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Bernoulli Trials

2.1 Introduction

A Bernoulli random variable is the simplest variable one can think of. It takes only two values, 0 and 1,
which are commonly identified with failure and success. The probability function for a Bernoulli variable
X is determined by the probability of success, which is usually denoted by p:

P (X = 1) = p.

Since success and failure are complementary events, the probability of failure is

P (X = 0) = 1− P (X = 1) = 1− p

and we frequently use the notation q = 1− p.

If A is an event, we define the indicator function of A by

1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A.

This random variable has value 1 when A happens and 0 when it doesn’t, i.e. it indicates when A occurs.
Therefore 1A has a Bernoulli distribution with p = P (A).

We can easily calculate the moments of this distribution:

E(X) = 1× p+ 0× q = p. (2.1)

Since X = X2, because this variable only takes the values 0 and 1, we have that E(X2) = p and therefore

Var(X) = E(X2)− (E(X))2 = p− p2 = p(1− p) = pq. (2.2)

2.2 Distributions Related to Bernoulli Trials

2.2.1 Binomial Distribution

For n ∈ N we perform a series of independent Bernoulli trials with the same probability p of success and
denote by Sn the total number of successes in the n trials. Every trial corresponds to a Bernoulli variable
Xi, 1 ≤ i ≤ n and

Sn = X1 +X2 + · · ·+Xn. (2.3)
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The outcome of a series of n Bernoulli trials can be represented by an n-dimensional vector (X1, X2,
. . . , Xn) with entries equal to 0 or 1 according to the result of the corresponding trial. For instance,
(1, 1, 0) corresponds to a series of three trials in which the first two resulted in success and the third in
failure.

To find the distribution of Sn we start by answering the following question: What is the probability
of getting a given vector (i1, i2, . . . , in) in a sequence of n trials? Since the variables are independent

P (X1 = i1, X2 = i2, . . . , Xn = in) = P (X1 = i1)P (X2 = i2) · · ·P (Xn = in).

The probabilities we are multiplying on the right-hand side can only take values p or q, depending on
whether they correspond to a success or a failure. Therefore, if there are Sn successes in the n trials, no
matter where they are placed, this probability will be equal to pSnqn−Sn :

P (X1 = i1, X2 = i2, . . . , Xn = in) = pSnqn−Sn .

To find P (Sn = k) for 0 ≤ k ≤ n, we have to multiply pkqn−k times the number of results (n-
dimensional vectors) that have exactly k successes. This is equal to the number of ways of selecting k
places among n, which is

(
n
k

)
. Thus,

P (Sn = k) =

(
n

k

)
pk(1− p)n−k = pk,n (k = 0, 1, . . . , n). (2.4)

If a discrete random variable X has this distribution function we say that X has a binomial distribution
with parameters n and p and we use the notation X ∼ b(n, p)

If p = 1/2 the probability function is symmetric with respect to n/2, since in this case P (dn = k) =
P (dn = n− k).
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Figure 2.1: Binomial distribution for n = 20 and three values of p.

Problem 2.1
Five cards are drawn with replacement from a full deck. Let X be the number of diamonds in the sample.
Find the probability that there are exactly two diamonds among the five cards. What is the probability
that there are at most two diamonds?

I To answer the first question we want to calculate P (X = 2), and since the probability of getting a
diamond in each draw is 1/4 we have

P (X = 2) =

(
5

2

)(
1

4

)2(
3

4

)3

= 0.264
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Figure 2.2: Binomial distribution for p = 0.5 and three values of n.

For the second question we have that

P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2)

=

(
5

0

)(
3

4

)5

+

(
5

1

)(
1

4

)(
3

4

)4

+

(
5

2

)(
1

4

)2(
3

4

)3

= 0.237 + 0.396 + 0.264

= 0.897

N

Recursive relation

It is possible to get a recursive relation for the probability function. If X ∼ b(n, p) we have

P (X = k + 1) =

(
n

k + 1

)
pk+1(1− p)n−k−1

=
n!

(k + 1)!(n− k − 1)!
pk+1(1− p)n−k−1

=
n− k
k + 1

n!

k!(n− k)!

( p

1− p

)
pk(1− p)n−k

=
n− k
k + 1

( p

1− p

)
P (X = k). (2.5)

We can use this relation starting with P (X = 0) = (1 − p)n or with P (X = n) = pn to obtain all the
values of the probability function.

Moments

Starting with (2.3) we get

E(Sn) = E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi) = np.

Moreover, since the variables X1, X2, . . . , Xn are independient

Var(Sn) = Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi)
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and
Var(Xi) = E(X2

i )− (E(Xi))
2 = p− p2 = p(1− p).

Replacing in the previous equation, we get

Var(Sn) = np(1− p).

2.2.2 Poisson Distribution

We say that the random variable X follows a Poisson distribution with parameter λ, (λ > 0) if

P (X = n) =
λn

n!
e−λ (n = 0, 1, 2, . . . ).

To verify that this equation defines a probability function we may use the power series expansion for the
exponential function to obtain

∞∑
n=0

P (X = n) = e−λ
∞∑
n=0

λn

n!
= e−λeλ = 1.

This is an example of a random variable taking values in an (infinite) countable set. We use the notation
X ∼ P(λ). Figure 2.3 shows three examples of a Poisson distribution.

This distribution has numerous applications and is interesting in itself, but it is also useful as an
approximation to the binomial distribution when n is big and p small. To see this, consider the binomial
distribution as n grows and pn goes to zero so that the product npn remains constant. Let npn = λ > 0.
The binomial probability function is

pk,n =

(
n

k

)
pkn(1− pn)n−k =

n(n− 1) · · · (n− k + 1)

k!
pkn(1− pn)n−k.

Multiplying numerator and denominator by nk we get

pk,n =
n(n− 1) · · · (n− k + 1)

nk k!
(npn)k(1− pn)n−k

=
n(n− 1) · · · (n− k + 1)

nk
λk

k!
(1− pn)n−k

=

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
λk

k!
(1− pn)n−k

=

(
1− 1

n

) (
1− 2

n

)
. . .
(
1− k−1

n

)
(1− pn)k

λk

k!
(1− pn)n (2.6)

But we can write
(1− pn)n = [(1− pn)−1/pn ]−npn = [(1− pn)−1/pn ]−λ

and by the definition of e we know that

lim
z→0

(1− z)1/z = e−1.

Therefore, putting z = −pn we get

lim
p→0

(1− pn)n = lim
p→0

[(1− pn)−1/pn ]−λ = e−λ.
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Moreover

lim
n→∞

(
1− 1

n

) (
1− 2

n

)
. . .
(
1− k−1

n

)
(1− pn)k

= 1

since we have assumed that pn → 0 as n→∞ and npn = λ remains constant. Using these two results in
(2.6) we get

lim
n→∞

pk,n =
e−λλk

k!
.

We have proved the following theorem:

Theorem 2.1 (Poisson Approximation) Let Xn ∼ b(n, pn) and assume that when n → ∞, pn → 0
so that npn remains constant and is equal to λ. Then, as n→∞

pk,n = P (Xn = k)→ e−λ
λk

k!
.
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Figure 2.3: Poisson distribution for three values of λ.

Problem 2.2
The number of calls arriving at a switchboard have a Poisson distribution with parameter λ = 4 calls
per minute. If the switchboard can handle up to six calls per minute, find the probability that the
switchboard cannot to handle the calls arriving at any given minute.

I Let X be the number of calls arriving in a period of one minute, then

P (X ≤ 6) =

6∑
i=0

P (X = i) =

6∑
i=1

e−44i

i!
= 0.889,

and therefore
P (X > 6) = 1− P (X ≤ 6) = 1− 0.889 = 0.11.

N

Problem 2.3
Consider a sample of 400 fuses produced in a factory that, on average, produces 1% of faulty fuses. Find
the probability that there are, at most, 5 defective fuses in the sample.

I Let X be the number of defective fuses in the sample. We know that X has a binomial distribution
with n = 400, p = 0.01 and we want

P (X ≤ 5) =

5∑
i=0

P (X = i) =

5∑
i=0

(
400

i

)
(0.01)i(0.99)400−i.
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This can be calculated using R, as we shall se in the R section of this chapter but for now we will
use the Poisson approximation with parameter

λ = np = 400× 0.01 = 4,

P (X ≤ 5) ≈
5∑
i=0

e−44i

i!
= e−4

(
1 + 4 +

42

2
+

43

6
+

44

24
+

45

120

)
≈ 0.785.

N

Recursive relation

There is also a recursive relation for the Poisson distribution that is useful to calculate its values. If
X ∼ P(λ) then

P (X = i+ 1)

P (X = i)
=
e−λλi+1/(i+ 1)!

e−λλi/i!
=

λ

i+ 1

i.e.

P (X = i+ 1) =
λ

i+ 1
P (X = i), i ≥ 0. (2.7)

Moments

The expected value of a Poisson random variable is

E(X) =

∞∑
k=0

kP (X = k) =

∞∑
k=0

k
λk

k!
e−λ

= λe−λ
∞∑
k=1

λk−1

(k − 1)!
= λe−λ

∞∑
j=0

λj

j!

= λe−λeλ = λ,

where we have used the expansion in power series for the exponential function eλ =
∑∞
j=0

λj

j! . Hence

E(X) = λ.

Also

E(X(X − 1)) =

∞∑
k=0

k(k − 1)
λk

k!
e−λ = λ2e−λ

∞∑
k=2

λk−2

(k − 2)!

= λ2e−λ
∞∑
j=0

λj

j!
= λ2

and therefore

Var(X) = E(X2)− (E(X))2 = E(X(X − 1)) + E(X)− (E(X))2

= λ2 + λ− λ2 = λ.

Thus
Var(X) = λ.
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2.2.3 Geometric Distribution

Consider an electronic component that does not deteriorate as it ages but may fail due to changes in the
electric current that occur randomly but at a homogeneous rate in time. The component is used every
day and X denotes the number of days that the component is in working order, assuming that at day
zero the component is new. We want to find the probability distribution of X.

