Medida y Probabilidad Problemas V

Los problemas 3, 7, 10, 11 y 15 son para entregar el martes 14/09/09.

- 1. De un ejemplo de una función creciente y continua por la derecha tal que $\mu_F(a,b) < F(b) F(a) < \mu_F[a,b]$.
- 2. Para cualquier f.d. F definimos

$$F_l^{\leftarrow}(y) = \inf\{t: F(t) \ge y\}, \qquad F_r^{\leftarrow}(y) = \inf\{t: F(t) > y\}.$$

Demuestre que F_l^{\leftarrow} es continua por la izquierda y F_r^{\leftarrow} es continua por la derecha. Demuestre también que $\lambda\{u\in(0,1]:F_l^{\leftarrow}(u)\neq F_r^{\leftarrow}(u)\}=0$ ¿Importa cuál de las dos inversas usamos?

- 3. Sea F una f.d. continua en \mathbb{R} . Demuestre que F es uniformemente continua.
- 4. Para $\mathbf{a}, \mathbf{b}, \mathbf{x} \in \mathbb{R}^k$ escribimos $\mathbf{a} \leq \mathbf{b}$ si $a_i \leq b_i$, $i = 1, \dots, k$; $(-\infty, \mathbf{x}] = {\mathbf{u} \in \mathbb{R}^k : \mathbf{u} \leq \mathbf{x}}$; $(\mathbf{a}, \mathbf{b}] = {\mathbf{u} \in \mathbb{R}^k : \mathbf{a} < \mathbf{u} \leq \mathbf{b}}$. Sea P una medida de probabilidad en $\mathcal{B}(\mathbb{R}^k)$, definimos para $\mathbf{x} \in \mathbb{R}^k$, $F(\mathbf{x}) = P((-\infty, \mathbf{x}])$. Sea \mathcal{S}_k la semiálgebra de los rectángulos k-dimensionales en \mathbb{R}^k , es decir, los conjuntos de la forma $(\mathbf{a}, \mathbf{b}]$.
 - a) Si $\mathbf{a} \leq \mathbf{b}$ demuestre que el rectángulo $I_k = (\mathbf{a}, \mathbf{b})$ puede escribirse como

$$I_k = (-\infty, \mathbf{b}] \setminus \left((-\infty, (a_1, b_2, \dots, b_k)) \cup (-\infty, (b_1, a_2, \dots, b_k)) \cup \dots \cup (-\infty, (b_1, b_2, \dots, a_k)) \right)$$
(1)

donde los índices de la unión son los vértices del rectángulo distintos a b.

- b) Demuestre que $\mathcal{B}(\mathbb{R}^k) = \sigma\{(-\infty, \mathbf{x}], \mathbf{x} \in \mathbb{R}^k\}.$
- c) Verifique que $\{(-\infty, \mathbf{x}], \mathbf{x} \in \mathbb{R}^k\}$ es un sistema π .
- d) Demuestre que P está determinada por $F(\mathbf{x}), \mathbf{x} \in \mathbb{R}^k$.
- e) Demuestre que F satisface las siguientes propiedades:
 - 1) Si $x_i \to \infty$, para todo $i = 1, \ldots, k$ entonces $F(\mathbf{x}) \to 1$.
 - 2) Si para algún $i \in \{1, ..., k\}$ $x_i \to -\infty$, entonces $F(\mathbf{x}) \to 0$.
 - 3) Sea \mathcal{V} el conjunto de vértices del rectángulo I_k , de modo que

$$\mathcal{V} = \{(x_1, \dots, x_i) : x_i = a_i \text{ o } b_i, i = 1, \dots, k\}.$$

Para $\mathbf{x} \in \mathcal{V}$ definimos

$$\operatorname{sgn}(\mathbf{x}) = \begin{cases} +1, & \text{si } \operatorname{card}\{i : x_i = a_i\} \text{ es par,} \\ -1, & \text{si } \operatorname{card}\{i : x_i = a_i\} \text{ es impar.} \end{cases}$$

Para $I_k = (\mathbf{a}, \mathbf{b}] \in \mathcal{S}_k$ use la fórmula de inclusión-exclusión para demostrar que $P(I_k) = \Delta_{I_k} F$. donde $\Delta_{I_k} F = \sum_{\mathbf{x} \in \mathcal{V}} \operatorname{sgn}(\mathbf{x}) F(\mathbf{x})$.

