt = sup
0≤s≤t

Ms}.

(ii) Let {Rt, t ≥ 0} be the right continuous inverse of LΘ, that is

Rt = inf{s > 0 : LΘ
s > t}, t ≥ 0,

and put Ht := XRt, t ≥ 0. The process H is the Lamperti transform of the upward
ladder height subordinator of ξ.

The term “hanging into the paths of H0+ the excursions from the supremum” is
made precise in [16] by constructing an exit system associated to the random set Θ
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defined above, and then using this exit system to prove the convergence of the resolvent
of X, as the starting point tends to 0, which gives the finite dimensional convergence.
Finally, the weak convergence is obtained by proving tightness. We do not provide
further details. Instead we mention that the papers [16], [20] and [42] contributed to
the foundation of a fluctuation theory for pssMp analogous to the well developed one
of real valued Lévy processes. In the paper [20] the path of a pssMp is decomposed into
the path of the pre- and post-overall infimum. A precise description of these segments
of paths is provided, and the limit of the path when the overall minimum tends to zero
is obtained. In particular, it is shown that the post-minimum process converges to the
path of X(0), and hence that the pre-infimum path squeezes to the path equal to zero
with 0 length when the starting point tends to 0.

2.1.2 Recurrent extensions

We now deal with the results around the question What are the positive α–self-similar
Markov processes X̃ which behave like (X,P) up to the first hitting time of 0 for X̃ and
such that 0 is a regular and recurrent state? A process that has this characteristics is
usually called a recurrent extension of the process (X,P). Lamperti [44] solved this
question in the special case of a Brownian motion killed at 0, using results specific
to Brownian motion. After Lamperti, Vuolle-Apiala [59] used excursion theory to
give a more general answer under some regularity assumptions for the resolvent of the
process (X,P). Then the question was solved in full generality by Rivero [54], [55],
and Fitzsimmons [27]. In order to describe the results in those papers we introduce
some further notions, but before we mention that a different approach using stochastic
differential equations has been used in [24] (see Section 2.1.3).

Definition 2 (Self-similar excursion measures). A measure n on (D+,G∞) having
infinite mass is a self-similar excursion measure compatible with (X,P) if

(i) n is carried by

{ω ∈ D + |0 < T0 <∞ and Xt(ω) = 0, ∀t ≥ T0} ;

(ii) For every bounded G∞-measurable functional H and each t > 0 and Λ ∈ Gt,

n (H ◦ θt,Λ ∩ {t < T0}) = n (EXt (H) ,Λ ∩ {t < T0}) ,

with θt the shift operator;

(iii) n
(
1− e−T0

)
<∞;

(iv) there exists a γ ∈]0, α[ such that for every c > 0 the image of n under the mapping
Hc : D+ → D+, defined by Hc(ω)(t) = cω(tc−1/α), for t > 0, is

n ◦Hc = cγ/α n .

It is well known in the theory of Markov processes that a way to construct recurrent
extensions of self–similar Markov processes is by means of the so called Itô’s program
or pathwise approach, which consists on pasting together excursions. Precise results
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about this topic can be found in [10] and [54]. The main results from the latter
references allow us to ensure that there is a bijection between the existence of self-
similar recurrent extensions and self-similar excursion measures compatible to (X,P).
Actually, the latter is the Itô excursion measure for the excursions from zero of the
self-similar recurrent extension of (X,P). We will now describe necessary and sufficient
conditions for the existence of such a measure.

Vuolle-Apiala [59] proved that there are two types of excursion measures, namely
those for which the recurrent extension exits 0 by jumps, which in terms of the excursion
measure means n (X0+ = 0) = 0, and those for which the recurrent extension leaves
zero continuously, n (X0+ > 0) = 0. And furthermore, a self-similar excursion measure
is either of one type or the other, but not both. It has been shown in [54] that the
reason for this is that they have different self-similarity index. Vuolle-Apiala proved
that a consequence of the scaling property is that all the self-similar excursion measures
can be written as

n(·) = cα,β

∫
x>0

dx

x1+β
Px(·), (2.11)

for some β such that β/α ∈]0, 1[ and cα,β ∈]0,∞[, is a normalizing constant. Thus,
to determine the existence of a recurrent extension that leaves 0 by a jump all we are
ought to do is to verify when a measure of this form bears all the condition to be a
self-similar excursion measure. That is the purpose of the following theorem.

Theorem 3. Let (X,P) be an α-self-similar Markov process that hits the cemetery
point 0 in a finite time a.s. and (ξ,P) the Lévy process associated to it via Lamperti’s
transformation. For 0 < β < α, the following are equivalent

(i) E(eβξ1 , 1 < ζ) < 1,

(ii) E
((∫∞

0
exp{αξs}ds

)β/α)
<∞,

(iii) There exists a recurrent extension of (X,P), say X(β), that leaves 0 by a jump
and its associated excursion measure nβ is such that

nβ(X0+ ∈ dx) = cα,ββx
−1−βdx, x > 0,

where cα,β is a constant.

In this case, the process X(β) is the unique recurrent extension of (X,P) that leaves 0
by a jump distributed as above.

The proof of this theorem resides in the fact that a measure of the form in (3.11)
satisfies the conditions (i), (ii) and (iv) from the definition 2, as it can be easily verified,
but the condition (iii) is only satisfied when the condition (ii) of Theorem 3 is satisfied,
and hence what is left to prove is the equivalence between (i) and (ii), because the
equivalence between (ii) and (iii) is obtained from the previous discussion.

It is actually more difficult to establish the existence of entrance laws that are
carried by the paths that leave 0 continuously. The definitive answer is given in the
following result obtained by Rivero [54, 55] and Fitzsimmons [27].

Theorem 4. Let (X,P) be an α-self-similar Markov process that hits its cemetery
state 0 in a finite time P-a.s. and (ξ,P) be the Lévy process associated to (X,P) via
Lamperti’s transformation. The following are equivalent:
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(i) ∃ θ ∈]0, α[, s. t. E(eθξ1 , 1 < ζ) = 1, Cramér’s condition.

(ii) There exists a recurrent extension of (X,P) that leaves 0 continuously and such
that its associated excursion measure from 0, say N, satisfies N(1− e−T0) = 1.

In this case, the recurrent extension in (ii) is unique and the entrance law associated
to the excursion measure N is given by, for any f positive and measurable

N(f(Xt), t < T0) =
1

tθ/αΓ(1− (θ/α)) E\(J (θ/α)−1)
E\

(
f

(
t1/α

J1/α

)
J (θ/α)−1

)
,

for t > 0, where P\ = eθξt P on σ(ξs, s ≤ t) and J =
∫∞

0
exp{−αξs}ds.

The above description of the measure N is reminiscent of Imhof’s construction of
the excursion measure of the Brownian process out from 0 which relates the law of a
brownian motion conditioned to stay positive and started from zero, that is a Bessel
process issued from 0, and the excursion measure. Further results in this direction and
a description of the excursion measure conditionally on the length as well as its image
under time reversal are provided in [54]. A description of the excursion measure in
terms of the height of the excursion is provided in [3].

2.1.3 A stochastic differential equation approach

Motivated by the problem of existing zero and the description of the recurrent extension
of positive self-similar Markov process, Barczy and Döring [24] studied a stochastic
differential equation (SDE for short) approach. More precisely, recall that the Lévy-
Itô representation of a Lévy process ξ = (ξt, t ≥ 0) is given as follows

ξt = bt+ σBt +

∫ t

0

∫
{|u|≤1}

uÑ (ds, du) +

∫ t

0

∫
{|u|≥1}

uN (ds, du),

where b ∈ IR, σ ≥ 0, B is a Brownian motion and N is an independent Poisson random
measure on (0,∞) × IR with intensity ds ⊗ Π(du) and Ñ represents its compensated
version. Assuming that E[eξ1 ] <∞, hence the proposed SDE can be written as follows

Xt = x+
(
log E[eξ1 ; ζ > 1]

)
t+ σ

∫ t

0

√
XtdBs −

∫ t

0

∫ ∞
0

1{rXs−≤1}Xs−M̃(ds, dr)

+

∫ t

0

∫ ∞
0

∫ ∞
−∞

1{rXs−≤1}Xs−(eu − 1)Ñ1(ds, dr, du),

for t ≤ T0. HereB is a Brownian motion,N1 is an independent Poisson random measure
on (0,∞)×(0,∞)×IR with intensity ds⊗dr⊗Π(du) andM is an independent Poisson

random measure on (0,∞)× (0,∞) with intensity qds⊗dr. The random measures M̃
and Ñ represents the compensated version of M and N , respectively. The intuition
of the above SDE follows from applying Itô’s formula to eξt and afterwards including
a correction which is given by the random time change.

