Probabilidad Avanzada I Lista de Problemas 6

Los problemas 4, 7, 10, 16 y 20 son para entregar el miércoles 25/04/18.

Problemas sobre Funciones Características

- 1. Suponga que X_n y Y_n son independientes para cada n y $X_n \stackrel{d}{\to} X_0$, $Y_n \stackrel{d}{\to} Y_0$. Usando funciones características demuestre que $X_n + Y_n \stackrel{d}{\to} X_0 + Y_0$.
- 2. (a) Suponga que X tiene distribución exponencial con densidad $f(x) = e^{-x}$ para x > 0. ¿Cuál es la f.c. de X? ¿Es 1/(1+it) una f.c.? Si la respuesta es afirmativa, ¿de cuál variable aleatoria? (b) ¿Es $(\cos t)^{17}$ una f.c.? ¿De cuál variable aleatoria? (c) ¿Es $|\cos t|$ una f.c.? (Calcule la segunda derivada) (d) ¿Es $|\cos t|^2$ una f.c.? (El módulo de una f.d. no es necesariamente una f.c. pero el cuadrado del módulo siempre es una f.c.)
 - (e) Demuestre que si X es una v.a. con $E(|X|) < \infty$ y f.c. φ ,

$$\int_{\mathbb{R}} |x| \, dF(x) = \frac{2}{\pi} \int_0^\infty \frac{1 - \operatorname{Re} \varphi(t)}{t^2} \, dt.$$

- 3. Sea $\varphi(t)$ una f.c. y sea G la f.d. de una variable positiva Y. Demuestre que las siguientes son f.c. y explique su significado probabilístico.
 - (a) $\int_0^1 \varphi(ut) du$, (b) $\int_0^\infty \varphi(ut)e^{-u} du$, (c) $\int_0^\infty e^{-|t|u} dG(u)$, (d) $\int_0^\infty \varphi(ut) dG(u)$.
- 4. Sea $U_{(a,b)}$ la distribución uniforme en (a,b). La distribución $U_{(-1,0)}*U_{(0,1)}$ tiene densidad conocida como la densidad triangular. Demuestre que la f.c. de la densidad triangular es $2(1-\cos t)/t^2$. Verifique que esta f.c. es integrable. Verifique que $f(x) = (1-\cos x)/\pi x^2$ para $x \in \mathbb{R}$ es una densidad de probabilidad. Ayuda: Use la fórmula de inversión para demostrar que 1-|x| es una f.c. Ponga x=0.
- 5. El teorema de convergencia a familias implica que si $X_n \stackrel{d}{\to} X$, $a_n \to a$ y $b_n \to b$, entonces $a_n X_n + b_n \stackrel{d}{\to} aX + b$. Demuestre esto directamente usando f.c.
- 6. Si $\varphi_k, \ k \geq 0$ son f.c., también lo es $\sum_{k=0}^{\infty} p_k \varphi_k$ para cualquier función de probabilidad $\{p_k, \ k \geq 0\}$.
- 7. Sea X una v.a. con f.c. $\varphi(t) = (3 \sec t/t^3) (3 \cos t/t^2)$ para $t \neq 0$. (a) ¿Por qué es X simétrica? (b) ¿Por qué es absolutamente continua la distribución de X? (c) ¿Por qué P(|X| > 1) = 0? (d) Demuestre que $E(X^{2n}) = 3/(2n+1)(2n+3)$. (Pruebe hacer un desarrollo de $\varphi(t)$).