- f) Demuestre que F es continua por arriba: $\lim_{\mathbf{a} \leq \mathbf{x} \downarrow \mathbf{a}} F(\mathbf{x}) = F(\mathbf{a})$.
- g) Decimos que $F: \mathbb{R}^k \to [0,1]$ es una función de distribución multivariada si se satisfacen las propiedades e) 1 y 2, F es continua por arriba y $\Delta_{I_k} F \geq 0$. Demuestre que cualquier función de distribución multivariada determina una única medida de probabilidad P en $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$. (Use el teorema de extensión).
- 5. Se
a λ_2 la distribución uniforme en el cuadrado unitario
 $[0,1]^2$ definida por su f.d.

$$\lambda_2([0,\theta_1] \times [0,\theta_2]) = \theta_1 \theta_2, \quad (\theta_1,\theta_2) \in [0,1]^2.$$

- a) Demuestre que λ_2 asigna probabilidad 0 a la frontera de $[0,1]^2$.
- b) Calcule $\lambda_2\{(\theta_1, \theta_2) \in [0, 1]^2 : \theta_1 \wedge \theta_2 > 2/3\}.$
- c) Calcule $\lambda_2\{(\theta_1,\theta_2)\in[0,1]^2:\theta_1\wedge\theta_2\leq x,\theta_1\vee\theta_2\leq y\}.$
- 6. Para los siguientes ejemplos, describa la medida exterior μ^* y la clase \mathcal{M} de los conjuntos medibles.
 - a) Sea $\Omega = \{1, 2, 3\}$, C es la colección de los conjuntos $\{1\}$, $\{2, 3\}$ y definimos P_1 por $P_1(\Omega) = 1$, $P_1\{1\} = 0$ y P_2 por $P_2(\Omega) = 1$, $P_2\{2, 3\} = 0$. Observe que $\mathcal{M}(P_1^*)$ y $\mathcal{M}(P_2^*)$ difieren.

- b) Sea Ω numerablemente infinito, \mathcal{A} el álgebra de los conjunto finitos y cofinitos, y ponemos P(A) igual a 0 ó 1 según A sea finito o cofinito.
- c) Para A en el álgebra \mathcal{A} y $\omega_0 \in \Omega$ ponemos $P(A) = \delta_{\omega_0}(A)$, que vale 1 si $\omega_0 \in A$ y 0 si no.
- 7. Sea Ω el cuadrado unitario $\{(x,y): 0 \le x \le 1, 0 \le y \le 1\}$. Si $E \subset [0,1]$ ponemos $\tilde{E} = \{(x,y): x \in E, 0 \le y \le 1\}$ y sea \mathcal{S} la clase de los conjuntos \tilde{E} tales que E es Lebesgue medible (en [0,1]). Definimos $\mu(\tilde{E}) = \lambda(E)$. Demuestre que $(\Omega, \mathcal{S}, \mu)$ es un espacio de probabilidad. Demuestre que $A = \{(x,y): 0 \le x \le 1, y = 1/2\}$ no es medible respecto a la medida exterior μ^* generada por μ en la clase de los subconjuntos de Ω . Demuestre que $\mu^*(A) = 1, \ \mu^*(A^c) = 1$.
- 8. Si F es una función de Stieltjes en \mathbb{R} que genera la medida μ_F , demuestre que F es continua si y sólo si $\mu_F(\{x\}) = 0$ para todo $x \in \mathbb{R}$.
- 9. Demuestre que F, G son funciones de distribución en \mathbb{R} entonces aF + bG también es una función de distribución para cualesquiera $a \ge 0, b \ge 0$ con a + b = 1.
- 10. Si \mathcal{F} es una σ -álgebra de subconjuntos de Ω y E es cualquier subconjunto de Ω , demuestre que la σ -álgebra generada por $\mathcal{F} \cup \{E\}$ es la colección de los conjuntos de la forma $(A \cap E) \cup (B E)$, para $A, B \in \mathcal{F}$.
- 11. Demuestre que para cualquier espacio de medida $(\Omega, \mathcal{F}, \mu)$ y cualquier conjunto $E \subset \Omega$, siempre es posible extender μ a una medida ρ en la σ -álgebra $\mathcal{D} = \sigma(\mathcal{F} \cup \{E\})$. (Ayuda: Usando el problema 10, sea $\rho(A \cap E) = \mu^*(A \cap E)$ y $\rho(B E) = \mu_*(B E) := \sup\{\mu(C) : C \in \mathcal{F}, C \subset B E\}$).
- 12. Sea μ una medida definida en la σ -álgebra de Borel \mathcal{B} en [0,1] con $\mu(\{x\})=0$ para todo $x\in[0,1]$. Sea $\varepsilon>0$. Demuestre que para todo x existe un intervalo abierto I con $\mu(I)<\varepsilon$ y que existe un conjunto U denso y abierto con $\mu(U)<\varepsilon$.
- 13. Si B es un boreliano en \mathbb{R}^n y $\mathbf{a} \in \mathbb{R}^n$ demuestre que $\mathbf{a} + B = \{\mathbf{a} + \mathbf{x} : \mathbf{x} \in B\}$ y $-B = \{-\mathbf{x} : \mathbf{x} \in B\}$ son también borelianos.
- 14. Sean $(\Omega_n \mathcal{F}_n, \mu_n)$ espacios de medida para $n \geq 1$ y suponga que los conjuntos Ω_n son disjuntos. Sea $\Omega = \bigcup_n \Omega_n$, \mathcal{F} la colección de conjuntos de la forma $A = \bigcup_n A_n$ con $A_n \in \mathcal{F}_n$, y para estos conjuntos definimos $\mu(A) = \sum_n \mu_n(A_n)$. Demuestre que $(\Omega, \mathcal{F}, \mu)$ es un espacio de medida. ¿Bajo qué condiciones es σ finito? ¿finito?
- 15. Sean μ_1 y μ_2 dos medidas en una σ -álgebra \mathcal{F} que son σ -finitas en un álgebra \mathcal{A} que genera a \mathcal{F} . Demuestre que si $\mu_1(A) \leq \mu_2(A)$ para todo $A \in \mathcal{A}$, entonces la desigualdad es válida en todo \mathcal{F} .
- 16. Sea $A \in \mathcal{B}$, $\lambda(A) > 0$ y $0 < \theta < 1$. Demuestre que existe un intervalo abierto acotado I tal que $\lambda(A \cap I) \ge \theta \lambda(I)$. (Ayuda: Demuestre que se puede suponer que $\lambda(A)$ es finita y halle un abierto G tal que $A \subset G$ y $\lambda(A) \ge \theta \lambda(G)$. Pero $G = \bigcup_n I_n$ para intervalos disjuntos y abiertos I_n y $\sum_n \lambda(A \cap I_n) \ge \theta \sum_n \lambda(I_n)$. Use uno de los I_n).
- 17. Si $A \in \mathcal{B}$ y $\lambda(A) > 0$, entonces el origen es un punto interior del conjunto $D(A) = \{x y : x, y \in A\}$. (Ayuda: Escoja un intervalo abierto y acotado I como en el problema anterior para $\theta = 3/4$. Suponga que $|z| < \lambda(I)/2$, entonces $A \cap I$ y $(A \cap I) + z$ están contenidos en un intervalo de longitud menor que $3\lambda(I)/2$, y no pueden ser disjuntos, y en consecuencia $z \in D(A)$).
- 18. Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y A_1, A_2, \ldots, A_n eventos (es decir, $A_i \in \mathcal{F}$). Definimos

$$S_1 = \sum_{i=1}^n P(A_i), \qquad S_2 = \sum_{1 \le i < j \le n} P(A_i \cap A_j), \qquad S_3 = \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k), \quad \dots$$

Para $1 \le m \le n$ sea p(m) la probabilidad de que exactamente m eventos ocurran: $p(m) = P(\sum_{i=1}^{n} \mathbf{1}_{A_i} = m)$. Demuestre que

$$p(m) = S_m - {m+1 \choose m} S_{m+1} + {m+2 \choose m} S_{m+2} - \dots \pm {n \choose m} S_n$$

19. Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y sea P^* la medida exterior asociada a P. Sea $B \subset \Omega$ y $\mathcal{F}_0 = \{A \cap B : A \in \mathcal{F}\}$. Supongamos además que $P^*(B) > 0$ y definimos P_0 en \mathcal{F}_0 por $P_0(A \cap B) = P^*(A \cap B)/P^*(B)$ para $A \in \mathcal{F}$. Demuestre que \mathcal{F}_0 es una σ -álgebra en B y P_0 es una probabilidad en \mathcal{F}_0 . Sea P_0^* la medida exterior generada por P_0 . Demuestre que $P_0^*(A) = P^*(A)/P^*(B)$ para $A \subset B$.