It is important to note that whenever 0 < log E[eξ1 ; ζ > 1] < ∞, then this new
representation is not restricted to t ≤ T0. We also note that the SDE defined above
posses weak solutions up to a first hitting time. If ξ posses only negative jumps
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and satisfies that 0 < log E[eξ1 ; ζ > 1], then for any initial condition x > 0 there is
a pathwise unique non-negative strong solution (Xt, t ≥ 0) which is self-similar with
index α = 1 and such that (Xt, 0 ≤ t ≤ T0) its underlying Lévy process in the Lamperti
transform has the same law as ξ killed at rate q. If the Lévy process ξ satisfies the
Cramér condition then (Xt, t ≥ 0) is the unique recurrent self-similar extension of
(Xt, 0 ≤ t ≤ T0). Moreover if ξ does not drift to −∞ or ξ drifts to −∞ and it satisfies
the Cramér condition, then the process (Xt, t ≥ 0) is the unique strong solution of the
above SDE with initial condition X0 = 0.

2.2 Exponential functionals

As we have seen in previous sections a recurrent object in the theory of pssMp is the
so-called exponential functional of a Lévy process ξ with lifetime ζ, i.e.

Iζ(ξ) :=

∫ ζ

0

exp
{
ξs

}
ds.

For instance, a consequence of Lamperti’s transformation is that the first hitting time
of a positive valued ssMp has the same law as the exponential functional of a Lévy
process; we have also seen that it describes the entrance law of a pssMp that never
hits zero, or the entrance law under the excursion measure of the recurrent extension
associated to a pssMp that hits zero in a finite time. Latter in this note, Section
3.3, we will see that the density of an exponential functional plays a crucial role in
establishing integral test for describing the upper and lower envelopes of a pssMp; also
we will see in Section 3.4 that the Yaglom limit for a pssMp is determined by the
asymptotic behaviour of the tail distribution of the first hitting time of zero. Hence
a good understanding of the law of an exponential functional is necessary in order to
obtain precise information about pssMp’s. Furthermore, one could say that exponential
functionals of Lévy processes and pssMp leave in symbiosis because facts about pssMp
have been used to obtain properties of exponential functionals.

Moreover, this is not the only fact that has motivated many research works on the
topic over the last two decades. The law of Iζ(ξ) plays an important role in many other
areas of probability theory, for instance in fragmentation, coalescence and branching
processes, financial and insurance mathematics, Brownian motion in hyperbolic spaces,
random processes in random environment, etc. For more details about these topics and
other aspects not covered in this section we refer to the survey paper [9]. In this section
we intend to provide a collection of results that partially complements the latter paper.

Because in our setting ζ is taken as the life time of the Lévy process ξ, we will
hence focus in the case where ζ = eq, an exponential random variable with parameter
q ≥ 0 which is independent of the process ξ. Many authors have been interested in
the existence (and determine explicitly, as well) of the density associated to Ieq(ξ).
When q = 0, then eq is understood as ∞. In this case, we assume that the process ξ
drifts towards −∞ since it is a necessary and sufficient condition for the almost sure
finiteness of I(ξ) := I∞(ξ), see for instance Theorem 1 in Bertoin and Yor [9]. Carmona,
Petit and Yor [15] were the first in studying the existence of the density of I∞(ξ). More
precisely, they proved the existence of such density in the case when the jump structure
of the Lévy process is of finite variation and also provided an integral equation that
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the density must hold, we will recall the integral equation below. Recently Bertoin et
al. [6] (see Theorem 3.9) proved the existence of the density in the general case.

The first result that we present in this section is about the existence of the density of
Ieq(ξ) in the case q > 0, in terms of its associated positive self-similar process (X,P1),
it has been obtained in [50].

Theorem 5. Let q > 0, then the function

h(t) := qE1

[
1

Xt

1{t<T0}

]
, t ≥ 0,

is a density for the law of Ieq(ξ).

A consequence of this result in the case where ξ is a subordinator gives the following
important property of h.

Corollary 1. Assume q > 0 and that ξ is a subordinator. Then the law of the r.v.
Ieq(ξ) is a mixture of exponentials, that is its law has a density h on (0,∞) which is
completely monotone. Furthermore, limt↓0 h(t) = q.

Carmona, et al. [15] integral equation give some information of the density and allow
us to compute it explicitly in some particular cases. A generalizaton and extension of
this integral equation in the case of the negative of a subordinator has been obtained
in [50]

Theorem 6. Assume that ξ = −σ, with σ a subordinator with drift c ≥ 0, killing term
q and Lévy measure Π. Let q ≥ 0. The random variable Ieq has a density that we
denote by k, and it solves the equations∫ ∞

y

k(x)dx =

∫ ∞
0

k(yex)Uq(dx), almost everywhere, (2.12)

and

(1− cx)k(x) =

∫ ∞
x

Π(log(y/x))k(y)dy + q

∫ ∞
x

k(y)dy, x ∈ (0, 1/c). (2.13)

with E
[∫ eq

0
1{σt∈dx}dt

]
= Uq(dx), on x ≥ 0, and Π(y) := Π(y,∞), for y > 0. Con-

versely, if a density on (0, 1/c) satisfies any of the equations (3.12) or (3.13) then it is
the density of Ieq .

There are two main approaches which have been developed and used to extract
more information about the law of the exponential functional. The first one uses the
fact that the Mellin transform of Ieq(ξ) is solution of the functional equation,

E
[
Ieq(ξ)

s−1
]

=
ψq(s)

s
E
[
Ieq(ξ)

s
]
, (2.14)

where ψq(λ) = − ln E[eλξ1 , 1 < eq]. The above equation, when q = 0, appears for the
first time in Carmona et al. [15] and was extended by Maulik and Zwart [45]. When
q = 0, the equation (3.14) can be solved explicitly in the case when ξ is the negative of
a subordinator or a spectrally positive Lévy process, which, in both cases, determine
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the law of Ieq(ξ). More precisely, let −ξ be a subordinator and Φ(λ) = − ln E[eλξ1 ].
Carmona et al. [15] noted that the law of the exponential functional of a subordinator
is determined by its entire moments which are given by the identity

E
[
I(ξ)k

]
=

k

Φ(k)
E
[
I(ξ)k−1

]
=

k!

Φ(1) · · ·Φ(k)
, for k = 1, 2, . . .

We note that this equation can be solved explicitly in many situations, see for instance
Bertoin and Yor [9]. Similarly, if ξ is a spectrally positive Lévy process, Bertoin and
Yor [9] proved that the law of I(ξ) is determined by its negative entire moments and
can be expressed in the form

E
[
I(ξ)−(k+1)

]
=

Ψ(k)

k
E
[
I(ξ)−k

]
= m

Ψ(1) · · ·Ψ(k − 1)

(k − 1)!
, for k = 1, 2, . . .

where Ψ(λ) = ln E[e−λξ1 ] and with the convention that the right-hand side equals m
for k = 1.

One can prove that if Cramér’s condition is satisfied then the Mellin transform of
Ieq(ξ) satisfies the functional identity (3.14), however it is clear that there are infinitely
many functions which satisfy the same functional identity. The next result obtained by
Kuznetsov and Pardo [39] tells us that if we have found a function f(s) which satisfies
(3.14), and if we can verify two conditions about the zeros of this function and its
asymptotic behaviour, then we can in fact uniquely identify the Mellin transform of
Ieq(ξ).

Proposition 1. Assume that there exists z0 > 0 such that ψq(z) is finite for all z ∈
(0, z0) and ψq(θ) = 0 for some θ ∈ (0, z0). If f(s) satisfies the following three properties

(i) f(s) is analytic and zero-free in the strip Re(s) ∈ (0, 1 + θ),

(ii) f(1) = 1 and f(s+ 1) = sf(s)/ψq(s) for all s ∈ (0, θ),

(iii) |f(s)|−1 = o(exp(2π|Im(s)|)) as Im(s)→∞, uniformly in Re(s) ∈ (0, 1 + θ),

then E[Ieq(ξ)
s−1] ≡ f(s) for Re(s) ∈ (0, 1 + θ).

In particular, this proposition can be used to provide a very simple and short proof
of the well-known result on exponential functional of Brownian motion with drift and
of the recent results on exponential functionals of processes with double-sided hyper-
exponential jumps (see [14]).

Recently in [39], the authors found a particular class of Lévy processes, called
hypergeometric Lévy processes, for which the solution of the functional equation can
directly be guessed from (3.14) and verified using Proposition 1, and derived the law
of Ieq(αξ) for an specific value of q.