The idea that the component does not age can be expressed precisely as follows: if we know that the
component has not failed by day n, i.e. X > n, the probability it will not fail until after day n + m,
P (X > n + m|X > n) should be equal to the probability that a new component installed on day n,
will not fail for the next m days. Since we assumed that the variations in the electric current occur
homogeneously in time , this probability depends only on the number of days that have passed since the
component was installed, m, and not on the day the component was installed, n. Therefore we have the
equation

P (X > n+m|X > n) = P (X > m)

and using the definition of conditional probability we can write this equation as

P (X > n+m) = P (X > n)P (X > m) n,m = 0, 1, 2, . . . (2.8)

Putting n = m = 0 we get
P (X > 0) = (P (X > 0))2

and therefore P (X > 0) = 0 or 1. If P (X > 0) = 0 then P (X = 0) = 1, which corresponds to a defective
component and is not interesting. Hence, P (X > 0) = 1.

Let p = P (X = 1), then
P (X > 1) = 1− p

and using (2.8) with m = 1 we get

P (X > n+ 1) = (1− p)P (X > n).

Iterating in n we get that
P (X > n) = (1− p)n

and thus

P (X = n) = P (X > n− 1)− P (X > n)

= (1− p)n−1 − (1− p)n

= p(1− p)n−1

for n ≥ 1.

Definition 2.1 We say that the random variable X has geometric distribution if its probability function
is given by

P (Y = n) =

{
p(1− p)n−1 n = 0, 1, 2, . . .

0 otherwise

with 0 < p < 1. We use the notation X ∼ G(p).

Figure 2.4 shows three examples of the geometric distribution with p = 0.5, 0.3 and 0.1.
Consider now a sequence of Bernoulli trials with probability of success p and let X be the random

variables that counts the number of trials needed to get the first success. For the event {X = n} to occur,
we need to have failures in the first n − 1 trials and a (first) success at trial n. Since the probability of
failure is q we have

P (X = k) = qn−1p

and we see that X has a geometric distribution.
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Figure 2.4: Geometric distribution for three values of p.

Moments

The expected value is

E(X) =

∞∑
n=1

nP (X = n) =

∞∑
n=1

np(1− p)n−1. (2.9)

To calculate this sum, recall that if
∞∑
n=0

cnz
n

is a power series and R is the radius of convergence (which means that if |z| < R the series converges
and if R < ∞ and |z| > R the series does not converge), if we denote by f(z) the sum of the series for
|z| < R:

f(z) =

∞∑
n=0

cnz
n (|z| < R),

then f is differentiable and

f ′(z) =

∞∑
n=0

ncnz
n−1 (|z| < R).

This means that for |z| < R, we may calculate the derivative of f(z) as if it was a finite sum, i.e., adding
the derivatives for each of the terms.

Let us use this result for the power series

∞∑
n=0

zn.

First, we verify that the radius of convergence for this series is 1. If |z| > 1 then |z|n →∞ which means
that the general term of the series does not go to zero and the series does not converge; if |z| < 1, the
partial sum of order N is

N∑
n=0

zn = 1 + z + z2 + · · ·+ zN =
1− zN+1

1− z
N→∞→ −→ 1

1− z

which means that the series converges when |z| < 1 and its sum is 1
1−z , i.e.

∞∑
n=0

zn =
1

1− z
, |z| < 1.
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Taking derivatives term by term as we have mentioned, we get

1

(1− z)2
=

∞∑
n=0

nzn−1 =

∞∑
n=1

nzn−1, |z| < 1. (2.10)

Going back to the problem we were considering, replacing z by 1− p in (2.10) we get

E(X) = p

∞∑
n=1

n(1− p)n−1 = p
1

(1− (1− p))2
=

1

p
.

To calculate the variance for this distribution start with

Var(X) = E(X(X − 1)) + E(X)− (E(X))2, (2.11)

and

E(X(X − 1)) =

∞∑
n=1

n(n− 1)P (X = n) =

∞∑
n=1

n(n− 1)p(1− p)n−1

= p(1− p)
∞∑
n=2

n(n− 1)(1− p)n−2.

To calculate the value of this series we proceed as before, calculating f ′′(z) by taking derivatives term by
term in the series that defines f ′(z), i.e. for |z| < 1,

1

1− z
=

∞∑
n=0

zn ⇒ 1

(1− z)2
=

∞∑
n=1

nzn−1 ⇒ 2

(1− z)3
=

∞∑
n=2

n(n− 1)zn−2.

Therefore, replacing z by 1− p, we get

E(X(X − 1)) = p(1− p) 2

(1− (1− p))3
=

2(1− p)
p2

and going back to (2.11)

Var(X) =
2(1− p)
p2

+
1

p
−
(

1

p

)2

=
1− p
p2

.

Problem 2.4
You take a sample from the stock of a factory that produces, on average, 2% of defective items. What is
the probability that the first defective object appears in the first five objects sampled. What the expected
number of item you have to inspect to find the first defective?

I Let X denote the number or items inspected until the first defective is found. Then

P (X ≤ 5) = 1− P (X ≥ 5)

= 1− (0.98)5

≈ 0.096

On the other hand, we know that the expected value is the inverse of the success probability, i.e.
E(X) = 1/0.02) = 50.

N
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2.2.4 Negative Binomial Distribution.

Also known as Pascal’s distribution, it is connected to sequences of independent Bernoulli trials with
success probability p and to the geometric distribution. Here we look for the distribution of the number
of trials needed to get k successes.

Let X be the random variable that counts the number of trials until the k-th success: X = n if and
only if the k-th success occurs in the n-th trial. For this to happen, we need to have k−1 successes in the
first n− 1 trials and a success in the n-th trial. This last event has a probability p while the probability
of having k − 1 successes in n− 1 trials is a binomial distribution:(

n− 1

k − 1

)
pk−1qn−k.

Since the trials are independent, the probability P (X = n) is the product of the two previous expressions,
i.e.

P (X = n) =

(
n− 1

k − 1

)
pkqn−k

for n ≥ 1, 1 ≤ k ≤ n.

Figure 2.5 presents three instances of this distribution for p = 1/2 and k = 2, 5 and 10.

Problem 2.5
A fisherman goes every day to the dock where where he stays fishing until he catches a fish or until two
hours have passed. If the probability of not catching a fish is 0.6, what is the probability that he has to
wait five days to catch three fishes?

I Let X be the number of days required for catching three fishes. This variable has negative binomial
distribution with parameters 3 and 0.4. Therefore

P (X = 5) =

(
4

2

)
(0.4)3(0.6)2 = 0.138

N

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

k=2, p=0.5

Values

P
ro

ba
bi

lit
ie

s

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

k=5, p=0.5

Values

P
ro

ba
bi

lit
ie

s

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

k=10, p=0.5

Values

P
ro

ba
bi

lit
ie

s

Figure 2.5: Negative Binomial distribution with p = 0.5 for three values of k.

Observe that a negative binomial random variable with parameters k and p is the sum of k random
variables with geometric distribution with parameter p. This observation is useful to generate random
variables with negative binomial distribution and also to calculate the moments of these variables.
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Moments

By the remark above, if X has a negative binomial distribution with parameters k and p then X =
Y1 + · · ·+ Yk where the Yi are independent geometric r. v. with parameter p. Hence

E(X) = E(Y1 + · · ·+ Yk) = kE(Y1) =
k

p

and

Var(X) = Var(Y1 + · · ·+ Yk) = kVar(Y1) =
k(1− p)

p
.

2.3 The Weak Law of Large Numbers.

Lemma 2.1 (Markov’s Inequality) Let X ≥ 0 be a random variable and let a be a positive number,
then

P (X ≥ a) ≤ 1

a
E(X). (2.12)

Proof. If E(X) = +∞, there is nothing to prove. Otherwise, let A be the event A = {X ≥ a}, we have
the following inequalities,

X(ω) ≥ X(ω)1A(ω) ≥ a1A(ω).

The first one is due to the fact that X(ω) ≥ 0 and 1A(ω) is equal to 0 or 1. As for the second, if ω /∈ A
then 1A(ω) = 0 and both sides are equal. If ω ∈ A, on the one hand 1A(ω) = 1 and on the other, given
the definition of A, X(ω) ≥ a. We get that

E(X) ≥ E(a1A) = aE(1A) = aP (A).

Dividing by a we get (2.12). �

Lemma 2.2 (Tchebychefff’s Inequality) Let X be a random variable with finite variance and let
ε > 0. Then

P (|X − E(X)| ≥ ε) ≤ 1

ε2
Var(X). (2.13)

Proof. The events {|X −E(X)| ≥ ε} and {(X −E(X))2 ≥ ε2} are equal. Using Markov’s inequality with
ε2 in place of a and (X − E(X))2 instead of X, we get

P (|X − E(X)| ≥ ε) = P ((X − E(X))2 ≥ ε2) ≤ 1

ε2
E((X − E(X))2) =

1

ε2
Var(X)

which is (2.13). �

Theorem 2.2 (Weak Law of Large Numbers) Let {Xn}n≥1 be a sequence of independent random
variables with

E(Xn) = µ, Var(Xn) = σ2 n = 1, 2, . . .

Then, for any ε > 0, we have

lim
n→∞

P

(∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε) = 0. (2.14)

Proof. Let Sn = X1 +X2 + · · ·+Xn and let’s use Tchebychefff’s inequality for Sn/n. We have

E
(Sn
n

)
=

1

n

n∑
i=1

E(Xi) =
1

n
nµ = µ,
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Var
(Sn
n

)
=

1

n2
Var

( n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
nσ2

n2
=
σ2

n
.

Using (2.13) with ε > 0

p

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε) ≤ 1

ε2
σ2

n
→ 0

as n→∞ (for ε > 0 fixed). This completes the proof. �

2.3.1 Examples and Comments.

1. Let’s consider again the case of the binomial distribution in which the variable Sn represents the
number of times a certain eventA with probability p = P (A) happens in n independent observations.
As we have seen it is usual to estimate the parameter p – which is often unknown– using the
relative frequency

p̂n =
Sn
n

of the number of times the event A occurs in the n observations of the experiment. By the law of
large numbers we have that

P (|p̂n − p| ≥ ε)→ 0 for any ε > 0 as n→∞. (2.15)

Property (2.15), relative to the distance between p̂n (which is a function of the empirical observations
that we make), and the number p (which is a parameter of the problem), says that if the number n
of observations is large enough, then the probability that the distance between p̂n and p is bigger
than a given number ε is small.

