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Abstract. We propose a general Bayesian model for image segmentation with
spatial coherence through a Markov Random Field prior. We also study variants
of the model and their relationship. In this work we use the Matusita Distance,
although our formulation admits other metric-divergences. Our main contribu-
tions in this work are the following. We propose a general MRF-based model for
image segmentation. We study a model based on the Matusita Distance, whose
solution is found directly in the discrete space with the advantage of working in
a continuous space. We show experimentally that this model is competitive with
other models of the state of the art. We propose a novel way to deal with non-
linearities (irrational) related with the Matusita Distance. Finally, we propose an
optimization method that allows us to obtain a hard image segmentation almost
in real time and also prove its convergence.

1 Introduction

Image segmentation is an important field in computer vision.It has been one of the most
studied tasks in image processing and is considered to be a bridge between low and high
level image processing tasks. The image segmentation problem consists of obtaining a
partition of the image according to a homogeneous predicate. Depending on the image
modeling viewpoint, many strategies have been proposed. Ifthe image is modeled from
a deterministic point of view, we can find different image segmentation approaches
based on the Mumford-Shah functional [1,2]. When it is modeled as a graph [3] we
find Graph Cut [4] and Normalized Cut [5]. In the context of data clustering, the fuzzy
c-means (FCM) methods are widely used [6,7] and if the image is modeled as a Markov
Random Field (MRF) several approaches have been reported [8,9,10]. Among them,
Bayesian formulation, including spatial coherence through a MRF prior, has shown to
be a powerful framework to design efficient and robust modelsfor image segmentation.

In this work, we formulate the segmentation problem as the minimization of an en-
ergy functional in terms of the likelihood using a Bayesian regularization formulation
based on MRF. Our strategy reduces the probabilistic image segmentation modeling to
the choice of a convenient metric-divergence or a measure between distributions. In this
work we study the Matusita Distance (MD) and the possibilityof using it for both hard
and soft segmentation. We also propose a way to deal with the non-linearities involved
with MD. We propose an algorithm for solving a particular case of a quadratic opti-
mization problem through a sequence of linear programming subproblems and prove
its convergence.



2 Mathematical Formulation

2.1 Notation

In general, the segmentation problem can be written in termsof a set of sites and a set
of labels. LetL = {r = (n, m) : n = 1, 2, . . . , N ; m = 1, 2, . . . , M} be a 2D regular
lattice where|L| = NM represents the number of sites (or pixels) in the image. The
neighborhood of the pixelr will be denoted asNr. Conveniently, we will also denote
(or reindex) pixels(n, m) in the image as the subset of indicesI = {1, 2, . . . , |L|}
whereri, i ∈ I represents a site in the image. The image is denoted byI, I(r) is a
scalar (the intensity in case of a gray level image) or a vector (color channels in the case
of a color image). LetK = {1, 2, . . . , K} be a subset of labels. A segmentation of an
image is a mappingR : L → K from the set of sitesL to the set of labelsK. That is
to say, it is a partition ofL in regionsRk ⊆ L in such a way that:∪k∈KRk = L and
(i 6= j; i, j ∈ K) ⇒ Ri ∩Rj = ∅, whereRk = {r ∈ L : R(r) = k}.

According to [11] the observation model at each pixelr of the image can be written
as follows:I(r) =

∑

k∈K pk(r)Ik(r) + η(r), wherepk(r) ∈ [0, 1] is the component of
a vector measure fieldp at a pixelr, p(r) = (p1(r), p2(r), . . . , pK(r)), and represents
the probability that the pixelr belongs to the classk (or to the regionRk). Thenpk(r)
must satisfy

∑

k∈K pk(r) = 1. Moreover,η(r) is white noise andIk(r) is the intensity
value of the layerIk at the pixelr.

Definition 1. The set of pointsx = (x1, x2, . . . , xn) ∈ Rn that satisfyxi ≥ 0, ∀i ∈
{1, 2, . . . , n} and

n
∑

i=1

(xi)
γ =1, (1)

will be calledγ positive unitn-hypersurfaceand will be denoted as:Sn
γ .

For instance, ifγ = 1 the positive unitn-hypersurface will be namedpositive unit
n-hyperplaneor asimplex(Sn) and ifγ = 2 will be calledpositive unitn-hypersphere.

2.2 Review

Rivera et al. [11] defined a Consistence Condition Qualification (CCQ) that anEnergy
Functional for Gauss-Markov Measure Fields (GMMF) models should satisfy in an
image segmentation problem.