Hypergeometric Lévy processes were first introduced in [42] and constructed using
Vigon’s theory of philanthropy (see [58]). The class of processes that we present next
should be considered as a subclass of the hypergeometric processes studied in [42] and
as a generalization of Lamperti-stable processes, which were introduced by Caballero
and Chaumont [11].
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We start by defining its Laplace exponent ψq(z) as

ψq(z) =
Γ(1− β + γ − z)

Γ(1− β − z)

Γ(β̂ + γ̂ + z)

Γ(β̂ + z)
, (2.15)

where (β, γ, β̂, γ̂) belong to the admissible set of parameters

A = {β ≤ 1, γ ∈ (0, 1), β̂ ≥ 0, γ̂ ∈ (0, 1)}.

Let
η = 1− β + γ + β̂ + γ̂.

The Levy density of hypergeometric Lévy processes can be computed explicitly, see
Proposition 1 in [39]. Moreover, if β < 1 and β̂ > 0 the process ξ is killed at rate

q = ψq(0) =
Γ(1− β + γ)

Γ(1− β)

Γ(β̂ + γ̂)

Γ(β̂)
.

The process ξ drifts to +∞, −∞ or oscillates whenever β = 1 and β̂ > 0, β < 1 and
β̂ = 0 or β = 1 and β̂ = 0. The process ξ has no Gaussian component. When γ+ γ̂ < 1
(1 ≤ γ + γ̂ < 2) the process has paths of bounded variation and no linear drift (paths
of unbounded variation).

Three Lamperti-stable processes ξ∗, ξ↑ and ξ↓ were introduced by Caballero and
Chaumont [11] by applying the Lamperti transformation to the positive self-similar
Markov processes construced from a stable process. In particular, the process ξ∗ is
obtained from a stable process started at x > 0 and killed upon exit from the positive
half-line, while the process ξ↑ {ξ↓} is obtained from a stable process conditioned to
stay positive {conditioned to hit zero continuously}. We refer to [11, 12, 17] for all the
details on these processes.

The Lamperti-stable processes ξ∗, ξ↑, ξ↓ can be identified as hypergeometric pro-
cesses with the following sets of parameters

β γ β̂ γ̂

ξ∗ 1− α(1− ρ) αρ 1− α(1− ρ) α(1− ρ)

ξ↑ 1 αρ 1 α(1− ρ)

ξ↓ 0 αρ 0 α(1− ρ)

Let δ = 1/α. From the definition of the Laplace exponent (3.15) we find that ξ
satisfies Cramér’s condition, that is to say E[exp(β̂ξ1)] = 1, therefore applying Lemma
2 from Rivero [55] we conclude that the Mellin transform of Ieq(αξ) exists for s ∈
(0, 1 + β̂δ). In order to describe the results about the law of Ieq(αξ), we need to define
the double gamma function, G(z; τ). The double gamma function is defined by an
infinite product in Weierstrass’s form

G(z; τ) =
z

τ
ea

z
τ

+b z
2

2τ

∏
m≥0

∏
n≥0

′
(

1 +
z

mτ + n

)
e
− z
mτ+n

+ z2

2(mτ+n)2 , | arg(τ)| < π, z ∈ C.
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Here the prime in the second product means that the term corresponding to m = n = 0
is omitted. Note that by definition G(z; τ) is an entire function in z and if τ /∈ Q it
has simple zeros on the lattice mτ + n, m ≤ 0, n ≤ 0. We refer to Kuznetsov [36] or
Kuznetsov and Pardo [39] for more properties of this function. The following result,
lifted from [39], characterize the Mellin transform of the exponential functional of
hypergeometric Lévy processes.

Theorem 7. Assume that α > 0, (β, γ, β̂, γ̂) ∈ A and β̂ > 0. Then for s ∈ C we have

E[Ieq(αξ)
s−1] ≡ CΓ(s)

G((1− β)δ + s; δ)

G((1− β + γ)δ + s; δ)

G((β̂ + γ̂)δ + 1− s; δ)
G(β̂δ + 1− s; δ)

, (2.16)

where the constant C is such that the above identity equals 1 when s = 1.

We now want to study the density of the exponential functional, which is defined
by

p(x) =
d

dx
P(Ieq(αξ) ≤ x), x ≥ 0.

In order to do so, we have to compute the inverse Mellin transform of (3.16) which
is not a simple inversion exercise. From the paper by Kuznetsov & Pardo [39] in the
next result it is provided an asymptotic expansion of the density p(x) in the case when
α /∈ Q.

Theorem 8. Assume that α /∈ Q. Then

p(x) ∼
∑
n≥0

anx
n +

∑
m≥0

∑
n≥0

bm,nx
(m+1−β+γ)δ+n, x→ 0+,

p(x) ∼
∑
m≥0

∑
n≥0

cm,nx
−(m+β̂)δ−n−1, x→ +∞.

The series (an)n≥0, (bm,n)m,n≥0 and (cm,n)m,n≥0 can be computed explicitly. We refer
to Kuznetsov and Pardo [39] for more details about this series.

It turns out that for almost all parameters α the asymptotic series from above
converge to p(x) for all x > 0. In order to state this result, we need to define the
following set of real numbers.

Definition 3. Let L be the set of real irrational numbers x, for which there exists a
constant b > 1 such that the inequality∣∣∣∣x− p

q

∣∣∣∣ < 1

bq

is satisfied for infinitely many integers p and q.

For more details about this set of irrational numbers see Kuznetsov [36] and Kuznetsov
and Hubalek [32]. The following result was obtained in [39].

Theorem 9. Assume that α /∈ L ∪Q. Then for all x > 0

p(x) =


∑
n≥0

anx
n +

∑
m≥0

∑
n≥0

bm,nx
(m+1−β+γ)δ+n, if γ + γ̂ < 1,∑

m≥0

∑
n≥0

cm,nx
−(m+β̂)δ−n−1, if γ + γ̂ > 1.
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It is worth recalling that, in general, it is not an easy exercise to invert the Mellin
(or moments) transform of Ieq(ξ) since a fine analysis of its asymptotic behavior is
required.

The second methodology is based on the well-known relation between the law of
Ieq(ξ) and the distribution of the absorption time of positive self-similar Markov pro-
cesses. Indeed, in Carmona et al. [15] it is shown that the law of Ieq(ξ) can be expressed
as an invariant function of a transient Ornstein-Uhlenbeck process associated to self-
similar Markov process.

In Pardo et al. [49], starting from a large class of Lévy processes and assuming
that q = 0, it is shown that the law of I(ξ) can be factorized into the product of
independent exponential functionals associated with two companion Lévy processes,
namely the descending ladder height process of ξ and a spectrally positive Lévy process
constructed from its ascending ladder height process. It is known that these two
subordinators appear in the Wiener-Hopf factorization of Lévy processes. The laws
of these exponential functionals are uniquely determined either by their positive or
negative integer moments. Moreover, whenever the law of any of these can be expanded
in series we can in general develop the law of I(ξ) in series. Thus, for example, the
requirements put on the Lévy measure of ξ in Kuznetsov and Pardo [39] can be relaxed
to conditions only on the positive jumps (the Lévy measure on the positive half-line)
of ξ thus enlarging considerably the class of Lévy processes ξ, for which we can obtain
a series expansion of the law of I(ξ).

Before stating the next results let us introduce some notation. First, since in our
setting ξ drifts to −∞, it is well-known that the ascending (resp. descending) ladder
height process H+ = (H+(t))t≥0 (resp. H− = (−H−(t))t≥0) is a killed (resp. proper)
subordinator. Then, we write, for any z ∈ iR,

φ+(z) = log E
[
exp(zH+(1))

]
= δ+z +

∫
(0,∞)

(ezy − 1)µ+(y. )− k+ , (2.17)

where δ+ ≥ 0 is the drift and k+ > 0 is the killing rate. Similarly, with δ− ≥ 0, we
have

φ−(z) = log E
[
exp(zH−(1))

]
= −δ−z −

∫
(0,∞)

(1− e−zy)µ−(y. ) . (2.18)

We recall that the integrability condition
∫∞

0
(1 ∧ y)µ±(dy) < ∞ holds. The Wiener-

Hopf factorization then reads off as follows

Ψ(z) = −φ+(z)φ−(z), for any z ∈ iR. (2.19)

Definition 4. We denote by P the set of positive measures on R+ which admit a
non-increasing density.

Before we formulate the next result we introduce the two main hypothesis:

(H1) Assume further that −∞ < E [ξ1] and that one of the following conditions holds:

i) µ+ ∈ P and there exists z+ > 0 such that for all z with, <(z) ∈ (0, z+), we
have |Ψ(z)| <∞.

ii) Π+ ∈ P .
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(H2) Assume that

i) µ+ ∈ P , k+ > 0 and µ− ∈ P .