Tchebychefff’s inequality also gives a bound on the speed with which the first term of (2.15) goes
to zero when n→∞. In the example we are considering, using the results we have seen in section
2.2.1,

E(p̂n) = p Var(p̂n) =
p(1− p)

n
.

and then

P (|p̂n − p| ≥ ε) ≤
1

ε2
p(1− p)

n
. (2.16)

This inequality is useful to solve problems like this: Assume p is the unknown probability that a
certain product manufactured in a plant is defective and Sn is the number of defective objects in a
sample of n objects inspected using random sampling with replacement. Then

p̂n =
Sn
n
.

We are frequently interested in the problem of finding the size n of the sample so that certain
tolerance margins are satisfied. For instance, assume that we do not know the true value of p and
we want to estimate it by p̂n (see figure 2.6), but we want the probability that p differs from p̂n by
at most 0.01, to be is bigger or equal to 0.95. That is, we want to choose n so that

P (|p̂n − p| ≤ 0.01) ≥ 0.95

or equivalently
P (|p̂n − p| ≥ 0.01) ≤ 0.05. (2.17)

Using (2.16) we have

P (|p̂n − p| ≥ 0.01) ≤ 1

(0.01)2
p(1− p)

n
. (2.18)
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If we have no additional information about p, we may use the fact that p(1−p) ≤ 1/4 for 0 ≤ p ≤ 1.
Choosing n so that

1

(0.01)2
1

4n
≤ 0.05, (2.19)

we get
P (|p̂n − p| ≥ 0.01) ≤ 0.05.

It is easy to see that (2.19) is satisfied as long as n ≥ 50.000.

.................................................................................................................................................................................................................................................................................................................................
.......
.

.......

.
.......
.

.......

.

p̂n − ε p p̂n p̂n + ε

Figure 2.6

In general, Tchebycheff’s inequality is not sharp. In this example one could get sharper bounds for
the left-hand side of (2.18), which would reduce significantly the value of n needed to verify (2.17).
In particular, if we use the normal approximation –which we will study later on– one gets that if,
for instance, the true value of p is 1/2 and n = 50, 000, then the left-hand side of (2.17) is bounded
by 0.00001, i.e. it is significantly smaller than the bound obtained with Tchebycheff’s inequality.
We will revisit this point in the next section.

2. In the proof of the weak law of large numbers, we have assumed that the variables X1, X2, . . . are
independent and have equal variance. It is not hard to show that a similar proof is valid if the
variables are uncorrelated and

1

n2

n∑
i=1

σ2
i → 0

as n→ +∞, where σi = Var(Xi). In fact, there are many generalizations of the weak law of large
numbers, some of which have technically complicated proofs and are not within the scope of this
text. The interested reader may look up the classic text of W. Feller, included in the references.

3. It is interesting to observe that the weak law expresses, in some sense, the commonly accepted idea
that empirical averages may replace the (theoretical) expected value. In this case, the expected
value is µ and the empirical average is

X1 +X2 + · · ·+Xn

n
,

which is the arithmetic mean of the observations. The weak law says that if we take repeated
observations, independently and under similar conditions, the empirical average is close to the
expected values in the sense made precise by expression (2.14). In other words, if the number of
observations is large it is unlikely that they will be far apart.

2.3.2 Weierstrass Approximation Theorem

This theorem says that any continuous function f defined on a bounded interval [a, b] can be uniformly
approximated by polynomials: Given ε > 0 there exists a polynomial g such that

sup
x∈[a,b]

|f(x)− g(x)| < ε.

Serge Bernstein gave a proof of this result using the WLLN, which is presented below for functions defined
in [0, 1]. The extension to the general case is easy.



14 CHAPTER 2. BERNOULLI TRIALS

Proposition 2.1 (Bernstein Polynomials) Let f : [0, 1]→ R be a continuous function, then

sup
x∈[0,1]

∣∣∣f(x)−
n∑
k=0

(
n

k

)
f
(k
n

)
xk(1− x)n−k

∣∣∣→ 0

as n→∞.

Proof. Let ε > 0. Since f is continuous in a bounded closed interval, it is uniformly continuous and there
exists δ > 0 such that if 0 ≤ x, y ≤ 1 satisfy |x − y| < δ then |f(x) − f(y)| < ε. Consider now binomial
random variables Sn with parameters n and x. The random variables f(Sn/n) have expected value

E
[
f
(Sn
n

)]
=

n∑
k=0

f
(k
n

)
P (Sn = k)

=

n∑
k=0

(
n

k

)
f
(k
n

)
xk(1− x)n−k

By the WLLN, there exists an integer n0 independent of x, such that, if n ≥ n0

P
(∣∣∣Sn

n
− x
∣∣∣ > δ

)
< ε.

Using the triangular inequality we have∣∣∣E [f(Sn
n

)]
− f(x)

∣∣∣ =
∣∣∣ n∑
k=0

(
f
(k
n

)
− f(x)

)
P (Sn = k)

∣∣∣
≤

n∑
k=0

∣∣∣f(k
n

)
− f(x)

∣∣∣P (Sn = k)

≤
∑

| kn−x|≤δ

∣∣∣f(k
n

)
− f(x)

∣∣∣P (Sn = k) +
∑

| kn−x|>δ

(∣∣∣f(k
n

)∣∣∣+
∣∣f(x)

∣∣)P (Sn = k)

≤
∑

| kn−x|≤δ

εP (Sn = k) +
∑

| kn−x|>δ

2 sup
0≤x≤1

|f(x)|P (Sn = k)

= εP
(∣∣∣Sn

n
− x
∣∣∣ ≤ δ)+ 2 sup

0≤x≤1
|f(x)|P

(∣∣∣Sn
n
− x
∣∣∣ > δ

)
.

Thus, for every n ≥ n0, ∣∣∣E [f(Sn
n

)]
− f(x)

∣∣∣ ≤ ε+ 2ε sup
0≤x≤1

|f(x)|

and this concludes the proof. �

2.4 Chernoff’s Inequality

Tchebycheff’s inequality gives a general bound for the probability P (|X − E(X)| ≥ ε) which in many
cases, as we have previously mentioned, can be improved. In this section we will do this for binomial
random variables. However, it is important to observe that if we want an inequality that holds for any r.
v. with finite second moment, one cannot do better than Tchebycheff’s inequality.

Let Sn =
∑n

1 Xi where the Xi are independent and have Bernoulli distribution with success proba-
bility p.

Lemma 2.3 For any u ∈ R,
E
(
euSn

)
= (1− p+ peu)n
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Proof. Since the Xi, 1 ≤ i ≤ n are independent, the variables euXi , 1 ≤ i ≤ n are also independent. On
the other hand, for any i,

E(euXi) = peu + (1− p)e0 = 1− p+ peu

Using independence

E
(
euSn

)
= E

( n∏
i=1

euXi
)

=

n∏
i=1

E(euXi)

= (1− p+ peu)n

�

If X is any random variable, the function ψ(u) = E(euX), for those values of u for which this
expected value is well-defined, is known as the moment generating function of X. In the previous lemma
we calculated this function for variables with binomial distribution.

Theorem 2.3 (Chernoff’s Inequality) Let Sn be a random variable having binomial distribution with
parameters n and p and let λ = np = E(Sn). For 0 < λ+ t < n

P (Sn ≥ λ+ t) ≤
( λ

λ+ t

)λ+t( n− λ
n− λ− t

)n−λ−t
(2.20)

Proof. Let u > 0. Since f(x) = eux is an increasing function, we have

P (Sn ≥ λ+ t) = P
(
euSn ≥ eu(λ+t)

)
≤ e−u(λ+t) E

(
euSn

)
where the inequality is a consequence of Markov’s inequality. Using lemma 2.3 we get

P (Sn ≥ λ+ t) ≤ (1− p+ peu)ne−u(λ+t) (2.21)

Set g(u) = (1 − p + peu)ne−u(λ+t) and let us find the value of u minimizing this function. Taking
derivatives we get

g′(u) = −e−u(λ+t)(λ+ t)(1− p+ peu)n + e−u(λ+t)n(1− p+ peu)n−1peu

= e−u(λ+t)(1− p+ peu)n−1
[
pneu − (λ+ t)(1− p+ peu)

]
= e−u(λ+t)(1− p+ peu)n−1

[
− (λ+ t)(1− p) + peu(n− λ− t)

]
For this expression to vanish, it is necessary that the third factor vanishes, since the other two are always
positive. This happens if

eu =
(λ+ t)(1− p)
p(n− λ− t)

. (2.22)

To see that this values corresponds to a minimum for g, observe that g(0) = 1, g(u) → ∞ (u → ∞)
since λ+ t < n and it is easy to verify that g′(0) < 0, so that the function initially decreases. Since g is
continuous, it must have a minimum at the value given by (2.22).

Let us go back to equation (2.21) and replace eu by the expression in (2.22)

P (Sn ≥ λ+ t) ≤
(

1− p+
(λ+ t)(1− p)

(n− λ− t)

)n( p(n− λ− t)
(λ+ t)(1− p)

)λ+t
=
( n(1− p)
n− λ− t

)n( np(n− λ− t)
n(λ+ t)(1− p)

)λ+t
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recalling that λ = np and therefore n(1− p) = n− λ we get

=
( n− λ
n− λ− t

)n(n− λ− t
n− λ

)λ+t( λ

λ+ t

)λ+t
which proves the inequality. �

For 0 < x < 1 define

ϕ(x) = x log
x

p
+ (1− x) log

1− x
1− p

. (2.23)

Corolary 2.1 If n ≥ 1 and ε ∈ (0, 1− p) then

P
(Sn
n
≥ p+ ε

)
≤ e−nϕ(p+ε) (2.24)

Proof. Recall that λ = np, using (2.20) we get

P
(Sn
n
≥ p+

t

n

)
≤
( p

p+ t
n

)np+t( 1− p
1− p− t

n

)n−np−t
as long as 0 < λ+ t < n. Putting ε = t/n this condition becomes 0 < p+ ε < 1 and we get

P
(Sn
n
≥ p+ ε

)
≤ exp

{
n(p+ ε) log

p

p+ ε
+ n(1− p− ε) log

1− p
1− p− ε

}
= exp

{
− n

[
(p+ ε) log

p+ ε

p
+ (1− p− ε) log

1− p− ε
1− p

]}
= exp{−nϕ(p+ ε)}.

