Probabilidad Avanzada I Problemas 4

Los problemas 3, 10, 15, 17 y 24 deben entregarse el martes 06/03/12.

- 1. Demuestre que para cualquier tipo de convergencia (c.s., en probabilidad, en L^p o en distribución), si el límite existe es único.
- 2. a) Sea $\{X_n, n \geq 0\}$ una sucesión de v.a. a valores enteros positivos. Demuestre que $X_n \stackrel{d}{\to} X_0$ si y sólo si para todo entero $k \geq 0, P(X_n = k) \to P(X_0 = k)$.
 - b) Sea $\{A_n,\ n\geq 0\}$ una sucesión de eventos. Demuestre que $\mathbf{1}_{A_n}\overset{d}{\to}\mathbf{1}_{A_0}\quad\Leftrightarrow\quad P(A_n)\to P(A_0).$
 - c) Sea $F_n = \delta_n$ una delta de Dirac en x_n , para $n \ge 0$. Demuestre que $F_n \xrightarrow{d} F_0$ si y sólo si $x_n \to x_0$.
 - d) Sea $P(X_n = 1 1/n) = 1/2 = P(X_n = 1 + 1/n)$ y suponga que P(X = 1) = 1. Demuestre que $X_n \stackrel{d}{\to} X$ pero la función de probabilidad $p_n(x)$ de X_n no converge para ningún x.
- 3. a) Si $u_n(x)$, $x \in \mathbb{R}$ son funciones no-decrecientes para cada n y $u_n(x) \to u_0(x)$ con u_0 continua, entonces para cualesquiera $-\infty < a < b < \infty$

$$\sup_{x \in [a,b]} |u_n(x) - u_0(x)| \to 0.$$

Por lo tanto convergencia de funciones monótonas a un a límite continuo implica convergencia uniforme local.

b) Suponga que F_n , $n \ge 0$ son f.d. propias y $F_n \stackrel{d}{\to} F_0$. Si F_0 es continua demuestre que

$$\sup_{x \in \mathbb{R}} |F_n(x) - F_0(x)| \to 0.$$

Por ejemplo, en el TCL donde F_0 es la distribución normal, la convergencia siempre es uniforme.

- c) De una demostración sencilla del teorema de Glivenko-Cantelli bajo la hipótesis adicional de que la distribución subyacente es continua.
- 4. Sea F una f.d. no-degenerada y suponga que para a > 0, b > 0 y $c, d \in \mathbb{R}$ que para todo x, F(ax + b) = F(cx + d). Demuestre que a = c y b = d. Hágalo de dos maneras: (i) Considerando funciones inversas. (ii) Demostrando que es suficiente probar que F(Ax + B) = F(x) para todo x implica A = 1, B = 0. Si T(x) = Ax + B entonces itere la relación F(T(X)) = F(x) repetidamente.
- 5. Suponga que X_n tiene distribución geométrica de parámetro $\lambda/(n+\lambda)$ para $n \geq 1$ donde λ es una constante positiva. Demuestre que X_n/n converge en distribución a una variable exponencial y determine los parámetros de la distribución límite.
- 6. Sean X_n , $n \ge 1$ v.a.i.i.d. tales que $\sup\{x : F(x) < 1\} = +\infty$ y sea $\tau(t) = \min\{n : X_n > t\}$, t > 0, es decir, $\tau(t)$ es el índice de la primera variable que excede el nivel t. Demuestre que $p_t \tau(t) \stackrel{d}{\to} \operatorname{Exp}(1)$ cuando $t \to \infty$, donde $p_t = P(X_1 > t)$.
- 7. Suponga que $X_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$ para $n \geq 0$. Demuestre que $X_n \xrightarrow{d} X_0$ cuando $n \to \infty$ si y sólo si $\mu_n \to \mu_0$ y $\sigma_n \to \sigma_0$ cuando $n \to \infty$.
- 8. ¿Puedes dar un ejemplo de una sucesión de variables absolutamente continuas que converjan en distribución a una variable discreta? ¿Puedes hallar una sucesión de v.a. discretas que tengan un límite débil absolutamente continuo?
- 9. Suponga que $X_n \xrightarrow{d} X$ y $Y_n \xrightarrow{P} c$. Demuestre (a) $X_n Y_n \xrightarrow{w} c X$ y (b) Si $c \neq 0$, $\frac{X_n}{Y_n} \xrightarrow{d} \frac{X}{c}$.
- 10. Suponga que X_n tiene distribución geométrica de parámetro p_n para $n \geq 1$. Demuestre que a) Si $p_n \to p > 0$ entonces $X_n \stackrel{d}{\to} \operatorname{Ge}(p)$ cuando $n \to \infty$ donde $\operatorname{Ge}(p)$ es una distribución geométrica de parámetro p. b) Si $p_n \to 0$ y $np_n \to \lambda > 0$, entonces $X_n/n \stackrel{d}{\to} \operatorname{Exp}(1/\lambda)$ cuando $n \to \infty$.
- 11. Demuestre que si $E \log^+ |X_n| < \infty$ entonces $\{X_n, n \ge 1\}$ es tensa.
- 12. Demuestre que si $X_n \sim \mathcal{U}(-n, n), n \geq 1$ entonces $\{X_n, n \geq 1\}$ no es tensa.
- 13. Demuestre que si la sucesión (X_n) es u.i. entonces es tensa.
- 14. Sea $\{X_n, n \ge 1\}$ una sucesión de v.a. Demuestre que si $\{X_n, n \ge N > 1\}$ es tensa, también lo es $\{X_n, n \ge 1\}$.