Then the following result has been proved by Pardo, Patie & Savov [49].

Theorem 10. Assume that ξ is a Lévy process that drifts to −∞ with characteristics
of the ladder height processes as in (3.17) and (3.18). Let either (H1) or (H2) holds.
Then, in both cases, there exists a spectrally positive Lévy process Y with a negative
mean whose Laplace exponent ψ+ takes the form

ψ+(−s) = −sφ+(−s) = δ+s
2 + k+s+ s2

∫ ∞
0

e−syµ+(y,∞)dy, s ≥ 0, (2.20)

and the following factorization holds

I(ξ)
d
= I(−H−)× I(Y ) (2.21)

where
d
= stands for the identity in law and × for the product of independent random

variables.

The above result has been recently improved by Patie and Savov [52]. The obtained
identity can be looked from another perspective. Let us have two subordinators with
Lévy measures µ± such that µ+ ∈ P , k+ > 0 and µ− ∈ P . Then according to Vigon’s
theory of philanthropy, see [58], we can construct a process ξ such that its ladder height
processes have exponents as in (3.17) and (3.18) and hence ξ satisfies the conditions
of the previous Theorem. Therefore this method can be used to synthesize examples
starting from the building blocks, i.e. the ladder height processes. This was observed
in [49].

Corollary 2. Let µ± be the Lévy measures of two subordinators and µ+ ∈ P , k+ > 0
and µ− ∈ P. Then there exists a Lévy process which drifts to −∞ whose ascending
and descending ladder height processes have the Laplace exponents respectively given by
(3.17) and (3.18). Then all the claims of the Theorem 10 hold and in particular we
have the factorization (3.21).

Another interesting problem is determining the behaviour of the density of the
exponential functional I(ξ) at 0 and at ∞. This problem has been recently studied by
Kuznetzov [37] for Lévy processes with rational Laplace exponent (at 0 and at∞) and
by Patie [51] for spectrally negative Lévy processes (at∞). In most of the applications,
it is enough to have estimates of the tail behaviour P(I(ξ) ≤ t) when t goes to 0 and/or
P(I(ξ) ≥ t) when t goes to ∞. The tail behaviour P(I(ξ) ≤ t) was studied by Pardo
[48] in the case where −ξ is spectrally positive Lévy process and its Laplace exponent is
regularly varying at infinity with index γ ∈ (1, 2). That is the content of the following
result.

Proposition 2. Let I(ξ) be the exponential functional associated to a spectrally neg-
ative Lévy process ξ. Suppose that ψ, the Laplace exponent of −ξ, varies regularly at
+∞ with index β ∈ (1, 2). Then

− log P
(
I
(
ξ
)
< 1/x

)
∼ (β − 1)

↼

H(x) as x→ +∞, (2.22)
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where
↼

H(x) = inf
{
s > 0 , ψ(s)/s > x

}
.

In the case where the Lévy process is the negative of a subordinator several results
are available to describe the left and right tail distribution of the exponential functional.
Haas and Rivero [30] studied the case when ξ is the negative of a subordinator under
several different frameworks, obtaining very precise estimates of the right tail behavior
of the law of I, and described the maximum domain of attraction of I. One of the main
results in [30] is the following description of the hazard rate function of an exponential
functional of the negative of a subordinator.

Theorem 11. Let −ξ be a subordinator, q ≥ 0, and ϕΠ,q the function defined in (3.34)
below. Ieq(ξ) has a density k such that

1. if a = 0 and lim infx→0+
xΠ(x)R x

0 Π(u)du
> 0,

k(t)

P(Ieq(ξ) > t)
∼t→∞

ϕΠ,q(t)

t
, − log P(Ieq(ξ) > t) ∼t→∞

∫ t

c

ϕΠ,q(u)

u
du.

2. if a > 0 and 0 < lim inf
x→0+

xΠ(x)∫ x
0

Π(u)du
≤ lim sup

x→0+

xΠ(x)∫ x
0

Π(u)du
< 1,

k(t)

P(Ieq(ξ) > t)
∼t→1/a aϕΠ,q

(
t

1− at

)
.

3. if a > 0 and Π(0,∞) <∞,
(

1

a
− t
)

k(t)

P(Ieq(ξ) > t)
∼t→1/a

Π(0,∞) + q

a
.

In the first two cases the Von-mises condition is satisfied

k(t)

∫ ∞
t

P(Ieq(ξ) > s)ds/(P(Ieq(ξ) > t))2 −−−→
t→tF

1.

To describe the behaviour of the distribution at 0 of the negative of a subordinator
we introduce the following assumption.
(A) The Lévy measure Π belongs to the class Lα for some α ≥ 0, that is to say that
the tail Lévy measure Π satisfies

lim
x→∞

Π(x+ y)

Π(x)
= e−αy, for all y ∈ R. (2.23)

Observe that regularly varying and subexponential tail Lévy measures satisfy this
assumption with α = 0 and that convolution equivalent Lévy measures are examples
of Lévy measures satisfying (3.23) for some index α > 0.

Theorem 12. Let q ≥ 0 and ξ = −σ, where σ is a subordinator such that when q = 0
the Lévy measure Π satisfies assumption (A). The following asymptotic behaviour holds
for the density function k of the exponential functional Ieq .
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i) If q > 0, then
k(x) −→ q as x ↓ 0.

ii) If q = 0, then E[I−α] <∞ and

k(x) ∼ E
[
I−α
]
Π(log 1/x) as x ↓ 0.

From this result it is possible to derive estimates for the exponential functional of
the negative of a type of spectrally negative Lévy process, see [50].

Furthermore, the tail behaviour P(I ≥ t) has been studied in a general setting, see
for instance [19, 45, 54, 56], which is far from being an exhaustive list of references.
We quote the following result from [54, 56].

Theorem 13. (i) Assume that ξ1 is no-lattice and it satisfies the conditions

E [exp(γξ1)] = 1 and E
[
ξ+

1 exp(γξ1)
]
<∞.

In this case we have that tγ P(I > t) −−−→
t→∞

Cγ ∈ (0,∞).

(ii) Assume q = 0, that there exists a γ > 0 s.t. ξ is convolution equivalent with index
γ,

lim
t→∞

P(ξ1 > t+ s)

P(ξ1 > t)
= e−γs, s ∈ R, lim

t→∞

P(ξ2 > t)

P(ξ1 > t)
= 2 E[eγξ1 ],

and E[eγξ1 ] < 1. If 0 < γ ≤ 1, we assume furthermore that E[ξ1] ∈ (−∞, 0).
Under these hypotheses

P(I > t) ∼ cγ E(I |1−γ|)Πξ(log(t),∞) = t−γ`(t), t→∞,

with ` an slowly varying function.

More results about exponential functionals and their relations with other areas of
probability theory can be found in the thorough review by Bertoin and Yor [9].

2.3 Asymptotic behaviour

The asymptotic behaviour of positive self-similar Markov processes X(x) with initial
state x > 0 was studied by Lamperti (Theorem 7.1 in [44]). This property is inherited
by the asymptotic behaviour of its associated Lévy process ξ and the fact that,

lim
t→0

τ(t)

t
= 1 Px − a.s.

Particularly, we have the following result due to Lamperti [44].

Theorem 14. Let ξ a Lévy process that admits a law of the iterated logarithm, i.e. for
some function g : [0,+∞)→ [0,+∞) and some constant c ∈ IR

lim inf
t→0

ξt
g(t)

= c or lim sup
t→0

ξt
g(t)

= c, almost surely.

Then for x > 0, X(x), its associated self-similar Markov process, satisfies

lim inf
t→0

X
(x)
t − x
g(t)

= C(x, c) or lim sup
t→0

X
(x)
t − x
g(t)

= C(x, c), almost surely,

where C(x, c) is a constant that only depends on x and c.
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Of course, we would like to know if we can use the Lamperti representation to the
study of the asymptotic behaviour of X(x) at +∞. Also, we would like to know if
we can study the lower and upper functions of positive self-similar Markov processes
starting from 0 at small times.

Several partial results on the lower envelope of X(0) have already been established
before, the oldest of which are due to Dvoretsky and Erdös [25] and Motoo [46] who
studied the special case of Bessel processes. More precisely, when X(0) is a Bessel
process with dimension δ > 2, we have the following integral test at 0: if f is an
increasing function then

P(X
(0)
t < f(t), i.o., as t→ 0) =

{
0
1

according as

∫
0+

(
f(t)

t

) δ−2
4 dt

t

{
<∞
=∞ .

The time inversion property of Bessel processes, induces the same integral test for the
behaviour at +∞ of X(x), x ≥ 0.