�

Corolary 2.2 If 0 < ε < p then ϕ(p− ε) is well defined, positive and

P
(Sn
n
≤ p− ε

)
≤ e−nϕ(p−ε). (2.25)

Proof. This follows by interchanging successes and failures, Sn and n− Sn and p and 1− p. �

Corolary 2.3 If 0 < ε < min(p, 1− p) then

P
(∣∣∣Sn

n
− p
∣∣∣ ≥ ε) ≤ e−nϕ(p+ε) + e−nϕ(p−ε). (2.26)

Proof. This is a consequence of the two previous corolaries. �

2.4.1 Comparison with Tchebycheff’s Inequality

In the binomial case, Tchebycheff’s inequality says that

P (|X − E(X)| ≥ ε) ≤ p(1− p)
nε2

.

Observe that for n and p fixed, this bound goes to ∞ as ε→ 0, so that the inequality ceases to be useful
for small values of ε. Let us look at some examples to compare this inequality with Chernoff’s bound.

Examples 2.1
Consider the symmetric case, which corresponds to p = 0.5.
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1. For n = 100 and ε = 0.1 Tchebycheff’s inequality gives

P
(∣∣∣ 1

100
S100 −

1

2

∣∣∣ > 0.1
)
≤ 1

4
= 0.25

while using Chernoff’s inequality we have h+(0.1) = h−(0.1) = 0.02014 and

e−100h+(0.1) + e−100h−(0.1) = 0.267,

So that Chernoff’s bound is not better than Tchebycheff’s in this case. However, if we set ε = 0.05,
Tchebycheff’s bound is 1, which is useless, while Chernoff’s is 0.005

2. For n = 1000 and ε = 0.1, Tchebycheff’s bound is 0.025 while Chernoff’s is less than 3.6 × 10−9.
Setting ε = 0.05 with Tchebycheff we get 0.1 while for Chernoff the bound is less than 0.0067.

3. Finally, for n = 10, 000 and ε = 0.1 we get 0.0025 and 7.14× 10−88 while for ε = 0.05 the bounds
are 0.01 and 1.8× 10−22.

Notation for the Asymptotic Behavior of Functions

Let us introduce the usual notation for comparison of functions, proposed by E. Landau. Let f and g,
be two real functions.

• We say that f = O(g) or more precisely that f(x) = O(g(x)) as x→∞, if there exists a constant
k > 0 and a number xo ∈ R such that

|f(x)| ≤ kg(x) for all x ≥ x0.

In this case we say that f is, at most, of the same order than g as x→∞.

• We say that f(x) = O(g(x)) as x→∞ if for every ε > 0 there exists x0 ∈ R such that

|f(x)| ≤ εg(x) for every x ≥ x0

or equivalently, if
|f(x)|
g(x)

→ 0 as x→∞.

In particular, if f(x)→ 0 as x→∞ we write f(x) = O(1) as x→∞.

• We write f ∼ g or f(x) ∼ g(x) as x→∞ if g(x) 6= 0 for every large x and

f(x)

g(x)
→ 1 as x→∞.

Similar notations are used when x→ 0 or x→ −∞, with the obvious changes, and also for sequences.

Example 2.2
The function f(x) = 2x3 − x2 + 5 satisfies the following relations: f(x) = O(x3), f(x) = O(x4) and
f(x) ∼ 2x3 as x→∞.

For our next result we need the second order expansion of the function log(1 + x) for |x| < 1, about
x = 0:

log(1 + x) = x− x2

2
+O(x3) (2.27)

as x→ 0, which can be obtained form a Taylor expansion.



18 CHAPTER 2. BERNOULLI TRIALS

Proposition 2.2 As ε→ 0 we have that

ϕ(p+ ε) =
ε2

2p(1− p)
+O(ε3). (2.28)

Proof. Using (2.27) we have

ϕ(p+ ε) = (p+ ε) log
(

1 +
ε

p

)
+ (1− p− ε) log

(
1− ε

1− p

)
= (p+ ε)

(ε
p
− 1

2

(ε
p

)2
+O(ε3)

)
+ (1− p− ε)

( −ε
1− p

− 1

2

( −ε
1− p

)2
+O(ε3)

)
=
ε2

2p
+

ε2

2(1− p)
+O(ε3)

=
ε2

2p(1− p)
+O(ε3).

�

2.5 Chernoff’s Inequality (2)

In this section we shall prove that Chernoff’s inequality (Corollary 2.1) is asymptotically the best possible
bound. For this we need Stirling’s formula, which we shall prove in the appendix to this chapter.

Lemma 2.4 (Stirling’s formula) As n→∞,

n! ∼
√

2πnnn e−n.

Proposition 2.3 For every ε ∈ (0, 1− p)

lim
n→∞

1

n
log
(
P
(Sn
n
≥ p+ ε

))
= −ϕ(p+ ε) (2.29)

Proof. Corollary 2.1 says that for n ≥ 1

1

n
logP

(
Sn ≥ n(p+ ε)

)
≤ −ϕ(p+ ε).

To find a lower bound, let αn = 1 + [n(p+ ε)] which is the smallest integer strictly bigger than n(p+ ε).
Then

P
(
Sn ≥ n(p+ ε)

)
≥ P (Sn = αn) =

n!

αn!(n− αn)!
pαn(1− p)n−αn

Using Stirling’s formula,

P (Sn = αn) ∼ 1√
2π

( n

αn(n− αn)

)1/2(np
αn

)αn
(n(1− p)
n− αn

)n−αn

(2.30)

and therefore the logarithms of both sides are also asymptotically equivalent. From the relations αn ∼
n(p+ ε) and n− αn ∼ n(1− p− ε) we get( n

αn(n− αn)

)1/2
∼
( n

n2(p+ ε)(1− p− ε)

)1/2
=
(
n(p+ ε)(1− p− ε)

)−1/2
and therefore

lim
n→∞

1

n
log
(( n

2παn(n− αn)

)1/2)
= 0. (2.31)
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On the other hand,

αn log
(np
αn

)
= n(p+ ε) log

(np(p+ ε)

αn(p+ ε)

)
+
(
αn − n(p+ ε)

)
log
(np
αn

)
= n(p+ ε) log

( p

p+ ε

)
+ n(p+ ε) log

(n(p+ ε)

αn

)
+
(
αn − n(p+ ε)

)
log
(np
αn

)
(2.32)

Using again that αn ∼ n(p+ ε) we get

lim
n→∞

1

n

(
n(p+ ε) log

(n(p+ ε)

αn

))
= 0. (2.33)

Since the difference αn − n(p+ ε) is bounded, we have

lim
n→∞

1

n

((
αn − n(p+ ε)

)
log
(np
αn

))
= 0. (2.34)

Using (2.33) and (2.34) in (2.32) we get

lim
n→∞

1

n
log
(np
αn

)αn

= (p+ ε) log
( p

p+ ε

)
.

Similarly, it can be shown that

lim
n→∞

1

n
log
(n(1− p)
n− αn

)n−αn

= (1− p− ε) log
( 1− p

1− p− ε

)
and this concludes the proof. �

2.6 The de Moivre - Laplace Central Limit Theorem.

We have now the tools to prove the de Moivre - Laplace theorem, that concerns the approximation of
the binomial distribution by the normal distribution. Recall that the standard normal distribution has
density

φ(x) =
1√
2π
e−x

2/2 (2.35)

and we denote the corresponding distribution function by

Φ(x) =

∫ x

−∞
φ(t) dt =

1√
2π

∫ x

−∞
e−t

2/2 dt. (2.36)

As before, Sn denotes a random variable with binomial distribution, which represents the number of
successes in n independent Bernoulli trials with success probability p, 0 < p < 1 and q = 1 − p. The
distribution of Sn is given by

P (Sn = k) = pn,k =

(
n

k

)
pkqn−k k = 0, 1, . . . , n,

with E(Sn) = np, Var(Sn) = npq.
In the next two theorems we shall prove that as the number of trials increases to infinity, the distri-

bution of

S′n =
Sn − np√

npq

converges to the normal distribution, given by (2.36).
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Theorem 2.4 Let a < b be real numbers, then

P (a < S′n ≤ b) −→ Φ(b)− Φ(a) =

∫ b

a

φ(t) dt, as n→∞. (2.37)

Proof. We start by defining the set

Hn = {k ∈ {0, 1, . . . , n} : a <
k − np
√
npq

≤ b}.

Observe that Hn also depends on a, b and p, which will remain fixed for the rest of the proof.
We have to look at the behavior of the following expression as n→∞

P (a < S′n ≤ b) = P (a <
Sn − np√

npq
≤ b)

=
∑
k∈Hn

P (Sn = k)

=
∑
k∈Hn

pn,k (2.38)

We will now show that, as n→∞ and for k ∈ Hn

pn,k =
1
√
npq

φ(xk,n)eαk,n

where αn,k → 0 as n→∞ and

xk,n =
k − np
√
npq

, (2.39)

Observe that

xk+1,n − xk,n =
1
√
npq

So that the sum in (2.39) looks like a Riemann sum for the integral in (2.37), except for the exponential
factor.

We start by giving an approximation for each term pn,k, where k ∈ Hn. To simplify the notation we
set δ = k − np. Observe that with this notation, k = np+ δ and n− k = nq − δ. If k ∈ Hn, then

δ

n
→ 0 as n→∞ (2.40)

since |δ|√
n

= |k−np|√
n

is a bounded sequence, because

a
√
pq <

k − np√
n
≤ b √pq

and since 1/
√
n→ 0 we have

δ

n
=

δ√
n

1√
n
→ 0.

On the other hand,

pn,k =

(
n

k

)
pkqn−k =

n!

k! (n− k)!
pkqn−k.

