Probabilidad Avanzada I Problemas 9

Los problemas 7, 11, 21, 24 y 26 son para entregar el jueves 17/05/12.

1. Sea $\{X_n, n \geq 0\}$ una martingala con $X_n \in L^2$ para todo n. Sean S y T tiempos de paro acotados con $S \leq T$. Demuestre que X_S y X_T están ambos en L^2 y demuestre que

$$E[(X_T - X_S)^2 | \mathcal{F}_S] = E[X_T^2 - X_S^2 | \mathcal{F}_S]$$
 y que $E[(X_T - X_S)^2] = E[X_T^2 - X_S^2]$

- 2. Sea g una función convexa y sea $\{X_n, n \geq 0\}$ una martingala. Demuestre que $n \to \mathrm{E}[g(X_n)]$ es una función no-decreciente. (Ayuda: Use la desigualdad de Jensen).
- 3. Sea X_n una sucesión de v.a. con $\mathrm{E}(X_n) < \infty$ y $\mathrm{E}(X_n | \mathcal{F}_{n-1}) = 0$ para todo $n \geq 1$. Suponga además que $X_n \in \mathcal{F}_n$ para todo $n \geq 0$. Sea $S_n = \sum_{k=0}^n X_k$. Demuestre que $\{(S_n, \mathcal{F}_n), \ n \geq 0\}$ es una martingala.
- 4. Sea $\{X_n, n \geq 0\}$ una submartingala con descomposición de Doob $X_n = M_n + A_n$ Demuestre que $\mathrm{E}(A_n) < \infty$ para todo $n \geq 0$.
- 5. Sea $\{X_n, n \geq 0\}$ una martingala con $X_0 = 0$ y suponga que $E(X_n^2) < \infty$ para todo n. Demuestre que $Y_n = X_n^2$ es una submartingala y sea $Y_n = L_n + A_n$ su descomposición de Doob. Demuestre que $E(X_n^2) = E(A_n)$. Demuestre también que $A_n A_{n-1} = E[(X_n X_{n-1})^2 | \mathcal{F}_{n-1}]$.
- 6. Sea $(X_n)_{n\geq 0}$ una sucesión creciente de v.a. integrables y suponga que $X_n\in\mathcal{F}_n$ para todo n. Demuestre que X_n es una submartingala.
- 7. Sea $\{\tau_n, n \ge 1\}$ una sucesión de tiempos de paro. Demuestre que $\sum_k \tau_k$, $\min_k \{\tau_k\}$ y $\max_k \{\tau_k\}$ son tiempos de paro
- 8. Sea $\{(X_n, \mathcal{F}_n), n \geq 0\}$ una martingala predecible. Demuestre que $X_n = X_0$ c.s.
- 9. Sean S y T tiempos de paro. Demuestre que αT para $\alpha \geq 1$, α entero, es un tiempo de paro. Demuestre que $\{S < T\}$, $\{S \leq T\}$, $\{S = T\}$ están todos en $\mathcal{F}_S \cap \mathcal{F}_T$. ¿Es T S un tiempo de paro?
- 10. Sea $\{\tau_n, n \geq 1\}$ una sucesión de tiempos de paro. Demuestre que $\tau_n \downarrow \tau$ entonces τ es un tiempo de paro. De manera similar, si $\tau_n \uparrow \tau$ entonces τ es un tiempo de paro.
- 11. Una caja contiene n bolas negras y r rojas. Se selecciona una bola al azar y se repone en la caja junto con c bolas del mismo color. Sea $X_0 = n/(n+r)$ y sea X_n la proporción de bolas negras en la etapa n, es decir, justo después de la n-ésima extracción y reposición. Demuestre que $\{X_n\}$ es una martingala. Demuestre que X_n converge c.s. y en L^p para $p \ge 1$.
- 12. Sea $Y_n \in L^2$ y suponga que $\lim_{n\to\infty} E(Y_n^2) = 0$. Sea $\{\mathcal{F}_n, n \geq 1\}$ una filtración y sea $X_k^n = E(Y_n|\mathcal{F}_k)$. Demuestre que $\lim_{n\to\infty} E(\sup_k (X_k^n)^2) = 0$.
- 13. Sea X e Y v.a. no-negativas que satisfacen $\alpha P(X \geq \alpha) \leq \mathrm{E}(Y\mathbf{1}_{\{X \geq \alpha\}})$, para todo $\alpha > 0$. Demuestre que $\mathrm{E}(X^p) \leq \mathrm{E}(qX^{p-1}Y)$ donde $\frac{1}{p} + \frac{1}{q} = 1$, p > 1.
- 14. Sea X e Y como en el ejercicio anterior y suponga que $||X||_p < \infty$, $||Y||_p < \infty$. Demuestre que $||X||_p \le q||Y||_p$.
- 15. Demuestre el resultado del ejercicio anterior sin suponer que $||X||_p < \infty$.
- 16. Use el ejercicio 14 para demostrar el teorema 4.22.
- 17. Sean X_n v.a.i. y sea \mathcal{A}_{∞} la σ -álgebra cola asociada. Sea $A \in \mathcal{A}_{\infty}$. Demuestre que $\mathrm{E}(\mathbf{1}_A | \mathcal{F}_n) = P(A)$, para todo n, donde $\mathcal{F}_n = \sigma(X_j; \ 0 \le j \le n)$. Demuestre además que $\mathrm{E}(\mathbf{1}_A | \mathcal{F}_n) = \mathbf{1}_A$ c.s. y deduzca que P(A) = 0 ó 1.
- 18. Una martingala $X=\{X_n,\ n\geq 1\}$ está acotada en L^2 si sup $_n$ $\mathrm{E}(X_n^2)<\infty$. Sea X una martingala con $X_n\in L^2$ para cada n. Demuestre que X está acotada en L^2 si y sólo si $\sum_{n=1}^\infty\mathrm{E}[(X_n-X_{n-1})^2]<\infty$.
- 19. Sea X una martingala acotada en L^2 . Demuestre que $\sup_n \mathrm{E}(|X_n|) < \infty$ y concluya que $\lim_n X_n = Y$ con $\mathrm{E}(|Y|) < \infty$.
- 20. Sea $\{X_n,\ n\geq 1\}$ i.i.d. con $P(X_n=1)=P(X_n=-1)=1/2$. Sea $(\alpha_n)_{n\geq 1}$ una sucesión de números reales. Demuestre que $\sum_{n=1}^{\infty}\alpha_nX_n$ converge c.s. si $\sum_{n\geq 1}\alpha_n^2<\infty$.