Rivero [53] studied the lower functions of increasing self-similar Markov processes
via the Lamperti representation. Following the method of Motoo [46] applied to

(e−tX
(x)
et−1, t ≥ 0), the Ornstein-Uhlenbeck process associated to X(x) (see Carmona

et al. [15] for a proper definition), and under the assumption that the density ρ is de-
creasing in a neighborhood of +∞ and bounded, Rivero [53] gave the following integral
test for the lower envelope at +∞.

Theorem 15. Let x > 0 and X(x) an increasing self-similar Markov processes starting
from x. If h is a decreasing function then

P
(
X(x)
s < s1/αh(s), i.o., as s→ +∞

)
= 0 or 1

according as ∫ ∞
ρ
(
1/h(s)

)ds

s
is finite or infinite.

A similar integral test for the lower envelope at 0 is obtained by Rivero via some
reversal properties of X(x). From estimates of ρ and from the above result, Rivero [53]
deduced the following laws of the iterated logarithm.

Theorem 16. Let α > 0, and ξ be a subordinator whose Laplace exponent φ is reg-
ularly varying at +∞ with index β ∈ (0, 1). Suppose that the density ρ, of the Lévy
exponential functional I(−αξ) of ξ satisfies that is decreasing in a neighborhood of +∞,
and bounded. For x ≥ 0, let X(x) be the increasing positive self-similar Markov process
associated to ξ with scaling index 1/α. Define

f(t) =
φ(log | log t|)

log | log t|
, t 6= e, t > 0,

then for any x ≥ 0

lim inf
t→+∞

X(x)

(tf(t))1/α
= αβ/α(1− β)(1−β)/α almost surely,

and

lim inf
t→0

X(0)

(tf(t))1/α
= αβ/α(1− β)(1−β)/α almost surely.
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This result extends the laws of the iterated logarithm of Friested [28] and Xiao [61].
We now present some general results on the lower envelope of X(0) at 0 and at ∞.

The next result obtained by Chaumont and Pardo [19] means in particular that the
asymptotic behaviour of X(0) only depends on the tail behaviour of the law of I(−ξ),
and on this of the law of

Iq(−ξ)
(def)
=

∫ T̂−q

0

exp
{
− ξs

}
ds,

with T̂x = inf{t : −ξt ≤ x}, for x ≤ 0. So also we set

F (t)
(def)
= P(I(−ξ) > t) and Fq(t)

(def)
= P(Iq(−ξ) > t).

Theorem 17. The lower envelope of X(0) at 0 is described as follows. Let f be an
increasing function.

(i) If ∫
0+

F

(
t

f(t)

)
dt

t
<∞ ,

then for all ε > 0,

P(X
(0)
t < (1− ε)f(t), i.o., as t→ 0) = 0 .

(ii) If for all q > 0, ∫
0+

Fq

(
t

f(t)

)
dt

t
=∞ ,

then for all ε > 0,

P(X
(0)
t < (1 + ε)f(t), i.o., as t→ 0) = 1 .

(iii) Suppose that t 7→ f(t)/t is increasing. If there exists γ > 1 such that,

lim supt→+∞P(I > γt)/P(I > t) < 1 and if

∫
0+

F

(
t

f(t)

)
dt

t
=∞ ,

then for all ε > 0,

P(X
(0)
t < (1 + ε)f(t), i.o., as t→ 0) = 1 .

As can be expected, there is a version of the last result for large times but Chaumont
and Pardo proved that it could be extended also for X(x), for x > 0.

We now consider two types of behaviour of F (t). The first type of tail behaviour
that we consider is the case where F is regularly varying at infinity, i.e.

F (t) ∼ λt−γL(t) , t→ +∞ , (2.24)

where γ > 0 and L is a slowly varying function at +∞. It is not difficult to see
that, under this assumption, for any q > 0 the functions Fq and F are equivalent, i.e.
Fq � F . More precisely, if (3.24) holds then for all q > 0,

(1− e−γq)F (t) ≤ Fq(t) ≤ F (t) , (2.25)
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for all t large enough. This last inequality is consequence from (3.24) and the indepen-
dence of the processes (ξs, 0 ≤ s ≤ T̂−q) and (ξs+T̂−q − ξT̂−q , s ≥ 0). It is important to

note that the Dvoretzky and Erdös integral test is consequence of this result when X(0)

is a transient Bessel process. Another example of such behaviour is when the process
ξ satisfies the hypotheses of Theorem 13.

The second type of behaviour that we shall consider is when logF is regularly
varying at +∞, i.e.

− logF (t) ∼ λtβL(t) , as t→∞, (2.26)

where λ > 0, β > 0 and L is a function which varies slowly at +∞. Under this
assumption, the conditions of part (iii) of the general integral tests due to Chaumont
and Pardo are satisfied.

Define the function ψ by

ψ(t)
(def)
=

t

inf{s : 1/F (s) > | log t|}
, t > 0 , t 6= 1 . (2.27)

Chaumont and Pardo found that the lower envelope of X(0) satisfies the following law
of the iterated logarithm:

(i)

lim inf
t→0

X
(0)
t

ψ(t)
= 1 , almost surely. (2.28)

(ii) For all x ≥ 0,

lim inf
t→+∞

X
(x)
t

ψ(t)
= 1 , almost surely. (2.29)

Note that this result extends the laws of the iterated logarithm found by Xiao [61]
and Rivero [53] in the increasing case, but not their integral tests. Also, note that the
assumption that the density of I(−ξ) is decreasing in a neigbourhood of +∞ in the law
of the iterated logarithm due to Rivero [53] is not necessary but it is really important
for his integral tests. In what follows we will describe some integral tests obtained in
[47].

Let us define

Ḡ(t)
(def)
= P

(
S1 < t

)
and F̄ (t)

(def)
= P

(
I(−ξ) < t

)
,

where S1 denotes the first passage time of X(0) above the level 1. We also denote by
H0 the totality of positive increasing functions h(t) on (0,∞) that satisfy

i) h(0) = 0, and

ii) there exists β ∈ (0, 1) such that sup
t<β

t

h(t)
<∞.

The following result is extracted from [47].

Theorem 18. Let h ∈ H0.
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i) If ∫
0+

Ḡ

(
t

h(t)

)
dt

t
<∞,

then for all ε > 0

P0

(
X

(0)
t > (1 + ε)h(t), i.o., as t→ 0

)
= 0.

ii) If ∫
0+

F̄

(
t

h(t)

)
dt

t
=∞,

then for all ε > 0

P0

(
Xt > (1− ε)h(t), i.o., as t→ 0

)
= 1.

A similar integral test holds for large times. As in the case for the lower envelope
of X(0), these results can be applied to two type of estimates of the tail behaviour of I
and νI. First, we discuss the case when F̄ and Ḡ satisfy

ctαL(t) ≤ F̄ (t) ≤ Ḡ(t) ≤ CtαL(t) as t→ 0, (2.30)

where α > 0, c and C are two positive constants such that c ≤ C and L is a slowly
varying function at 0. An important example included in this case is when F̄ and Ḡ
are regularly varying functions at 0. The “regularity” of the behaviour of F̄ and Ḡ
gives the following integral tests obtained in [47].

Theorem 19. (Regular case) Under condition (3.30), the upper envelope of X(0)

at 0 and at +∞ is as follows. Let h ∈ H0, such that either limt→0 t/h(t) = 0 or
lim inft→0 t/h(t) > 0, then

P
(
X

(0)
t > h(t), i.o., as t→ 0

)
= 0 or 1,

according as ∫
0+

F̄

(
t

h(t)

)
dt

t
<∞ is finite or infinite.

Note that under condition (3.30), we may drop the factor (1 + ε) and that the previous
integral test depends only of F̄ . This result extends the integral test of Khintchine [34]
for a stable subordinator. This is consequence of the following estimate of F̄ ,

F̄ (t) ∼ ktβ+1 as t→ 0,

and since in the increasing case this integral test determines the upper envelope of
increasing pssMp.

The second type of behaviour that we shall consider is when log F̄ and log Ḡ are
regularly varying at 0, i.e

− log Ḡ(1/t) ∼ − log F̄ (1/t) ∼ λtβL(t), as t→ +∞, (2.31)

where λ > 0, β > 0 and L is a slowly varying function at +∞. Under this assumption,
the upper envelope of X(0) may be described as follows. Define the function

φ(t)
(def)
= t inf

{
s : 1/F̄ (1/s) > | log t|

}
, t > 0, t 6= 1.