We now use Stirling’s formula with the following notation:

n! =
√

2πnnne−neγn
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where γn → 0 (and in consequence eγn → 1) as n→∞.
Observe now that under condition (2.40) –which is verified since we are only interested in values of

k ∈ Hn– k goes to +∞ as n→∞. To see this, assume it is false so that k is bounded and k/n→ 0, then

0 = lim
n→∞

δ

n
= lim
n→∞

k − np
n

= lim
n→∞

k

n
+ p = p 6= 0.

This contradiction proves that k →∞ and one can similarly show that n−k also goes to +∞. Therefore,
we can use Stirling’s formula for all factorials appearing in pn,k:

pn,k =

√
2πnnne−npkqn−keγn−γk−γn−k

√
2πkkke−k

√
2π(n− k)(n− k)(n−k)e−(n−k)

=
1√
2π

(
n

k(n− k)

)1/2 (np
k

)k ( nq

n− k

)n−k
eγn−γk−γn−k . (2.41)

The first factor is a constant while the second can be written as(
n

k(n− k)

)1/2

=

(
n

(np+ δ)(nq − δ)

)1/2

=

(
n

np
(

1 + δ
np

)
nq
(

1− δ
qn

))1/2

=
1
√
npq

(
1 +

δ

np

)−1/2(
1− δ

nq

)−1/2
=

1
√
npq

eγ
′
n

(2.42)

with γ′n → 0 as n→∞.
Taking logarithm of the third and fourth factors in (2.41) we get

k log
(np
k

)
+ (n− k) log

(
nq

n− k

)
= −(np+ δ) log

(
np+ δ

np

)
− (nq − δ) log

(
nq − δ
nq

)
= −(np+ δ) log

(
1 +

δ

np

)
− (nq − δ) log

(
1− δ

nq

)
.

Now we use the MacLaurin expansion for the function log(1 + x) with |x| < 1:

log(1 + x) = x− x2

2
+

1

3

1

(1 + θx)3
x3, (0 < θ < 1).

If |x| < 1/2 and A = 1
3

1
(1+θx)3 then |A| < 3, i.e. in this case we have

log(1 + x) = x− x2

2
+Ax3 with |A| < 3. (2.43)

Since δ
n → 0, we have that both δ

np and δ
nq are less than 1/2 for large values of n. Using now (2.43)

for log(1 + δ
np ) and log(1− δ

nq ), we get

k log
(np
k

)
+ (n− k) log

(
nq

n− k

)
= −(np+ δ)

(
δ

np
− δ2

2n2p2
+A

δ3

n3p3

)
− (nq − δ)

(
− δ

nq
− δ2

2n2q2
−A′ δ

3

n3q3

)
= − δ

2

2n

(
1

p
+

1

q

)
+B

δ3

n2
= − δ2

2npq
+B

δ3

n2
,



22 CHAPTER 2. BERNOULLI TRIALS

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

................


..............

..

y

a b

φ

xk,n xk+1,n x
......
...

......

...
......
...

......

...
.............................................................

......................................................

.......

.......

......

......................................................

.......

.......

.......

.......

.......

.......

.....

......................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

......................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

......................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

................... .
..
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
..
..
..
.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

......................................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................................................................................................................................................................................................................................................................

Figure 2.7: Approximation of the gaussian density

where |A| < 3, |A′| < 3 and |B| is bounded by a certain fixed constant, say |B| ≤ M . Taking now
exponentials and replacing in (2.41) with θn,k = γn − γk − γn−k − γ′n,

pn,k =
1√

2πnpq
exp{− δ2

2npq
+B

δ3

n2
+ θn,k} (2.44)

putting xn,k = δ√
npq = k−np√

npq this is (see figure 2.7)

=
1
√
npq

φ(xn,k) exp{B δ3

n2
+ θn,k}

=
1
√
npq

φ(xn,k)eαn,k (2.45)

with αn,k = B δ3

n2 + θn,k, where δ3

n2 → 0 as n→∞ since

δ3

n2
=

(
δ√
n

)3
1√
n

and the first factor is bounded since k ∈ Hn. Observe that this implies that, as n→∞,

sup
k∈Ha,b

αn,k → 0

Let’s go back to the initial sum. Substituting pn,k by the expression in (2.45), we get

P (a < S′n ≤ b) =
∑

k∈Ha,b

1
√
npq

φ(xk,n)eαn,k

=
∑

k∈Ha,b

1
√
npq

φ(xk,n) +
∑

k∈Ha,b

1
√
npq

φ(xk,n) [eαn,k − 1] . (2.46)

Since 1√
npq is equal to xk+1,n − xk,n, and

1
√
npq
→ 0

the first term goes to ∫ b

a

φ(t) dt (2.47)
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as n→∞.
As regards the second term in (2.46), since

|ex − 1| ≤ e|x| − 1,

it is bounded by

sup
k∈Ha,b

(
exp(|αn,k|)− 1

) ∑
k∈Ha,b

1
√
npq

φ(xk,n),

and now the first factor vanishes as n → ∞ while the second converges to the integral (2.47). In
consequence, the second term in (2.46) goes to zero. This ends the proof of the theorem. �

Theorem 2.5

P (S′n ≤ x)→ Φ(x) =

∫ x

−∞
φ(t) dt as n→∞

Proof. We rely on theorem 2.4. Let ε > 0 and choose a and b so that a < x < b (see figure 2.8) and

Φ(a) <
ε

2
, 1− Φ(b) <

ε

2
. (2.48)

Then
P (a < S′n ≤ x) ≤ P (S′n ≤ x) = 1− P (S′n > x) ≤ 1− P (b ≥ S′n > x).

The first term goes to
Φ(x)− Φ(a)

while the last term goes to
1− (Φ(b)− Φ(x)) = Φ(x) + (1− Φ(b))

as n→∞.
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Figure 2.8: Choosing the numbers a and b.

Hence, there exits N so that for n ≥ N we have

Φ(x)− Φ(a)− ε

2
≤ P (S′n ≤ x) ≤ Φ(x) + (1− Φ(b)) +

ε

2

and taking into account the way a and b were chossen, for n ≥ N

Φ(x)− ε ≤ P (S′n ≤ x) ≤ Φ(x) + ε

i.e.
|P (S′n ≤ x)− Φ(x)| ≤ ε.

and this proves the result. �



24 CHAPTER 2. BERNOULLI TRIALS

2.7 Examples.

1. A die is thrown 6,000 times. Use the normal distribution to approximate the probability that the
number 6 appears between 990 and 1,010 times.

I Let X be the number of times we get the number 6 in 6,000 throws of the die. We know that
X ∼ b(6, 000, 1/6), therefore

P (990 ≤ X ≤ 1010) = P

990− 1, 000√
6, 000 1

6
5
6

≤ X − 1, 000√
6, 000 1

6
5
6

≤ 1010− 1, 000√
6, 000 1

6
5
6


' 1√

2π

∫ 0.346

−0.346
e−x

2

dx ' 0.27.

J

2. In 5,000 throws of a coin there are 2,800 heads. Is it reasonable to assume that the coin is not
biased?

I The question may be rephrased in this way: If the coin is not loaded, how exceptional is it that the
number of heads in 5,000 throws exceeds its mean value of 2,500 by at least 300? If the probability
of this event is very small, instead of thinking that a very extraordinary event has occurred, one will
tend to attribute it to the fact that, in reality, the coin is loaded, and consequently the probability
has been calculated on the wrong basis.

First we us Tchebycheff’s inequality to bound this probability:

n = 5, 000, p = 0.5 np = 2, 500

P (Sn ≥ 2, 800) = P (Sn − np ≥ 300) =
1

2
P (|Sn − np| ≥ 300)

≤ 1

2

1

(300)2
Var(Sn)

=
1

2

5, 000

4(300)2
' 0.0068.

Thus, the probability of the event in question is bounded above by 0,0068.

If, instead, we resort to the approximation by the normal distribution, we have

P (Sn − np ≥ 300) = P

(
Sn − np√
np(1− p)

≥ 300√
np(1− p)

)
' 1√

2π

∫ +∞

a

e−x
2/2dx

with a = 300/
√

5, 000/4 ' 8.48.

The last integral is bounded by
1√
2π a

e−a
2/2

and replacing the value of a we get a value of 0.12×10−17 for this probability, which is astronomically
small. J

3. Between 2000 and 2009 inclusive, 13,249,775 girls and 13,230,179 boys were born in Mexico. We
want to see if this result is compatible with the hypothesis that the sex of newborns is randomly
distributed with a 0.5 probability.
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I To see this we consider the sex of each newborn to be a Bernoulli variable with a 0.5 probability
of success, and we will say that a success occurs if a girl is born. The total number of trials
is 26,479,954 and the expected value of the number of girls is np = 13, 239, 977. The difference
between the number of girls and their expected value is 9,798 and we want to find the probability
of getting a difference greater than or equal to this value:

P (Sn ≥ 13, 239, 977) = P
(Sn − np√

npq
≥ 13, 239, 977− np

√
npq

)
' P (N ≥ 3, 808)

' 7× 10−5

This number is small enough to suggest that the probability of boys and girls is not the same. J

4. Let us revisit the problem considered in section 2.3.1 regarding the empirical estimation of an
unknown proportion p using the relative frequency p̂n = Sn/n. We want to determine the sample
size so that with probability at least 0.95, the error in the estimation will be less than or equal to
0.01, i.e. we want to determine the value of n so that

P (|p̂n − p| ≤ 0.01) ≥ 0.95

Using Tchebycheff’s inequality, we saw then that a sample of size 50,000 would suffice but, as we
remarked, this number is, in fact, too large. Let us see how we can use the normal approximation
furnished by the CLT to get a more reasonable value for n. First, let us consider this problem in a
more general framework. Suppose that we want the error to be less than ε > 0 with probability at
least 1− α. α is known as the confidence level. Now we want

P (|p̂n − p| ≤ ε) ≥ 1− α.

This is equivalent to
P (|p̂n − p| > ε) ≤ α.