- 21. Sea $\{(X_n, \mathcal{F}_n), n \geq 0\}$ una (sub)martingala y sea τ un tiempo de paro. Demuestre que $\{(X_{\tau \wedge n}, \mathcal{F}_n), n \geq 0\}$ es una (sub)martingala.
- 22. Demuestre la siguiente extensión del teorema deconvergencia de martingalas (b): Sea $p \ge 1$. Si $E|Z|^p < \infty$, $\{\mathcal{F}_n\}$ es una filtración y $X_n = E(Z|\mathcal{F}_n)$ entonces $\{(X_n, \mathcal{F}_n), n \ge 0\}$ una martingala uniformemente integrable.
- 23. Sea Y_1, Y_2, \ldots v.a.i.i.d. con distribución común $(Y_i = \frac{1}{2}) = P(Y_i = \frac{3}{2}) = \frac{1}{2}$ y sea $X_n = Y_1 \cdot Y_2 \cdots Y_n, n \ge 1$. Demuestre que Y_n es una martingala que converge c.s. a 0.
- 24. Demuestre que X_n y $V_n = \frac{X_n(N-X_n)}{(1-N^{-1})^n}$ para $n \ge 0$ son martingalas si $\{X_n, n \ge 0\}$ es una cadena de Markov con espacio de estados $\{0, \dots, N\}$ y probabilidades de transición

$$p_{ij} = \binom{N}{j} \left(\frac{i}{N}\right)^j \left(1 - \frac{i}{N}\right)^{N-j}.$$

25. Sea $(\Omega, \mathcal{F}, P) = ([0, 1], \mathcal{B}[0, 1], m)$ donde m es la medida de Lebesgue. Sea $\mathcal{B}_n = \sigma([k2^{-n}, (k+1)2^{-n}), \ 0 \le k < 2^n)$. Sea f una función integrable en [0, 1). (a) Verifique que la esperanza condicional $\mathrm{E}(f|\mathcal{B}_n)$ es una función escalera que converge en L^1 a f. Use este resultado para demostrar el siguiente lema de aproximación: Si $\varepsilon > 0$ existe una función continua g definida en [0, 1) tal que

$$\int_{[0,1)} |f(x) - g(x)| \, dx < \varepsilon.$$

(b) Suponga ahora que f es de Lipschitz, es decir que para alguna K > 0 $|f(t) - f(s)| \le K|t - s|$, $0 \le s < t < 1$. Definimos

$$f_n(x) = \frac{f((k+1)2^{-n}) - f(k2^{-n})}{2^{-n}} \mathbf{1}_{[k2^{-n},(k+1)2^{-n})}(x), \quad x \in [0,1).$$

Demuestre que $\{(f_n, \mathcal{B}_n), n \geq 0\}$ es una martingala, que existe f_∞ tal que $f_n \to f_\infty$ c.s. y en L^1 , y

$$f(b) - f(a) = \int_a^b f_{\infty}(s) ds, \quad 0 \le a < b < 1.$$

- 26. Si τ es un tiempo de paro respecto a la filtración $\{\mathcal{F}_n, n \geq 0\}$, demuestre que una v.a. Y es \mathcal{F}_{τ} -medible ssi $Y\mathbf{1}_{\{\tau=n\}} \in \mathcal{F}_n$, para $n \in \mathbb{N}$.
- 27. Si $\{X_n\}$ es una martingala y es acotada por arriba o por debajo, entonces es acotada en L^1 .
- 28. Sea (Y_n) v.a. con $E[Y_n] < \infty$. Suponga que para $n \ge 0$ $E(Y_{n+1}|Y_0,\ldots,Y_n) = a_n + b_n Y_n$, con $b_n \ne 0$. Sean

$$l_{n+1}(z) = a_n + b_n z, \qquad l_{n+1}^{\leftarrow}(y) = \frac{y - a_n}{b_n}$$

y definimos $L_n(y) = l_1^{\leftarrow}(l_2^{\leftarrow}(\dots(l_n^{\leftarrow}(y)\dots))$, la composición de las primeras n funciones inversas. Demuestre que para todo k, $\{(X_n = kL_n(Y_n), \sigma(Y_0, \dots, Y_n)), n \geq 0\}$ es una martingala. Como casos especiales se tiene (a) el esquema de Polya (Prob. 11), (b) el proceso de ramificación simple y (c) Sea $Y_0 \sim \mathcal{U}[0, 1]$. Dado Y_n la variable Y_{n+1} tiene distribución uniforme en $[Y_n, 1]$. Entonces $X_n = 2^n(1 - Y_n)$ es una martingala.

- 29. Sea $\{Z_0 = 1, Z_1, Z_2, ...\}$ un proceso de ramificación con inmigración. Este proceso satisface $Z_{n+1} = Z_1^{(1)} + ... + Z_n^{(Z_n)} + I_{n+1}$ donde las $\{Z_n^{(i)}, i \geq 1\}$ son v.a.i.i.d. con valores enteros no-negativos con distribución $\{p_j\}$ e independientes de Z_n . Además $\{I_j, j \geq 1\}$ representan la inmigración, son i.i.d. con distribución q concentrada en los enteros no-negativos, e I_{n+1} es independiente de Z_n para todo n. Supongamos que $E(Z_1) = m > 1$ y $E(I_1) = \lambda > 0$. (a) Halle $E(Z_{n+1}|Z_n)$. (b) Use un argumento de martingalas para demostrar que Z_n/m^n converge c.s. a una v.a. finita.
- 30. Sea τ un tiempo de paro respecto a la filtración $\{\mathcal{F}_n, n \geq 1\}$ en el espacio Ω, \mathcal{F}, P). Para cualquier n sea $\phi(n)$ en menor entero p tal que $\{\tau = n\} \in \mathcal{F}_p$. Demuestre que $\phi(\tau)$ es un tiempo de paro acotado por τ .