The following result has been obtained in [47].
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Theorem 20. (Log-regular case) Under condition (3.31), the future infimum process
satisfies the following law of the iterated logarithm:

i)

lim sup
t→0

X
(0)
t

φ(t)
= 1, almost surely.

ii) For all x ≥ 0,

lim sup
t→+∞

X
(x)
t

φ(t)
= 1, almost surely.

It can be seen using the results in Theorem 2 that there is a large family that
satisfies the condition (3.31). From this estimate Pardo obtained the following law of
iterated logarithm for the future infimum process in terms of the following function.
Let us define the function

f(t) =
ψ(log | log t|)

log | log t|
for t > 1, t 6= e,

with ψ the Laplace exponent of −ξ, with ξ a spectrally negative Lévy process. By
integration by parts, we can see that the function ψ(λ)/λ is increasing, hence it is
straightforward that the function tf(t) is also increasing in a neighbourhood of ∞.
Using this in [47] it has been proved that if ψ is regularly varying at +∞ with index
β ∈ (1, 2), then

lim sup
t→0

X
(0)
t(

tf(t)
)1/α

= αβ/α(β − 1)−(β−1)/α almost surely, (2.32)

and,

lim sup
t→+∞

X
(x)
t(

tf(t)
)1/α

= αβ/α(β − 1)−(β−1)/α almost surely. (2.33)

We finish this section with the following interpretation of the result of existence
of a limit measure P0. If (ξ,P) is a subordinator, associated to a pssMp (X,P) via
Lamperti’s transformation, and has finite mean m := E(ξ1) <∞, we know that there
exists a measure P0+ such that

Px(X1 ∈ dy)
weakly−−−→
x→0+

P0+(X1 ∈ dx) = m−1yα P
(
I−1/α ∈ dy

)
,

where I =
∫∞

0
e−αξsds. It is furthermore known that if E(ξ1) =∞, then

Px(X1 ∈ dy)
weakly−−−→
x→0+

δ∞(dy).

Due to the self-similarity

Px(X1 ∈ dy) = P1

(
xX1/xα ∈ dy

)
,
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hence the latter is equivalent to

Xt

t1/α
Law−−−→
t→∞

{
Z, if E(ξ1) <∞, Z has the same law as X1 under P0+;

∞, if E(ξ1) =∞.

A further problem that has been addressed in [13] describes the rate at which Xt/t
1/α

tends towards ∞, when the mean of the underlying subordinator ξ is not finite. The
main result by Caballero and Rivero [13] is the following.

Theorem 21. Let {X(t), t ≥ 0} be a positive 1/α-self-similar Markov process with
increasing paths. The following assertions are equivalent:

(i) φ : IR+ → IR+, is regularly varying at 0 with an index β ∈ [0, 1].

(ii) Under P1 the random variables
{

log(X(t)/t1/α)/ log(t), t > 1
}

converge weakly as
t→∞ towards a r.v. V.

(iii) For any x > 0, under Px the random variables
{

log(X(t)/t1/α)/ log(t), t > 1
}

converge weakly as t→∞ towards a r.v. V.

In this case, the law of V is given by: V = 0 a.s. if β = 1; V =∞, a.s. if β = 0, and
if β ∈]0, 1[, its law has a density given by

α1−β2β sin(βπ)

π
v−β(2 + αv)−1dv, v > 0.

2.4 Quasi-stationary distributions

Another topic that has been studied related with the asymptotic behaviour of pssMp is
the existence of Yaglom limits and quasi-stationary distributions. The main difference
with the asymptotic behaviour described before relies on the idea that pssMp that hit
zero at a finite time may be at an equilibrium state before being absorbed at 0. The
main questions that were addressed in the paper [30] are the following. Assuming that
the self-similar Markov process hits zero in a finite time with probability one, determine

QS-I whether there exists a probability measure µ on IR+ such that for any t > 0,∫
IR+

µ(dx)Px(Xt ∈ dy|t < T0) = µ(dy), y ≥ 0,

i.e. µ is a quasi-stationary measure for the pssMp (X,P);

QS-II whether there exists a function g : IR+ → IR+ \ {0} and a non-degenerate prob-
ability measure ν on IR+ such that

P1

(
Xt

g(t)
∈ dy|t < T0

)
weakly−−−→
t→tF

ν(dy),

we will say that ν is the limit in the Yaglom sense of X normalized by g; tF =
sup{t > 0 : P1(T0 > t) > 0}.

QS-III what is the relation between µ and ν.
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These questions were studied by Haas in [29] under the assumption that X has non-
increasing paths and that the Lévy measure of the associated Lévy process is regularly
varying at 0. In [30] the general case has been studied. We will assume wlog that the
self-similarity index is equal to 1. In other case, the process

Yt = Xα
t , t ≥ 0,

is a 1-pssMp. A QS-law for X exists iff a QS-law for Y exists. Analogously for Yaglom
limits.

The problem of existence of quasi-stationary distributions was tangentially studied
by Bertoin and Yor [7] in the case where the process has non-increasing paths. A slight
modification of their main results read as follows.

Theorem 22. If X has non-increasing paths, that is −ξ is a subordinator, then

• there exists a QS-law for X,∫
IR+

µ(dx)Px(Xt ∈ dy|t < T0) = µ(dy), y ≥ 0.

• µ is characterized by its entire moments; there is a β > 0∫
IR+

xnµ(dx) = β−n
n∏
i=1

φ(i), n ≥ 1,

with φ(λ) = − log E(eλξ1), λ > 0,

• let R follow the law µ and assume it is independent of ξ, then

R×
∫ ∞

0

eξsds ∼ Exponential(β).

So, in order to answer the question (QS-I) one should deal with the case where the
paths are allowed to increase. In Theorem 1.1 in [30] it is proved that a necessary and
sufficient condition for the existence of a QS-law for a pssMp is that the process has
non-increasing paths. The main argument in proving the necessity of this condition is
the following. Assume µ is a QS-law for X, the simple Markov property implies that
there exists an index θ > 0 such that∫

(0,∞)

µ(dx)Px(t < T0) = e−θt, t ≥ 0.

The self-similarity of X implies

e−θt =

∫
(0,∞)

µ(dx)Px(t < T0) =

∫
[0,∞)

µ(dx)P1(t < xT0).

Recall then that (T0,P1)
Law
= (I,P), where I =

∫ ζ
0
eξsds. Then if R ∼ µ and R is

independent of I, we have that

RI
Law
= e/θ.
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This identity and the independence imply that I has moments of all positive orders.
An easy argument allows to prove that the totality of Lévy processes for which the
exponential functional I has moments of all positive orders are exactly non-increasing
Lévy processes. This concludes the argument because Lamperti’s transform preserves
the path of the process.

A by product of the above discussion is that the existence of QS-laws is closely
related to factorizations of he exponential r.v. as the product of two independent
r.v., one of which is an exponential functional. As we will see below this extends
to Yaglom limits and give also rise to factorizations of Pareto and Beta r.v. Before
giving a precise result we state a key observation that allows to transform the problem
of existence of Yaglom limits into a problem of maximum domain of attraction for
exponential functionals.

Lemma 1. Let X be a pssMp that hits 0 in a finite time and ξ the Lévy process
associated to it via Lamperti’s transformation, which necessarily drift towards −∞ or
has a finite lifetime. We denote I :=

∫∞
0
eξsds. For t > 0, we have the equality of

measures
P(I − t ∈ dy|t < I) = P1(XtĨ ∈ dy|t < T0),

where Ĩ has the same law as I and is independent of (Xs, s ≤ t).

This result is an straith forward consequence of Lamperti’s transformation. With
this result at hand we have the following answer to question (QS-II) about Yaglom
limits.

Theorem 23. Let X be a pssMp that hits 0 in a finite time. The following assertions
are equivalent.

1. The process (Xt, t ≥ 0) admits a Yaglom limit.

2. The process (XĨ, t ≥ 0) admits a Yaglom limit, with Ĩ
Law
= I and independent of

X.

3. There exists a function g : IR+ → IR+ \ {0} and a non-degenerate probability

measure Λ̃ on IR+ s.t.

P

(
I − t
g(t)

∈ dy|t < I

)
weakly−−−→
t→∞

Λ̃(dy).

4. I is in the maximum domain of attraction of a Gumbel, Weibul or Fréchet dis-
tribution.

In this case,

• if I ∈MDA(Gumbel), Λ̃(dy) = e−ydy, y ≥ 0;

• if I ∈MDA(Weibul), ∃γ > 0 s.t. Λ̃(dy) = γ(1− y)γ−1dy, y ∈ (0, 1);

• if I ∈MDA(Frechet), ∃γ > 0 s.t. Λ̃(dy) = γ(1 + y)−γ−1dy, y ≥ 0.
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As we mentioned before the problem of existence of Yaglom limits is also related
to factorisations of r.v. The Lemma 1 and the latter theorem have the following
consequence: if X admits a Yaglom limit, then there exists a non trivial independent
random variable

R
Law
= weak- lim

t→∞

Xt

g(t)
|t < T0,

s.t.