We have

α ≥ P (|p̂n − p| > ε) = P
(∣∣∣Sn

n
− p
∣∣∣ > ε

)
= P

(∣∣∣Sn − np
n

∣∣∣ > ε
)

= P
(∣∣∣Sn − np√

npq

∣∣∣ > ε
√
n

√
pq

)
≈ P

(
|N | > ε

√
n

√
pq

)
where N is a standard normal random variable. Since the standard Gaussian distribution is sym-
metric with respect to the origin

P
(
|N | > ε

√
n

√
pq

)
= 2P

(
N >

ε
√
n

√
pq

)
and in consequence we want n so that

P
(
N >

ε
√
n

√
pq

)
=
α

2

The number z1−α that satisfies

P (N > z1−α) = α or equivalently P (N ≤ z1−α) = 1− α
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is known as the quantile of order 1 − α of the standard normal distribution. This value can be
obtained from a table of the normal distribution or using the function qnorm(1-α) in R.

To determine n in our problem, we need the 1− α/2 quantile, which for α = 0.05 is 1.96. Thus we
want

ε
√
n

√
pq

= 1.96 or n =
(1.96)2pq

ε2

and we see that the sample size depends on ε2 and the product pq = p(1− p) = p− p2. If we now
nothing a priori about p, we can bound this last expression by its maximum, which is 1/4. Thus
we get the expression

n =
(1.96)2

4ε2

As examples, for ε = 0.01 we get n = 9, 604, for ε = 0.02, n = 2, 401 and for ε = 0.03, n = 1, 067.

If we change the value of α to 0.01, then z0.995 = 2.576 and the values of n for ε = 0.01, 0.02 and
0.03 are 16,590, 4,148 and 1,844, respectively. J

2.8 Extensions

1. To extend in several directions the de Moivre - Laplace theorem, a similar technique can be used.
Looking back at the proof, we see that it depends only on two things

δ

n
→ 0 (2.49)

and

δ3

n2
→ 0. (2.50)

But (2.50) implies (2.49) since

δ

n
=

1

n1/3

(
δ3

n2

)1/3

.

therefore, as long as (2.50) holds for every integer k such that

a ≤ k − np
√
npq

≤ b,

a similar conclusion will hold. This observation permits the generalization of the previous theorems
to the case where a and b vary with n. For instance, the proof we have given for theorems 2.4 and
2.5 also show that if

a3n√
n
→ 0 as n→∞

i.e., if an goes to +∞, but at a slower rate than n1/6, then

P

(
Sn − np√

npq
> an

)
∼
∫ +∞

an

φ(t)dt as n→∞ (2.51)

where, as before, φ is the standard normal density and the symbol “∼” says that both terms are
asymptotically equivalent.

These results allow the study of “large deviations” of the number of successes Sn (with binomial
distribution), from the expected value np. To be able to obtain sharp inequalities, it is useful to
study the speed of convergence to zero as n→∞, of

1− Φ(x) =

∫ +∞

x

1√
2π
et

2/2dt.
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Let us prove first that if x > 0 then

1− Φ(x) ≤ 1√
2π x

e−x
2/2. (2.52)

Indeed,

1− Φ(x) =
1√
2π

∫ ∞
x

e−t
2/2dt ≤ 1√

2π

∫ ∞
x

t

x
e−t

2/2dt,

since, in the integration range, t/x ≥ 1. Then

1− Φ(x) ≤ 1√
2π x

∫ ∞
x

te−t
2/2dt

= − 1√
2π x

e−t
2/2

∣∣∣∣+∞
x

=
1√
2π x

e−x
2/2.

Second, we will show that

1− Φ(x) ∼ 1√
2π x

e−x
2/2 as x→∞ (2.53)

We want to show now that

lim
x→∞

1− Φ(x)
1√
2π x

e−x2/2
= 1,

Using L’Hôpital’s rule,

− 1√
2π
e−x

2/2

1√
2π

(
− 1
x2 e−x

2/2 + 1
x (−xe−x2/2)

) =
1

1
x2 + 1

x→∞→ −→ 1,

and this proves (2.53).

2. In applications, it is generally interesting to know not only that as the number of observations
increases indefinitely, the binomial distribution tends to the normal distribution, but also, what is
the speed of convergence. In other words, it is interesting to have an estimate of the error made
when, for a given n, we replace the binomial distribution with the normal distribution. This error
depends on the value of n, but it also depends on the value of p1; the closer it is to 1/2, the faster
the convergence is.

Following the procedure in the proof of the de Moivre - Laplace theorem, to give a bound for the
error we are considering, the fundamental step is to refine formula (2.45), that approximates the
probability function for the binomial distribution by the density of the normal distribution. In
order to do this, on the one hand we need an estimation of the error when using Stirling’s formula
–that may be obtained using the same method we used for the proof– and on the other, we have to
use more terms in the expansion of log(1 +x). For instance, we may use the following improvement
on Stirling’s formula

n! =
√

2πnnne−neαn

where 0 < αn <
1

12n , and for the expansion of the logarithm we can take, for example

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+

1

5

x5

(1 + θx)5
for 0 < θ < 1, |x| < 1.

1When p is close to 0 or 1 and n is not very large, the Poisson approximation to the binomial distribution may be more
accurate. For this and other issues on approximation, as well as for the presentation of various examples, we recommend
that the reader consult Vol. 1 of W. Feller’s book, included in the bibliography.
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Finally, in (2.42), we also use a Mac-Laurin expansion to approximate(
1 +

δ

np

)−1/2(
1− δ

nq

)−1/2
.

Replacing in (2.41), if we add, for instance, the condition

|k − np| = |δ| ≤ C √npq (2.54)

where C is a constant, and we make n large enough so that

C
√
npq

<
1

3
, (2.55)

instead of (2.45) we get

pn,k =
1
√
npq

φ(xk,n)eεn (2.56)

where

|εn| ≤
(1 + C3)(q − p)

√
npq

+
(1 + C4)
√
npq

. (2.57)

Observe that the constant C appearing in (2.54), also appears in the error bound (2.57), so that for
n fixed, the greater the C, the less accurate the approximation. C measures how far are the values
of k from the mean value np for the random variable Sn under consideration. The further away from
the average np these k-values are, the greater the n necessary to obtain the same approximation.

Condition (2.55) can be modified, since

C
√
npq
→ 0 as n→∞.

The smaller the right-hand side –which we chose to be 1/3– the sharper the error bound that can
obtained in place of (2.57). This implies choosing a larger value of n.

As a final remark, observe that (2.57) suggests that the error we make when using the normal
distribution as an approximation of the binomial, may be a function of p. If p = q = 1/2, the first
term in the right hand side of (2.57) is 0, and the convergence to as n→∞ is faster. On the other
hand, given n, the bound depends on npq and is less accurate the more distant p is from 1/2 (i.e.
the closer p is to 0 or 1).

3. The theorem we have proved concerns sums of Bernoulli random variables appropriately normalized:
If Sn =

∑n
1 Xi then

S′n =
Sn − np√

npq

Observe that E(Sn) = np and Var(Sn) = npq so that we can write

S′n =
Sn − E(Sn)√

Var(Sn)
. (2.58)

Theorem 2.6 Let Xnn ≥ 1 be a sequence of independent identically distributed random variables
with finite positive variance and let S′n be defined as in (2.58). then, for any real x, as n→∞,

P (S′n ≤ x)→
∫ x

−∞
φ(t) dt =

∫ x

−∞

1√
2π
et

2/2 dt. (2.59)



2.9. THE R SECTION 29

In consequence, a CLT is valid for iid variables as long as they have finite variance, which is a very
general condition.

Recall that we defined the empirical or sample average for the variables X1, . . . , Xn as X̄n =
1
n

∑n
1 Xi. Observe that if divide numerator and denominator in (2.58) by n, we get the equivalent

expression

S′n =
√
n
X̄n − E(X̄n)√

Var(X̄n)
(2.60)

If the variables Xi have mean µ and variance σ2 then E(X̄n) = µ, Var(X̄n) = σ2 and the previous
expression becomes

S′n =
√
n
X̄n − µ
σ

. (2.61)

In this context, the proof requires tools that are beyond the scope of this course. The same questions
we raised in remark ?? are valid here. In particular, the speed of convergence to the limit will depend
on the shape of the common distribution of the X ′is. symmetric distributions with bounded or light
tails will have faster speeds of convergence than asymmetric or heavy tailed distributions. In the
next section we present a simulation example with different distributions that exemplify these facts.

2.9 The R Section

In this section we review some aspects of the simulation of Bernoulli trials and their associated random
variables and also consider the Law of Large Numbers and the Central Limit Theorem. We start by
considering simulation of variables in R.

2.9.1 Random Variable Generation in R

The R language has a series of built-in routines to generate random variables. The precise syntax of
the corresponding instruction depends on the distribution, but they all have the common format rdist,
where dist designates the distribution; for example, to generate values from the normal distribution we
use rnorm. Depending on the distribution, it may be necessary to specify one or more parameters. Table
2.1 presents the most common distributions, the required parameters and their default values. n always
represents the sample size.

In addition, R has the function sample that produces samples with or without replacement from finite
sets of values. The syntax is

sample(x, size, replace = FALSE, prob = NULL)

where

• x is the set from which we want to sample, written as a vector,

• size is the sample size,

• replace indicates if sampling is with replacement (replace = TRUE) or not and

• prob is a vector of probabilities, if sampling is not uniform.

Additionally, associated with each distribution are three other functions that correspond to the density,
distribution and quantile functions. These have a syntax similar to the one we have reviewed for the gen-
eration of random variables, but changing the first letter to d, p or q. Thus, for the normal distribution,
dnorm(x) corresponds to the density values at the points of the vector x, pnorm(q) corresponds to the
distribution function values at the points of the vector q and qnorm(p) gives the quantiles corresponding
to the probability vector p.
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Table 2.1: R Functions for generating values from several common distributions.