- 15. Sea $f: \mathbb{R} \to \mathbb{R}$ con $f(x) \ge 0$ y $f(x) \to \infty$ cuando $x \to \pm \infty$. Demuestre que si $\sup_n \int f \, dF_n < \infty$ entonces (F_n) es tensa.
- 16. Demuestre que una familia de f.d. $\{F_n, n \geq 1\}$ es tensa si y sólo si $F_n(x)$ converge uniformemente en n cuando $x \to \infty$ y cuando $x \to -\infty$.
- 17. Demuestre que la siguiente definición de convergencia vaga es equivalente a la que dimos en clase. Una sucesión $H_n \in \mathcal{M}, n \geq 1$ converge vagamente a $H \in \mathcal{M}$ sii existe un subconjunto denso $D \subset \mathbb{R}$ tal que para todo $a, b \in D$, a < b se tiene que $H_n(a, b] \to H(a, b]$
- 18. Demuestre que si la condición del ejercicio 17 es cierta entonces existe un subconjunto denso $D' \subset \mathbb{R}$ tal que $F_n(I) \to F(I)$ donde I puede ser cualquiera de los intervalos (a,b), (a,b], [a,b) y [a,b] con $a,b \in D'$.
- 19. Sea $\{G_n, n \geq 0\}$ una sucesión de funciones en \mathbb{R} finitas y nodecrecientes con $G_n \stackrel{v}{\to} G_0$. Sea $\Delta G_n = G_n(\infty) G_n(-\infty)$. Demuestre lo siguiente:
 - (i) $\limsup_n G_n(-\infty) \le G_0(-\infty) \le G_0(\infty) \le \liminf_n G_n(\infty)$.
 - (ii) $\Delta G_0 \leq \liminf_n \Delta G_n$.
- 20. Con las definiciones del ejercicio 19 sea $\Delta G_n(a) = G_n(-a)$ para $n \geq 0$, $0 < a < \infty$. Si $\Delta G_n < \infty$ para $n \geq 1$ demuestre que

$$\lim G_n(\pm \infty) = G_0(\pm \infty) \text{ finito } \Leftrightarrow \lim_n \Delta G_n = \Delta G_0 < \infty$$

$$\Leftrightarrow \sup_{n > 1} (\Delta G_n - \Delta G_n(a)) = o(1) \text{ cuando } a \to \infty.$$