R× I ∼


Exponential(β), for some β > 0,

Beta(1, γ), for some γ > 0,

Pareto(γ), for some γ > 0.

A systematic study of this type of factorisations and some consequences is carried out
in [31].

We will next quote two of the main results from [30] providing some necessary and
sufficient conditions for I to be in a maximum domain of attraction of a Gumbel or
Frechet distribution. Further cases are treated in [30], together with precise results
about descriptions of the Weibull case.

Assume X has non-increasing paths and let ξ the underlying Lévy process. It is
known that

− log E(eλξ1) = q + aλ+

∫ ∞
0

1− e−λxΠ(dx), λ > 0,

with Π a measure on (0,∞) such that
∫

(0,∞)
1 ∧ xΠ(dx) <∞, q, a ≥ 0. We denote by

ϕΠ,q the inverse function of the mapping

t 7→ t∫∞
0

(1− e−tx)Π(dx) + q
; (2.34)

the inverse is well defined on [0,∞) if q > 0 and on
[
(
∫∞

0
xΠ(dx))−1,∞

)
in other case.

We denote Π(x) := Π(x,∞).

Theorem 24. Let X be a pssMp with non-increasing paths, and ξ the underlying Lévy
process. Assume that −ξ is a subordinator with killing term q ≥ 0, drift a = 0 and
Lévy measure Π such that

lim inf
x→0

xΠ(x)∫ x
0

Π(u)du
> 0. (2.35)

In this case I ∈ MDAGumbel, tF =∞ and

P1

(
ϕΠ,q(t)Xt

t
∈ · | t < T0

)
−−−→
t→∞

µ
(e)
I .

µ
(e)
I is the unique probability measure such that if R ∼ µ

(e)
I , and R⊥I then RI ∼

Exp(1).
Reciprocally, if I ∈ MDAGumbel and tF = ∞, then −ξ is a subordinator with drift

zero and g(t) ∼
R∞
t P(I>s)ds

P(I>t)
= E1(Xt|t < T0) E(I).
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The proof of this result relay on precise estimates for the tail distribution of an
exponential functional of a non-increasing Lévy processes, some of which are described
in Theorem 11 here, and this allow to verify that the so-called Von-Mises condition is
satisfied which is well known to be a necessary and sufficient condition for a r.v. to be
in the maximum domain of attraction of a Gumbel distribution.

To deal with the non-monotone case, which happens to be the one corresponding
to the domain of attraction of a Frechet distribution, the following result has been
obtained in [30].

Theorem 25. The following are equivalent:

• X is a pssMp with non-monotone paths and that admits a Yaglom limit.

• I ∈ MDAFréchet.

• t 7→ P(I > t) is regularly varying at infinity with some index −γ, γ > 0.

In this case

P1

(
Xt

t
∈ · | t < T0

)
−−−→
t→∞

µ
(Pγ)
I . (2.36)

The probability measure µ
(Pγ)
I is the unique p.m. such that if R ∼ µ

(Pγ)
I , and R⊥I then

P(RI ∈ dy) = γ(1 + y)−γ, y > 0.

A necessary condition for I ∈ MDAFréchet is

E[eθξ1 ] ≤ 1, ∀0 ≤ θ ≤ γ, and E[eδξ1 ] > 1,∀δ > γ,

for some γ > 0.

Sufficient conditions for the above theorem to hold were given in Theorem 13.

3 Real valued self-similar Markov processes

In previous sections, we studied positive self-similar Markov processes and their rela-
tionship with Lévy processes via the Lamperti representation. In this section we survey
some recent results on real valued self-similar Markov processes which turn out to be
associated to Markov additive processes via a Lamperti-type representation.

The structure of real valued self-similar Markov processes has been investigated by
Chybiryakov [21] in the symmetric case, and by Kiu [35] and Chaumont et al. [18] in
general. Inspired from [38], here we give an interpretation of those authors’ results in
terms of a two-state Markov additive process. We begin with some relevant definitions.

We focus on real-valued self-similar Markov processes (rssMp) X = (Xt, t ≥ 0) with
self- similarity index α > 0 and starting from x ∈ R \ {0}. Let (Px)x∈R\{0} denote its
probability laws starting from x.

In [18], the authors confine their attention to processes in “class C.4”. A real valued
self-similar Markov process X is in this class if,

Px(∃t > 0 : XtXt− < 0) = 1, ∀x 6= 0.
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By the strong Markov property this implies that, with probability one, the process X
changes sign infinitely often. This assumption will be in force in the sequel.

The other cases introduced in [18], namely C.1-3, are those where either the process
changes once, and only once, of sign, and those where the process never changes of sign.
In the former cases the construction of real valued ssMp can be easily deduced using
the ideas to deal with the cases where the process changes of sign infinitely many times.
In the latter case, the real-ssMp is constructed by applying Lamperti’s transformation
to the process when started at a positive (negative) position using two Lévy processes,
one to describe the positive values of the path and the other for the negative values.
We do not provide further details about these cases.

3.1 Markov additive processes

Let E be a finite state space and (Gt)t≥0 a standard filtration. A càdlàg process (ξ, J)
in R×E with law P is called a Markov additive process (MAP) with respect to (Gt)t≥0

if (J(t))t≥0 is a continuous-time Markov chain in E, and the following property is
satisfied, for any i ∈ E, s, t ≥ 0:

given {J(t) = i}, the pair (ξ(t+ s)− ξ(t), J(t+ s)) is independent of Gt,
and has the same distribution as (ξ(s)− ξ(0), J(s)) given {J(0) = i}. (3.37)

Aspects of the theory of Markov additive processes are covered in a number of texts,
among them [1] and [2].

Let us introduce some notation. We write Pi = P(·|ξ(0) = 0, J(0) = i); and if µ is
a probability distribution on E, we write Pµ = P(·|ξ(0) = 0, J(0) ∼ µ) =

∑
i∈E µ(i)Pi.

We adopt a similar convention for expectations.
It is well-known that a Markov additive process (ξ, J) also satisfies (4.37) with t

replaced by a finite stopping time. Furthermore, it has the structure given by the
following proposition; see [2, §XI.2a] and [33, Proposition 2.5].

Proposition 3. The pair (ξ, J) is a Markov additive process if and only if, for each
i, j ∈ E, there exist a sequence of iid Lévy processes (ξni )n≥0 and a sequence of iid
random variables (Un

ij)n≥0, independent of the chain J , such that if T0 = 0 and (Tn)n≥1

are the jump times of J , the process ξ has the representation

ξ(t) = 1{n>0}(ξ(Tn−) + Un
J(Tn−),J(Tn)) + ξnJ(Tn)(t− Tn), for t ∈ [Tn, Tn+1), n ≥ 0.

For each i ∈ E, it will be convenient to define, on the same probability space, ξi as
a Lévy process whose distribution is the common law of the ξni processes in the above
representation; and similarly, for each i, j ∈ E, define Uij to be a random variable
having the common law of the Un

ij variables.
Let us now fix the following setup. Firstly, we confine ourselves to irreducible

Markov chains J . Let the state space E be the finite set {1, . . . , N}, for some N ∈ N.
Denote the transition rate matrix of the chain J by Q = (qij)i,j∈E. For each i ∈ E,
the Laplace exponent of the Lévy process ξi will be written ψi, in the sense that
eψi(z) = E[ezξi(1)], for all z ∈ C for which the right-hand side exists. For each pair of
i, j ∈ E, define the Laplace transform Gij(z) = E[ezUij ] of the jump distribution Uij,
where this exists; write G(z) for the N × N matrix whose (i, j)–th element is Gij(z).
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We will adopt the convention that Uij = 0 if qij = 0, i 6= j, and also set Uii = 0 for
each i ∈ E.

A multidimensional analogue of the Laplace exponent of a Lévy process is provided
by the matrix-valued function

F (z) = diag(ψ1(z), . . . , ψN(z)) +Q ◦G(z), (3.38)

for all z ∈ C where the elements on the right are defined, where ◦ indicates elementwise
multiplication, also called Hadamard multiplication. It is then known that

Ei[e
zξ(t); J(t) = j] =

(
eF (z)t

)
ij
, for i, j ∈ E,

for all z ∈ C where one side of the equality is defined. For this reason, F is called the
matrix exponent of the MAP ξ.

3.2 Lamperti type representation of real valued self similar
Markov processes

Let X be a real valued self-similar Markov process. In [18] it has been proved that X
may be identified up to the first hitting time of 0,

T0 = inf{t ≥ 0 : Xt− = 0 or Xt = 0},

as the time-changed exponential of a certain complex-valued process E , which from the
terminology used in [18] it will be called the Lamperti–Kiu representation of X. The
main result in [18] is summarised in the following theorem.

Theorem 26. Let X be a rssMp in class C.4, and let x 6= 0. It is possible to define
independent sequences (ξ±,k)k≥0, (ζ±,k)k≥0, (U±,k)k≥0 of iid random objects with the
following proprties:

1. The elements of these sequences are distributed such that: the ξ± are real-valued
Lévy processes; ζ± are exponential random variables with parameters q±; and U±

are real-valued random variables.

2. For each x 6= 0, define the following objects:

(ξ(x,k), ζ(x,k), U (x,k)) =

{
(ξ+,k, ζ+,k, U+,k), if sgn(x)(−1)k = 1

(ξ−,k, ζ−,k, U−,k), if sgn(x)(−1)k = −1,

T (x)
0 = 0, T (x)

n =
n−1∑
k=0

ζ(x,k),

N
(x)
t = max{n ≥ 0 : T (x)

n ≤ t},

σ
(x)
t = t− T (x)

N
(x)
t

,

E (x)
t = ξ

(N
(x)
t )

σ
(x)
t

+
Nt−1∑
k=0

(ξ
(x,k)

ζ(x,k)
+ U (x,k)) + iπN

(x)
t , t ≥ 0,
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τ(t) = inf

{
s > 0 :

∫ s

0

|exp(αE (x)
u )| du > t|x|−α

}
, t < T0.

Then, the process X under the measure Px has the representation

Xt = x exp(E (x)
τ(t)), 0 ≤ t < T0.

3. Reciprocally, any process constructed in this form is a real-valued ssMp.

The case where X is a stable process killed at its first hitting time of 0 or conditioned
to avoid zero is studied in detail in [18].

The abundance of notation necessary to be precise in this context may obscure the
fundamental idea, which is as follows. At any given time, the process E evolves as a
Lévy process ξ±, moving along a line =(z) = πN , up until an exponential ‘clock’ ζ±

(corresponding to the process X changing sign) rings. At this point the imaginary part
of E is incremented by π, the real part jumps by U±, and the process begins to evolve
as the other Lévy process, ξ∓.

Particularly in light of the discussion in the previous section, the latter result can
be formulated using Markov additive processes. This is the purpose of the following
result proved in [38].

Proposition 4. Let X be an rssMp, with Lamperti–Kiu representation E. Define
furthermore

[n] =

{
1, if n is odd

2, if n is even.

Then, for each x 6= 0, the process

(ξ(t), J(t)) =
(
<(E (x)

t ),
[
=(E (x))t/π + 1{x>0}

])
defined in Proposition 3 is a Markov additive process with state space E = {1, 2}, and
X under Px has the representation

Xt = x exp
(
ξ(τ(t)) + iπ(J(τ(t)) + 1)

)
, for 0 ≤ t < T0,

where we note that (ξ(0), J(0)) is equal to (0, 1) if x > 0, or (0, 2) if x < 0. Further-
more, the time-change τ has the representation

τ(t) = inf

{
s > 0 :

∫ s

0

exp(αξ(u)) du > t|x|−α
}
, for t < T0, (3.39)

in terms of the real-valued process ξ.

Note that the MAP (ξ, J) under P1 corresponds to the rssMp X started at a point
x > 0, and the MAP under P2 corresponds to the rssMp started at a point x < 0.

Furthermore, we observe from the form (4.39) of the time-change τ that under Px,
for any x 6= 0, the following identity holds for T0, the hitting time of zero:

|x|−αT0
Law
=

∫ ∞
0

eαξ(u) du.

Implicit in this statement is that the MAP on the right-hand side has law P1 if x > 0,
and law P2 if x < 0.

33



3.3 Exponential functionals of MAPs

We start by describing the existence of the leading eigenvalue of the matrix F , which
will play a key role in our analysis of MAPs. This is sometimes also called the Perron-
Frobenius eigenvalue; see [2, §XI.2c] and [33, Proposition 2.12].

Proposition 5. Suppose that z ∈ C is such that F (z) is defined. Then, the matrix
F (z) has a real simple eigenvalue κ(z), which is larger than the real part of all its other
eigenvalues. Furthermore, the corresponding right-eigenvector v(z) may be chosen so
that vi(z) > 0 for every i ∈ E, and normalised such that πv(z) = 1 where π is the
equilibrium distribution of the chain J .

This leading eigenvalue features in the following probabilistic result, which identifies
a martingale (also known as the Wald martingale) and change of measure analogous
to the exponential martingale and Esscher transformation of a Lévy process; cf. [2,
Proposition XI.2.4, Theorem XIII.8.1].

Proposition 6. Let

M(t, γ) = eγξ(t)−κ(γ)t vJ(t)(γ)

vJ(0)(γ)
, for t ≥ 0,

for some γ such that the right-hand side is defined. Then,

i) M(·, γ) is a unit-mean martingale with respect to (Gt)t≥0 under any initial distri-
bution of (ξ(0), J(0)).

ii) Define the change of measure

dP(γ)

dP

∣∣∣∣
Gt

= M(t, γ).

Under P(γ), the process ξ is still a Markov additive process, and it has the fol-
lowing characteristics, for each i, j ∈ E:

– P(γ)(Uij ∈ dx) =
eγx

Gij(γ)
P(Uij ∈ dx), and hence G

(γ)
ij (z) =

Gij(z + γ)

Gij(γ)
,

– q
(γ)
ij =

vj(γ)

vi(γ)
qijGij(γ) and

– ψ
(γ)
i (z) = ψi(z + γ)− ψi(γ).

Furthermore,

F (γ)(z) = (diag(vi(γ), i ∈ E))−1[F (z + γ)− κ(γ) Id]diag(vi(γ), i ∈ E),

and hence,
κ(γ)(z) = κ(z + γ)− κ(γ).

Making use of this, the following proposition with properties of κ are often used in
the literature.
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Proposition 7. Suppose that F is defined in some open interval D of IR. Then, the
leading eigenvalue κ of F is smooth and convex on D.

In Section 3.2 , we studied the exponential functional of Lévy processes, now we
are interested in obtaining some results which will assist us in computing the law of an
integrated exponential functional associated to Markov additive processes.

For a MAP ξ, let

I(−ξ) =

∫ ∞
0

exp(−ξ(t)) d t.

One way to characterise the law of I(−ξ) is via its Mellin transform, which we write
as M(s). This is the vector in RN whose ith element is given by

Mi(s) = Ei[I(−ξ)s−1], fori ∈ E.

We will shortly express a functional equation forM, analogous to the functional equa-
tion for the Mellin transform for the exponential functional of Lévy processes which
we saw in Section 3.2. For Lévy processes, proofs of the result can be found in [15],
[45] and [55].

We make the following assumption, which is analogous to the Cramér condition for
a Lévy process; recall that κ is the leading eigenvalue of the matrix F , as discussed in
section 4.1.

Definition 5 (Cramér condition for a Markov additive process). There exists z0 < 0
such that F (s) exists on (z0, 0), and some θ ∈ (0,−z0), called the Cramér number,
such that κ(−θ) = 0.

Since the leading eigenvalue κ is smooth and convex where it is defined, it follows
also that κ(−s) < 0 for s ∈ (0, θ). In particular, this renders the matrix F (−s) negative
definite, and hence invertible. Furthermore, it follows that κ′(0−) > 0, and hence (see
[2, Corollary XI.2.7] and [33, Lemma 2.14]) that ξ drifts to +∞ independently of its
initial state. This implies that I(−ξ) is an a.s. finite random variable.

Proposition 8. Suppose that ξ satisfies the Cramér condition (Assumption 5) with
Cramér number θ ∈ (0, 1). Then, M(s) is finite and analytic when <(s) ∈ (0, 1 + θ),
and we have the following vector-valued functional equation:

M(s+ 1) = −s(F (−s))−1M(s), for s ∈ (0, θ).

Acknowledgement: Both Authors thank CONACyT-MEXICO for funding this re-
search.
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associated to symmetric stable processes. Bernoulli, 17(1):34–59, 2011.

[13] M. E. Caballero and V. Rivero. On the asymptotic behaviour of increasing self-
similar Markov processes. Electron. J. Probab., 14:865–894, 2009.

[14] N. Cai and S. Kou. Pricing Asian options under a general jump diffusion model.
Oper. Res., 60(1):64–77, 2012.

[15] P. Carmona, F. Petit, and M. Yor. On the distribution and asymptotic results for
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