Distribution R Function
Binomial rbinom(n, size, prob)

Poisson rpois(n, lambda)

Geometric rgeom(n, prob)

Hypergeometric rhyper(nn, m, n, k)

Negative Binomial rnbinom(n, size, prob)

Multinomial rmultinom(n, size, prob)

Uniform runif(n, min=0, max=1)

Exponential rexp(n, rate=1)

Gaussian rnorm(n, mean=0, sd=1)

Gamma rgamma(n, shape, scale=1)

Weibull rweibull(n, shape, scale=1)

Cauchy rcauchy(n, location=0, scale=1)

Beta rbeta(n, shape1, shape2)

t rt(n, df)

Fisher rf(n, df1, df2)

χ2 rchisq(n, df)

Loǵıstic rlogis(n, location=0, scale=1)

Lognormal rlnorm(n, meanlog=0, sdlog=1)

2.9.2 Bernoulli Trials

To simulate Bernoulli variables in R we use the commands to generate binomial variables with parameter
n = 1. The following instructions generate 100 Bernoulli variables with parameter p = 0.1 and graph
them. The first instruction sets the seed of the random number generator so that the results can be
reproduced.

set.seed(192837)

index <- 1:100

sampl <- rbinom(100,1,0.1)

plot(index, sampl, type=’h’,lwd=2)

The following instructions are for graphing samples of size 100 for Bernoulli variables with success
probabilities p = 0.1; 0.3; 0.5 and 0.7, on four panels. The results are shown on figure 2.9

par(mfrow=c(4,1))

plot(index,rbinom(100,1,0.1), type=’h’,lwd=2, main=’Bernoulli trials, p=0.1’,

ylab=’’,bty=’n’,yaxt=’n’)

plot(index,rbinom(100,1,0.3), type=’h’,lwd=2, main=’Bernoulli trials, p=0.3’,

ylab=’’,bty=’n’,yaxt=’n’)

plot(index,rbinom(100,1,0.5), type=’h’,lwd=2, main=’Bernoulli trials, p=0.5’,

ylab=’’,bty=’n’,yaxt=’n’)

plot(index,rbinom(100,1,0.7), type=’h’,lwd=2, main=’Bernoulli trials, p=0.7’,

ylab=’’,bty=’n’,yaxt=’n’)

par(mfrow=c(1,1))

We have previously studied the geometric distribution, which is associated to sequences of Bernoulli
trials and corresponds to counting the number of trials until the first success occurs. The following
instruction indicates in which trial is the first success in the vector sampl.

index[sampl==1][1]

[1] 7
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Figure 2.9: Samples of size 100 of Bernoulli trials with success probabilities 0.1, 0.3, 0.5 and 0.7. Vertical
bars correspond to successes.

Let us explain in more detail this command. The condition that appears within brackets, sampl==1,
creates a logical vector of the same length as sampl whose entries are either TRUE or FALSE depending
on whether the condition is satisfied by the corresponding entry in the vector sampl. Thus, if the first
entry is a success, the vector produced by the instruction sampl == 1 will have TRUE as its first entry
and otherwise it will have FALSE. Hence, index[sampl==1] is the vector of the indices that correspond
to successes in the sequence, and we are asking for the first component of this vector, i.e. the index that
corresponds to the first success in the sequence.
On the other hand, if we wanted the position in the sequence of the third success, we would write

index[sampl==1][3]

[1] 28

To facilitate the repetition of this procedure we will define a function that will allow us to find the
first success:

geo1 <- function(n=1000,p=0.1) (1:n)[rbinom(n,1,p)==1][1]

This function has two parameters, the sample size n, which by default has a value of 1,000, and the
probability of success p, by has a default value of 0.1. Both can be set when the function is called, but
since they have default values, the function is executed even if no values are entered for these parameters:

geo1()

[1] 7

and the result is the number of trials until the firs success. We have included the number of trials as a
parameter because if we want to use very small values of the probability of success, it may be necessary
to raise its value. If we want to repeat this function we may us the command replicate:

replicate(10,geo1())

[1] 1 3 5 9 19 7 8 19 1 28

which gives a sample of size 10 from the geometric distribution with success probability 0.1. Next we
use the function tabulate to create a table of values for a sample of size 10,000 from the geometric
distribution with p = 0.1. We truncate the values in the table at 50 and graph them. Results are shown
in figure 2.10 (left).

The commands in R to produce this graph are:
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Figure 2.10: Frecuencia emṕırica de los valores for una distribución geométrica con parámetro p = 0.1
basado en una muestra simulada de tamaño 10,000: (izq) using la función geo1 que construimos, (der)
using la función rgeom.

values <- tabulate(replicate(10000,geo1()),50)

plot(1:50,values/10000,pch=16, cex.main = 1.7,

main=’Geometric Distribution with p=0.1’,

xlab=’Values’, ylab=’Frequency’, cex.lab=1.5)

abline(h=0, col=’red’)

abline(v=0, col=’red’)

points(1:50,dgeom(0:49,0.1),col=’red’,pch=18)

legend(’topright’,c(’Empirical frequency’,’Theoretical probability’),

pch=c(16,18),col=c(’black’,’red’))

In R we have the function rgeom to generate samples from the geometric distribution, but this is
not exactly the same distribution we have simulated. The function rgeom counts the number of failures
before the first success, and does not include the trial in which the first success appears. Thus, the values
differ in 1 and the distribution included in R has 0 as a potential value, which corresponds to a sequence
starting with a success. We draw a similar graph using this function, in figure 2.10 (right).

However, we need to do a little trick to use the function tabulate in this context, since this function
disregards values of the vector to be tabulated that are smaller or equal to 0 and in the vectors we will
consider there will be values equal to 0. An easy way to deal with this inconvenience is to add a unit
to the values before tabulation, and then draw the results starting from the value 0. This is done in the
next set of commands.

plot(0:49,tabulate(rgeom(10000,0.1)+1,51),pch=16,xlab=’k’,ylab=’Frequency’,

main=’Geometric Distribution with p=0.1’), cex.main= 1.7, cex.lab= 1.5

abline(h=0, col=’red’)

abline(v=0, col=’red’)

points(0:50,dgeom(0:50,0.1),col=’red’,pch=18)

legend(’topright’,c(’Empirical frequency’,’Theoretical probability’),

pch=c(16,18),col=c(’black’,’red’))

It is important to remember that there two different definitions of the geometric distribution in the
literature, and the distribution included in R does not coincide with the one we have included on this
notes. Therefore, in order to obtain values corresponding to the distribution defined in this notes, we
must add a unit to the values generated with the rgeom function or, equivalently, move the values to the
right one unit when making the graphs.
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Next, we want to make a graphical representation of several instances of the geometric distribution,
using vertical bars for the values of the probability function. The first command in the list below saves
in op the default values of the graphical parameters, so if we modify them for a particular graph, we can
restore them at the end with the command par(op). In the process of drawing these figures, we will
change the margins twice, since the default values tend to be too big for a multipanel representations.
The resulting graph is presented in figure 2.11.
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Figure 2.11: Probability functions for the geometric distribution with parámeters 0.1, 0.3, 0.5 and 0.7.

op <- par(no.readonly = TRUE)

xval <- 0:40; clrs <- rainbow(50)

par(mfrow=c(2,2))

par(mar=c(4,4,4,2)+0.1)

plot(xval+1, dgeom(xval,0.7),type=’h’,lwd=3, xlab=’x’, col = clrs[36],

main=’Geometric probability function, p = 0.7’,ylab=’Probability’)

plot(xval+1, dgeom(xval,0.5),type=’h’,lwd=3, xlab=’x’,col=clrs[34],

main=’Geometric probability function, p = 0.5’,ylab=’Probability’,)

par(mar=c(5,4,3,2)+0.1)

plot(xval+1, dgeom(xval,0.3),type=’h’,lwd=3, xlab=’x’,col=clrs[32],

main=’Geometric probability function, p = 0.3’,ylab=’Probability’)

plot(xval+1, dgeom(xval,0.1),,type=’h’,lwd=3, xlab=’x’,col=clrs[30],

main=’Geometric probability function, p = 0.1’,ylab=’Probability’)

par(mfrow=c(1,1))

par(op)

The colors for the previous figures were chosen using the rainbow palette. Figure 2.12 shows the
colors included in a rainbow(50) palette.

Another distribution associated to sequences of Bernoulli trials is the negative binomial, that counts
the number of trials needed to get the k-th success. One way to simulate this distribution is adding k
variables with geometric distribution, as in the next example in which k = 3.

set.seed(1234)

sum(replicate(3,geo1()))

[1] 35

An alternative way is to modify the function geo1 to find the k-th success instead of the first one:

bineg <- function(k=2,nn=1000,pp=0.1) (1:nn)[rbinom(nn,1,pp)==1][k]
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Figure 2.12: Choice of colors using the rainbow(50) palette.

bineg()

[1] 10

bineg(10)

[1] 95
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Figure 2.13: Empirical frequency for 10,000 values simulated from a negative binomial distribution with
parameters p = 0.1 and k = 3.

Next, we simulate a sample of size 10,000 and graph the relative frequency of the results up to the
value 100 for k = 3. The result is shown in figure 2.13.

valuesnb <- tabulate(replicate(10000,bineg(3)),100)

plot(1:100,valuesnb,pch=16,main=’Negative Binomial with p=0.1 and k=3’,

xlab=’Values’,ylab=’Frequency’, cex.main=1.5, cex.lab=1.5)

The function rnbinom, which generates samples from a negative binomial distribution, as well as the
functions dnbinom for the density, pnbinom for the distribution functions and qnbinom for the quantile
function, are also available in R, but as in the case of the geometric distribution, the values of this
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variables in R do not include the successes and only count the number of failures previous to the k-th
success. Therefore, for the values given by R to coincide with those defined in this course, we have to add
k to the values of this variable.