- 21. Demuestre que $F_n \xrightarrow{d} F$ si y sólo si lím sup $F_n(C) \le F(C)$ para todo C cerrado y lím inf $F_n(V) \ge F(V)$ para todo V abjerto
- 22. Si X e Y son v.a. con f.d. F y G y $P(|X-Y| \ge \varepsilon) < \varepsilon$, entonces si d es la distancia de Lévy (ver problema 2-14), $d(F,G) \le \varepsilon$.
- 23. Suponga que $F_n \xrightarrow{d} F_0$ y suponga que cada f.d. tiene una mediana única m_n , $n \ge 0$. Demuestre que $m_n \to m_0$. ¿Se puede afirmar lo mismo si las medianas no son únicas?
- 24. Halle dos sucesiones de medidas de probabilidad $\{\mu_n\}$ y $\{\nu_n\}$ tales que para toda $f \in \mathcal{C}_K$

$$\int f \, d\mu_n - \int f \, d\nu_n \to 0,$$

pero para ningun intervalo finito (a,b) se tiene que $\mu_n(a,b) - \nu_n(a,b) \to 0$ cuando $n \to \infty$. (Ayuda: Sea $\mu_n = \delta_{r_n}$, $\nu_n = \delta_{s_n}$ y escoja (r_n) y (s_n) adecuadamente).

- 25. Si $F_n \xrightarrow{d} F$ y $F_n(x^{\pm}) \to F(x^{\pm})$ en todos los puntos de discontinuidad de F, entonces F_n converge uniformemente a F en \mathbb{R} .
- 26. Sea D un subconjunto denso de \mathbb{R} y F_0 una función definida en D creciente, continua por la derecha con lím $_{x\to-\infty}F_0(x)=0$, lím $_{x\to\infty}F_0(x)=1$. Demuestre que hay una única f.d. F en \mathbb{R} tal que $F(x)=F_0(x)$ para todo $x\in D$.
- 27. Suponga que $F_n \stackrel{d}{\to} F$ donde F es una f.d. y sea B un conjunto de Borel. Demuestre que puede suceder que $F_n(B) = 1$ pero F(B) < 1. Demuestre que si B es cerrado entonces si $F_n(B) = 1$ para todo n se tiene que F(B) = 1.
- 28. Si F_n es la f.d. de X_n , $n \ge 0$ donde $P(X_n = -1/n) = 1 P(X_n = 0) = 1/2$, $n \ge 1$ y $P(X_0 = 0) = 1$ verifique que $F_n \stackrel{d}{\to} F_0$, $\lim_n F_n(0) \ne F_0(0)$ y $d^*(F_n, F_0) = \sup_x |F_n(x) F_0(x)| \nrightarrow 0$.
- 29. Sea $\{X_n, n \geq 0\}$ una sucesión de v.a. con f.d. $\{F_n, n \geq 0\}$ y sea g una función cuyo conjunto de discontinuidades es D. Si $X_n \stackrel{d}{\to} X_0$ y $F_0(D) = 0$ entonces $g(X_n) \stackrel{d}{\to} g(X_0)$. En particular el resultado es cierto para cualquier función continua g.
- 30. Demuestre que si $f \in \mathcal{C}_0(\mathbb{R})$ y $H_n \stackrel{v}{\to} H$ entonces $\int f dH_n \to \int f dH$ ¿Es esta condición suficiente?
- 31. Sea $\{F_n, n \geq 0\}$ una sucesión de f.d. con medidas de Lebesgue-Stieltjes asociadas $\{\mu_n, n \geq 0\}$. Demuestre que $F_n \stackrel{d}{\to} F_0$ si y sólo si $\mu_n(A) \to \mu_0(A)$ para todo conjunto $A \in \mathcal{B}$ con $\mu(\partial A) = 0$. $(\partial A = \bar{A} \setminus A^{\circ})$ es la frontera del conjunto A).
- 32. Para $-\infty < a < b < \infty$ considere la clase de las f.d. tales que F(a) = 0, F(b) = 1. Demuestre que esta clase es secuencialmente compacta.