Problemas sobre TCL

- 8. Si apostamos un peso en la ruleta, la probabilidad de ganar \$1 es 18/38 y la de perder \$1 es 20/38. Sea $\{X_n, n \geq 1\}$ la sucesión de resultados en una serie de juegos, de modo que cada variable toma valores ± 1 con probabilidades 18/38 y 20/38. Halle una aproximación por el TCL para $P(S_n \geq 0)$, la probabilidad de que al cabo de n juegos, el jugador no esté perdiendo.
- 9. Sea $\{X_k, k \geq 1\}$ una sucesión de v.a.i. tales que los valores de X_k son $\{\pm 1, \pm k\}$ con $P(X_k = \pm 1) = \frac{1}{2}(1-\frac{1}{k^2})$, $P(X_k = \pm k) = \frac{1}{2k^2}$ Usando un argumento de truncación, demuestre que S_n/\sqrt{n} se comporta asitóticamente como si $X_k = \pm 1$ con probabilidad 1/2. Por lo tanto las distribuciones de S_n/\sqrt{n} tienden a $\mathcal{N}(0,1)$ pero $Var(S_n/\sqrt{n}) \to 2$.
- 10. Sea $\{U_k\}$ una sucesión de v.a.i. con distribución uniforme en $[-a_k, a_k]$. (a) Demuestre que si existe M > 0 tal que $|a_k| \leq M$ pero $\sum_k a_k^2 = \infty$, entonces la condición de Lindeberg vale y por lo tanto el TCL también. (b) Si $\sum_k a_k^2 < \infty$ entonces la condición de Lindeberg no vale.
- 11. Sea Y_s una v.a. de Poisson con parámetro s. Demuestre que $(Y_s s)/\sqrt{s} \stackrel{d}{\to} \mathcal{N}(0, 1)$.
- 12. (a) Sea $\{X_n, n \ge 1\}$ una sucesión iid con distribución exponencial de parámetro 1. Demuestre que $(\sum_{i=1}^n X_i n)/\sqrt{n}$ es asintóticamente normal.
 - (b) Sea ahora X_t una v.a. con distribución Gamma de densidad $f_t(x) = e^{-x}x^{t-1}/\Gamma(t)$, t > 0, x > 0. Use funciones características para demostrar que $(X_t t)/\sqrt{t} \xrightarrow{d} \mathcal{N}(0, 1)$.