Next, we give some graphics for the probability function of variables with negative binomial distribu-
tions, with different values for the parameters.

op <- par(no.readonly = TRUE)

par(mfrow=c(2,2))

par(mar=c(4,4,4,2)+0.1)

plot(xval+3, dnbinom(xval,3,0.7), type=’h’,main=’Negative Binomial Distribution,

k=3,p=0.7’,lwd=2, ylab=’Densidad’, xlab=’x’,xlim=c(0,50))

plot(xval+3, dnbinom(xval,3,0.5),col=clrs[4],lwd=2,type=’h’,ylab=’Density’,

main=’Negative Binomial Distribution, k=3, p=0.5’, xlab=’x’,xlim=c(0,50))

par(mar=c(5,4,3,2)+0.1)

plot(xval+3, dnbinom(xval,3,0.3),col=clrs[28],lwd=2,type=’h’,ylab=’Density’,

main=’Negative Binomial Distribution, k=3, p=0.3’, xlab=’x’,xlim=c(0,50))

plot(xval+3, dnbinom(xval,3,0.1),col=clrs[34],lwd=2,type=’h’,ylab=’Density’,

main=’Negative Binomial Distribution, k=3, p=0.1’, xlab=’x’,xlim=c(0,50))

par(mar=c(4,4,4,2)+0.1)

plot(xval+3, dnbinom(xval,3,0.3), type=’h’,main=’Negative Binomial Distribution,

k=3,p=0.3’,lwd=2,ylab=’Density’, xlab=’x’,xlim=c(0,50))

plot(xval+5, dnbinom(xval,5,0.3),col=clrs[4],lwd=2,type=’h’,ylab=’Density’

,main=’Negative Binomial Distribution, k=5, p=0.3’, xlab=’x’,xlim=c(0,50))

par(mar=c(5,4,3,2)+0.1)

plot(xval+7, dnbinom(xval,7,0.3),col=clrs[28],lwd=2,type=’h’,ylab=’Density’,

main=’Negative Binomial Distribution, k=7, p=0.3’, xlab=’x’,xlim=c(0,50))

plot(xval+9, dnbinom(xval,9,0.3),col=clrs[34],lwd=2,type=’h’,ylab=’Density’,

main=’Negative Binomial Distribution, k=9, p=0.3’, xlab=’x’,xlim=c(0,50))

par(mfrow=c(1,1))

par(op)

Results are shown in the following figures
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Figure 2.14: Negative binomial probability function with k = 3 and p = 0.7, 0.5, 0.3 and 0.1.
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Figure 2.15: Negative binomial probability function with p = 0.3 and pk = 3, 5, 7 and 9.

Finally, we consider the binomial distribution, which is naturally linked to Bernoulli trials, since a
binomial variable with parameters n and p counts the number os successes in a sequence of n independent
Bernoulli trials with success probability p. We present several animations in R. For a start, we set n = 10
and allow p to vary between 0 and 1 in steps of 0.01.

binom <- function(p){
plot(0:10,dbinom(0:10,10,p),type=’h’,lwd=5,ylim=c(0,0.5),

xlab=’Values’,ylab=’Probability’)

Sys.sleep(0.1)}
ignorar <- sapply((0:100)/100,binom)

Next we set p = 0.5 and vary n between 1 and 100:

binom2<- function(n){
plot(0:n,dbinom(0:n,n,0.5),type=’h’,lwd=5,ylim=c(0,0.5),

xlab=’Values’,ylab=’Probability’)

Sys.sleep(0.1)}
ignorar <- sapply((0:100),binom2)

In the following figures we change the x-axis scale and graph for n up to 200.

binom3<- function(n){
plot(0:n,dbinom(0:n,n,0.5),type=’h’,lwd=5,ylim=c(0,0.5),

xlab=’Values’,ylab=’Probability’,

xlim=c((n/2)-2*sqrt(n),(n/2)+2*sqrt(n)))

Sys.sleep(0.08) }
ignorar <- sapply((0:200),binom3)

Finally, we set the value of p to 0.25 and let n vary from 0 to 200. The first set of figures is without
modifying the scale.

binom4<- function(n){
plot(0:n,dbinom(0:n,n,0.25),type=’h’,lwd=5,ylim=c(0,0.5),

xlab=’Values’,ylab=’Probability’)

Sys.sleep(0.08)}
ignorar <- sapply((0:200),binom4)

binom5<- function(n){
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plot(0:n,dbinom(0:n,n,0.25),type=’h’,lwd=5,ylim=c(0,0.5),

xlab=’Values’,ylab=’Probability’,

xlim=c((n/4)-2*sqrt(n),(n/4)+2*sqrt(n)))

Sys.sleep(0.08)}
ignorar <- sapply((0:200),binom4)

2.10 Appendix: Proof of Stirling’s Formula.

Stirling’s formula gives an asymptotically equivalent expression for factorials that is very useful when one
is interested in studying the behavior of expressions involving factorials as the argument goes to infinity.
We have seen an example in the previous section and we shall use it again to prove that the binomial
distribution may be approximated by the normal distribution, in the next section.

Lemma 2.5 (Stirling’s formula) As n→∞,

n! ∼
√

2πnnn e−n.

Proof. We want to show that

lim
n→∞

n!√
nnn e−n

=
√

2π.

The proof is divided in two steps. In the first one we prove that the limit in the left-hand side exists and
is finite, and in the second we show that it is equal to

√
2π.

Step 1. Consider the function f(x) = log x for x ≥ 1 and let us bound below the area An limited by its
graph, the x axis and the vertical line going through x = n, replacing each piece of the curve Pk Pk+1 by
the segment Pk Pk+1 (see figure 2.16). Since the area of the trapezoid k Pk Pk+1 (k + 1) is

1

2
(Pk + Pk+1) =

1

2
(log k + log(k + 1))

we get

An =

∫ n

1

log x dx >

n−1∑
k=1

1

2
(log k + log(k + 1))

=
1

2
(log 1 + log 2 + log 2 + log 3 + · · ·+ log n)

= log 2 + log 3 + · · ·+ log(n− 1) +
1

2
log n. (2.62)

Let an = An− (log 2+log 3+ · · ·+log(n−1)+ 1
2 log n), be the difference between the area An and the

sum of the areas of the trapezoids. It is clear from the graphs that the sequence {an} is monotonically
increasing.

Let now bk be the shaded area in figure 2.17, where the segment P ′k P
′
k+1 is tangent to the graph of

f(x) = log x at the midpoint of the interval, x = k + 1/2. It is clear that

an <

n−1∑
k=1

bk, (n > 1), (2.63)

where bk is the difference of the areas of the trapezoids k P ′k P
′
k+1 (k+1) and k Pk Pk+1 (k+1). Therefore

bk = log(k +
1

2
)− 1

2
[log k + log(k + 1)] =

1

2
log

(k + 1
2 )2

k(k + 1)

=
1

2
log(1 +

1/4

k(k + 1)
) ≤ 1

8k(k + 1)
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Figure 2.16: Approximating the function log x by linear segments.
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Figure 2.17: Bound for the approximation to the function log x
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since log(1 + x) ≤ x. Replacing this in (2.63), we get

an <
1

8

n−1∑
k=1

1

k(k + 1)
<

1

8

∞∑
k=1

1

k2
= C <∞

since the series
∑
k 1/k2 is convergent.

Thus, the sequence {an} is monotonically increasing and bounded above, and therefore has a finite
limit that we shall call a. On the other hand, integrating by parts

An =

∫ n

1

log x dx = x log x

∣∣∣∣n
1

−
∫ n

1

dx = n log n− n+ 1

and therefore

an = n log n− n+ 1−
(

log 2 + · · ·+ log(n− 1) +
1

2
log n

)
.

Exponentiating both terms, we get

ean−1 =
nn e−n n1/2

n!
,

whence
n!

nne−nn1/2
→ 1

ea−1
= α as n→∞.

Step 2. Let us show now that α =
√

2π. For this we consider

In =

∫ π/2

0

(sinx)n dx =

∫ π/2

0

(sinx)n−2(sinx)2 dx

=

∫ π/2

0

(sinx)n−2 (1− (cosx)2) dx

= In−2 −
∫ π/2

0

(sinx)n−2 cosx cosx dx

= In−2 −
[

1

n− 1
(sinx)n−1 cosx

∣∣∣∣π/2
0

+

∫ π/2

0

1

n− 1
(sinx)n−1 sinx dx

= In−2 −
1

n− 1
In

whence

In =
n− 1

n
In−2. (2.64)

Hence, considering separately the cases in which n is even or odd, and using (2.64) iteratively, we get

I2p =
2p− 1

2p

2p− 3

2p− 2
· · · 3

4

1

2
I0; I2p+1 =

2p

2p+ 1

2p− 2

2p− 1
· · · 4

5

2

3
I1.

Also

I0 =

∫ π/2

0

dx =
π

2
, I1 =

∫ π/2

0

sinx dx = 1,

which means that

I2p =
2p− 1

2p

2p− 3

2p− 2
· · · 3

4

1

2

π

2
; I2p+1 =

2p

2p+ 1

2p− 2

2p− 1
· · · 4

5

2

3
. (2.65)
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Observe now that {In} is a decreasing sequence, since for 0 ≤ x ≤ π/2 we have 0 ≤ sinx ≤ 1, sinn x
decreases with n, and therefore, so does the integral In. From this we get that

I2p+2

I2p
<
I2p+1

I2p
< 1.

Using (2.64) we have
I2p+2

I2p
=

2p+ 1

2p+ 2
→ 1 as p→∞

and therefore the sequence in the middle
I2p+1

I2p

also goes to 1 as p→∞. Using now (2.65) we have that

I2p+1

I2p
=

[2p(2p− 2) · · · 4 · 2]2

(2p+ 1)[(2p− 1)(2p− 3) · · · 5 · 3]2
2

π
→ 1 as p→∞,

hence
2p(2p− 2) · · · 4 · 2

(2p− 1)(2p− 3) · · · 5 · 3

√
2

π(2p+ 1)
→ 1 as p→∞.

Multiplying numerator and denominator by

2p(2p− 2) · · · 4 · 2 = 2pp(p− 1)(p− 2) · · · 1 = 2pp!

we get

(2pp!)2

(2p)!

√
2

π(2p+ 1)
→ 1 as p→∞.

We now use the step 1 result. We know that

n! ∼ αnn e−n
√
n.

Substituting

(2pp!)2

(2p)!

√
2

π(2p+ 1)
∼

(2pαpp e−p
√
p)2

α(2p)2p e−2p
√

2p

√
2

π(2p+ 1)
∼ α√

2π
.

Since the limit is 1, then necessarily α =
√

2π. This finishes the proof of Stirling’s formula. �


