Medida

Problemas IX

Los problemas 5, 7, 13, 17, y 18 son para entregar el martes 06/11/07.

1. Suponga que $f: \mathbb{R} \to \mathbb{R}$ es integrable según Lebesgue y sea

$$F(x) = \int_{(-\infty, x]} f(t) \, d\lambda(t).$$

Demuestre que F es uniformemente continua.

2. Carathéodory define la integral de Lebesgue de una función real, medible, no-negativa sobre un conjunto E como la medida de Lebesgue del conjunto

$$\int_{E} f(x)dx = \lambda(\{(x,y) : x \in E, 0 \le y \le f(x)\}).$$

Demuestre que esta definición es equivalente a la que dimos en clase.

3. (Lema de Pratt) Demuestre la siguiente variante del teorema de convergencia dominada y el lema de Fatou: Sea X_n, Y_n, X, Y v.a. sobre (Ω, \mathcal{F}, P) tales que

a)
$$0 \le X_n \le Y_n$$
, b) $X_n \to X$, $Y_n \to Y$, c) $\mathrm{E}[Y_n] \to \mathrm{E}[Y]$, $\mathrm{E}[Y] < \infty$.

Entonces $E[X_n] \to E[X]$. Demuestre el Teorema de Convergencia Dominada como consecuencia de este resultado

4. (Teorema de Beppo Levi) Suponga que $X_n \in L^1$ para $n \geq 1$ son v.a. tales que

$$\sup_{n\geq 1} \mathrm{E}[X_n] < \infty.$$

Demuestre que si $X_n \uparrow X$ entonces $X \in L^1$ y $E[X_n] \to E[X]$.

5. Sea $(f_n, n \ge 1)$ la sucesión de funciones definidas en \mathbb{R} por

$$f_n(x) = \begin{cases} n^2 x & \text{para } 0 \le x \le 1/n, \\ -n^2 (x - \frac{2}{n}) & \text{para } 1/n \le x \le 2/n, \\ 0 & \text{para } x \ge 2/n. \end{cases}$$

Calcule lím inf $\int f_n d\lambda$, \int lím inf $f_n d\lambda$, lím sup $\int f_n d\lambda$, \int lím sup $f_n d\lambda$ y compare estos cuatro números. Comente.

- 6. Repita el ejercicio anterior para la sucesión $f_n = \mathbf{1}_{[0,1/4]}$ para n par y $f_n = \mathbf{1}_{[1/4,1]}$ para n impar.
- 7. Sea f una función integrable en \mathbb{R} . Demuestre que $\lambda\{x:|f(x)|>\alpha\}=o(\frac{1}{\alpha})$ cuando $\alpha\to\infty$.
- 8. Demuestre que si f es medible y finita c.s. en $\mathbb R$ entonces es integrable sí y sólo sí

$$\sum_{-\infty}^{\infty} 2^n \lambda(2^{n-1} < |f| \le 2^n) < \infty.$$

- 9. Sea F una f.d., demuestre que $\int_{-\infty}^{\infty} (F(x+c) F(x)) dx = c$.
- 10. Demuestre que $f(t) = (\sec t)/t$ es integrable según Riemann pero no según Lebesgue en $(-\infty, \infty)$.
- 11. a) Si F es una f.d. continua, demuestre que $\int_{\mathbb{R}} F(x)dF(x) = 1/2$. En consecuencia, muestre que si X,Y son v.a.i.i.d. con distribución F, entonces $P(X \leq Y) = 1/2$, y E[F(X)] = 1/2.
 - b) Si F no es continua, $E[F(X)] = 1/2 + (1/2) \sum_a P(X=a)$, donde la suma es sobre los átomos de F.

1

- c) Si X, Y son v.a. con f.d. F(x), G(x) que no tienen discontinuidades comunes, entonces $\mathrm{E}[F(Y)] + \mathrm{E}[G(X)] = 1$
- d) Aún si F y G tienen saltos comunes, si las variables son independientes, E(F(Y)) + E(G(X)) = 1 + P(X = Y).

- 12. (a) Sea $\Omega = \{1, 2, 3, 4\}$, cada punto con probabilidad 1/4. Sea $A_1 = \{1, 2\}$, $A_2 = \{1, 3\}$, $A_3 = \{1, 4\}$. Demuestre que estos eventos son independientes a pares pero no son independientes.
 - (b) Sea $\{A_i, 1 \leq i \leq 5\}$ una partición medible de Ω tal que $P(A_1) = P(A_2) = P(A_3) = 15/64$, $P(A_4) = 1/64$, $P(A_5) = 18/64$. Definimos $B = A_1 \cup A_4$, $C = A_2 \cup A_4$, $D = A_3 \cup A_4$, $D = A_3 \cup A_4$. Verifique que

$$P(B \cap C \cap D) = P(B)P(C)P(D)$$

pero B, C y D no son independientes.

- (c) Sea X_1 y X_2 v.a.i. que toman los valores +1 y -1 con probabilidad 1/2. ¿Son X_1 , X_2 y X_1X_2 independientes dos a dos? ¿Son variables independientes?
- 13. Sea A, B y C tres eventos independientes. Demuestre que $A \cup B$ y $A \setminus B$ son independientes de C.
- 14. Dé un ejemplo sencillo que muestre que dos variables pueden ser independientes respecto a una medida de probabilidad pero dependientes respecto a otra.
- 15. Sea A, B y C tres eventos independientes. Demuestre que $A \cup B$ y $A \setminus B$ son independientes de C.
- 16. Sea $(X_k)_{k\geq 1}$ v.a.i.i.d. con función de distribución común F. Sea π una permutación de $1,\ldots,n$. Demuestre que (X_1,\ldots,X_n) y $(X_{\pi(1)},\ldots,X_{\pi(n)})$ tienen la misma distribución conjunta.
- 17. Si X, Y son variables independientes y f, g son funciones medibles reales ¿Por qué son independientes f(X) y g(Y)? (No hace falta calcular nada).
- 18. Sean X, Y v.a.i. con valores en \mathbb{N} con $P(X = i) = P(Y = i) = 2^{-i}$, $i \ge 1$. Calcule las siguientes probabilidades.

 (a) $P(\min(X,Y) \le i)$.

 (b) P(X = Y).

 (c) P(Y > X).

 (d) P(X divida a Y).

 (e) $P(X \ge kY)$ para un entero positivo k dado.
- 19. ¿Cuál es el menor número de puntos que debe tener un espacio muestral para que existan n eventos independientes B_1, \ldots, B_n , ninguno de los cuales tiene probabilidad 0 ó 1?
- 20. Considere el espacio de probabilidad ([0,1], \mathcal{B}, λ) donde λ es la medida de Lebesgue. Definimos $X(\omega) = \omega$.
 - (a) ¿Existe una variable aleatoria acotada que sea independiente de X y no sea constante c. p. 1?
 - (b) Defina Y = X(1 X). Construya una variable aleatoria Z que no sea constante casi seguramente y tal que Y y Z sean independientes.