13. (a) Suponga que X e Y son iid $\mathcal{N}(0,1)$. Demuestre que

$$\frac{X+Y}{\sqrt{2}} \stackrel{d}{=} X \stackrel{d}{=} Y. \tag{1}$$

- (b) Recíprocamente, suponga que X e Y son v.a.i. con f.d. común F(x) de media 0 y varianza 1, y suponga que (1) es cierta. Demuestre que tanto X como Y tienen distribución $\mathcal{N}(0,1)$. (Use el TCL).
- 14. ¿Por qué no se puede aplicar la fórmula de inversión para densidades a la distribución uniforme?
- 15. Suponga que X e Y son v.a.i. con la misma distribución de media 0 y varianza 1. Si X + Y y X Y son independientes demuestre que ambas tienen distribución $\mathcal{N}(0,1)$.
- 16. Sea $\{X_n, n \geq 1\}$ una sucesión iid con $X_n \sim \mathcal{N}(0, \sigma_n^2)$. Escoja σ_n^2 de modo que $\max_{i \leq n} \sigma_i^2/s_n^2 \to 0$. Entonces $S_n/s_n \stackrel{d}{=} \mathcal{N}(0,1)$ y por lo tanto $S_n/s_n \stackrel{d}{\to} \mathcal{N}(0,1)$. Conclusión: Sumas de v.a.i. pueden ser asintóticamente normales aún si la condición de Lindeberg no vale.
- 17. Sea $\{X_n, n \ge 1\}$ una sucesión iid con densidad común $f(x) = |x|^{-3}$, |x| > 1. (a) Verifique que $E(X_1) = 0$ pero $E(X_1^2) = \infty$.
 - (b) A pesar de esto se tiene que $\frac{S_n}{\sqrt{n\log n}} \stackrel{d}{\to} \mathcal{N}(0,1)$. Ayuda: Defina $Y_n = X_n \mathbf{1}_{\{|X_n| \le \sqrt{n}\}}$ y verifique la condición de Lyapunov con $\delta = 1$. Luego muestre que $\sum_n P(X_n \ne Y_n) < \infty$.
 - (c) Es posible demostrar que para variables iid con $\mathrm{E}(X_n)=0$, la condición necesaria y suficiente para el TCL es que $\lim_{t\to\infty}\frac{U(tx)}{U(t)}=1$, donde $U(t)=\mathrm{E}(X_1^2\mathbf{1}_{\{|X_1|\leq t\}})$. Verifique esta condición para el ejemplo en la parte (a).
- 18. (a) De un ejemplo de una v.a. Y tal que E(Y) = 0 y $E(Y^2) < \infty$, pero $E|Y^{2+\delta}| = \infty$, para todo $\delta > 0$ (b) Suponga que $\{X_n, n \geq 1\}$ son iid centradas con $EY_1 = \sigma^2 < \infty$. Suponga que la distribución común es la distribución hallada en (a). Demuestre que la condición de Lindeberg vale pero la de Lyapunov no.
- 19. Sea $\{X_n, n \geq 1\}$ una sucesión de v.a.i. que satisfacen la condición de Lindeberg, de modo que $\sum_1^n X_i$ es asintóticamente normal. Sea $s_n^2 = \text{Var}(\sum_1^n X_i)$, $\{\xi_n, n \geq 1\}$ v.a.i. e independientes de las $\{X_n\}$ con distribución simétrica respecto a 0, $P(\xi_n = 0) = 1 \frac{1}{n^2}$ y $P(|\xi_n| > x) = 1/n^2x$ para x > 1. ¿Tiene ξ_n varianza finita? Demuestre que $\sum_1^n (X_i + \xi_i)/s_n \stackrel{d}{\to} \mathcal{N}(0,1)$. Por lo tanto es posible tener normalidad asintótica aún cuando las variables no tengan media ni varianza.
- 20. Para cualquier sucesión (X_n) de v.a., si X_n/b_n converge en distribución para una sucesión creciente de constantes b_n , demuestre que X_n/β_n converge en probabilidad a 0 si $b_n = o(\beta_n)$. En particular explique con precisión por qué el TCL implica la ley débil de grandes números.
- 21. Demuestre que para $x \ge 0$ cuando $n \to \infty$,

$$\sum_{k:|k-n/2| \le (x\sqrt{n})/2} \binom{n}{k} \sim 2^n \int_{-x}^x \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du, \qquad \sum_{k:|k-n| \le x\sqrt{n}} \frac{n^k}{k!} \sim e^n \int_{-x}^x \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

- 22. Sea $X \sim \Gamma(1,s)$ y, dado que X = x sea Y una v.a. con distribución de Poisson de parámetro x. Halle la f.c. de Y y demuestre que, cuando $s \to \infty$, $\frac{Y \mathrm{E}(Y)}{\sqrt{\mathrm{Var}(Y)}} \stackrel{d}{\to} \mathcal{N}(0,1)$
- 23. Si X_n tiene distribución geométrica con parámetro $p = \lambda/n$, demuestre que la distribución de X_n/n converge a una distribución exponencial.
- 24. Sean X_1, X_2, \ldots v.a. i. con distribución de Bernoulli simétrica. Demuestre que

$$\left(\frac{3}{n^3}\right)^{1/2} \sum_{k=1}^n k X_k \stackrel{d}{\to} \mathcal{N}(0,1)$$
 cuando $n \to \infty$.

25. Sean X_1, X_2, \ldots v.a. i. con distribución de Bernoulli $Be(p_n)$ para $n \ge 1$. Sean $S_n = X_1 + \cdots + X_n$, $m_n = \sum_{k=1}^n p_k$ y $s_n^2 = \sum_{k=1}^n p_k (1-p_k)$ para $n \ge 1$. Demuestre que

$$\frac{S_n - m_n}{s_n} \stackrel{d}{\to} \mathcal{N}(0, 1) \quad (n \to \infty) \quad \Longleftrightarrow \quad \sum_{n=1}^{\infty} p_n (1 - p_n) = \infty$$