Definition 2. (Consistence Condition Qualification)If no a priori information about
the vector measure fieldp is available, and also, its Maximum Likelihood (ML) esti-
mator satisfies the condition:argmaxk pk(r) = arg maxk v̂k(r), ∀r ∈ L, wherev̂

represents the normalized likelihood1, then we say that the vector measure fieldp holds
the Consistence Condition Qualification (CCQ).

1 The likelihood is defined asvk(r) = p(I(r)|pk(r) = ek, Ik).



In this work, we are interested in two particular CCQ cases. The first CCQ, allows us
to obtain a soft segmentation of the image and from the secondCCQ we can formulate
a functional to obtain a hard segmentation. Now we introducetwo definitions that will
guide our study.

Definition 3. (Equality Consistence Condition)If no a priori information about the
vector measure fieldp is available, and also, its ML estimator satisfies the condition
pk(r) = v̂k(r), ∀r ∈ L, wherev̂ represents the normalized likelihood, we say that the
vector measure fieldp holds the Equality Consistence Condition (ECC).

Definition 4. (Hard Consistence Condition)If no a priori information about the vector
measure fieldp is available, and also, its ML estimator satisfies the following conditions

k∗
r = arg max

k
pk(r) =arg max

k
v̂k(r), ∀r ∈ L, (2)

pk∗
r
(r) =1, ∀r ∈ L, (3)

wherev̂ represents the normalized likelihood, then we say that the vector measure field
p holds the Hard Consistence Condition (HCC).

2.3 General model

In the Bayesian regularization formulation, based on Markov Random Field, for in-
stance: GMMF [8], HMMF [ 9] and QMMF [10], the modeling (observation model) be-
gins with some assumptions about the generative model of theobservation (the image).
After some mathematical derivation, an energy functional that depends on the likeli-
hood is obtained. In our formulation, different from the above models, we consider
that the vector fieldv is the observation. Using a Bayesian formulation, the posterior
distribution is

P (p|v) ∝ P (v|p)P (p) = e−U(p;v), (4)

the conditional probabilityP (v|p) is obtained from

P (v|p) =
∏

r∈L

P (v(r)|p(r)) = e−D(p;v),

whereP (v(r)|p(r)) is the observation model andP (p) ∝ e−λR(p) is a Gibbsian dis-
tribution. In our case, we are not interested in the model that generates the data, but in
finding energies that have particular properties, for instance those which satisfy CCQ,
in particular HCC or ECC. Of course, each particular energy must have an underlaying
observation model as in the cases mentioned above but we are not interested in this
point. Therefore, we formulate the segmentation problem asthe minimization of an
energy functional (the MAP estimation of Eq. (4) ). This problem has the general form:

arg min
p∈Sn

γ

U(p; v) =D(p; v) + λR(p), (5)

where the parameterλ is positive and controls the granularity of regions to be seg-
mented,D(p; v) is the data term and can be related to the likelihood term in a Bayesian



formulation,R(p) is the regularization term and represents the prior knowledge about
the vector measure fieldp. As we have said before,D(p; v) must be chosen in such a
way that enforces CCQ, and in particular we are interested inthe HCC and ECC cases.
In our formulation, we consider that the observations are given by the likelihoodv,
different from [8], [9] and [10] where the image is assumed to be the observation. So,
we regularize directly on the likelihood. Then, the image segmentation problem can be
solved by minimizing a metric-divergence between models associated to a certain fea-
ture vector [8,9]. Under this scheme many functionals can be obtained for segmentation
purposes. A particular case of the functional in Eq. (5) is the following

U(p; v̂) =D(p; v̂) + λR(p), (6)

that depends on the normalized likelihoodv̂. A natural choice for the data termD(p; v̂)
in the functional (6) is to select a distance between distributions. On the otherhand, in
the data term of the potential (5) we can use other measures, for instance: divergence
measures, inaccuracy measures, metrics and distances. Theproblem now is what mea-
sure to choose. In the literature we can find a lot of metric-divergences2 between distri-
butions [12]. Some of these metric-divergences have a symmetric version, for example,
the Kullback and Leibler divergence, the main drawback is that they are highly non-
linear. This leads us to a highly non-linear optimization problem. So, the algorithmic
properties are an important issue in the selection of metric-divergences.

2.4 Model for ECC

In this section we study the Matusita Distance (MD)3 [13]. Let f , h be discrete proba-
bility distributions, i.e.

∑K

i=1 fi =
∑K

i=1 gi = 1 andfi, gi ≥ 0, then the MD is defined
as:

d(f ||h) =

√

√

√

√2 − 2
K

∑

i=1

√

fihi . (7)

This measure has a geometric interpretation and satisfies the axioms to be a metric.
Hence,d(f ||h) = 0 ⇐⇒ f = h ⇐⇒ fi = gi

4 and therefore, MD can be used to
obtain ECC models. Using (7) in the data term of (6) we obtain:

D(p; v̂) =
∑

r∈L

1

2

[

d(p(r)||v̂(r))
]2

=
∑

r∈L

[

1 −
K

∑

i=1

√

pi(r)v̂i(r)
]

. (8)

2 From the mathematical point of view, they are not metrics because they do not satisfy the
axioms to be a metric, most of them only satisfy the non-negativity and identity of indiscernible
axioms, i.e.:d(a, b) ≥ 0 andd(a, b) = 0 iff a = b, wherea, b are elements of a metric space.

3 MD is proportional to Hellinger Distance (HD), see [13].
4 Observe thatd(f ||h) = 0 ⇐⇒ f ||h, i.e. the vectorsf , h ∈ RK are parallels, using the

Cauchy-Bunyakovsky-Schwarz inequality. Then, there existsλ ∈ R such thatf = λh. Using
the condition

P

K

i=1 fi =
P

K

i=1 gi = 1 we obtain thatλ = 1 and finallyfi = gi.



Similarly, the regularization potential is proposed in terms of the metric (7):

R(p) =
∑

r∈L

∑

s∈Nr

1

2

[

d(p(r)||p(s))
]2

=
∑

r∈L

∑

s∈Nr

[

1 −
K

∑

i=1

√

pi(r)pi(s)
]

. (9)

As we can see, both terms (8) and (9) are non-rational and the minimization of (6)
becomes a non-linear system. To deal with this problem, we propose to minimize the
following functional that is a transformation of the original energy functional (6):

U(p̃; ṽ) = U(T1p; T2v̂) =D(T1p; T2v̂) + λR(T1p), (10)

whereTj : [0, 1] → [0, 1] with j ∈ {1, 2} are increasing real functions.
So, instead of computing directly the vector measure fieldp, we propose to compute

the transformed̃p = T1p andṽ = T2v̂. To simplify the notation it is understood that
when we applyTj to a vector, we really mean to applyTj on each component of the
vector. Hence, substituting in Eq. (5) we have a new functional (10) in terms ofp̃ and
ṽ.

A natural way for selectingTj in the case of MD is choosing power functions
Tj(.) = (.)n. We study the caseT1 = T2 andn = 1

2 , that corresponds to a map-
ping of the simplexSK onto the positive unitK-hypersphereSK

2 . Then, the original
optimization problem is transformed into:

min
p̃∈SK

2

U(p̃; ṽ), ṽ ∈ SK
2 . (11)

The optimization problem (11) satisfies the following proposition:

Proposition 1. The constraint quadratic optimization problem defined by Eq. (11) sat-
isfies ECC when no a priori information is available (i.e.λ = 0).

The proof is straightforward. We can see by using the Cauchy-Bunyakovsky-Schwarz
inequality, that the vector measure fieldp̃ under no prior knowledge (settingλ = 0) sat-
isfies the ECC. Otherwise, the above optimization problem isa quadratic optimization
problem with quadratic constraints that can be solved by using the Lagrange multiplier
method. The Lagrangian for the constrained optimization problem, without including
the non-negativity constraints, is

L(p̃, π; ṽ) =U(p̃; ṽ) +
∑

r∈L

π(r)
[

K
∑

i=1

p̃2
i (r) − 1

]

, (12)

whereπ(r), r ∈ L are the Lagrange multipliers.

Now, we obtain the first-order necessary conditions for optimality, the Karush-
Kuhn-Tucker (KKT) conditions, see [14]:

∂L(p̃, π; ṽ)

∂p̃k(r)
=0, ∀r ∈ L, k ∈ K; (13)

∑

k∈K

pk(r) =
∑

k∈K

T −1
1 (p̃k(r)) =1, ∀r ∈ L . (14)



From the KKT condition in Eq. (13) we obtain

−ṽk(r) − λ
∑

s∈Nr

p̃k(s) + 2π(r)p̃k(r) =0 ∀r ∈ L . (15)

Definingnk(r)
def
= ṽk(r) + λ

∑

s∈Nr
p̃k(s) and using a Gauss-Seidel scheme in the

equation system (15), we can compute the vector measure fieldp̃ through an iterative
process. By using the equality constraints (14) and substituting (15) we can compute the
Lagrange multipliersπ(r). Substitutingπ(r) in Eq. (15) we obtain the vector measure
field p̃ whose components are computed with

p̃k(r) =
nk(r)

√

∑K

i=1 n2
i (r)

. (16)

Note that, if the vector measure field̃p is initialized with non-negative values (i.e.
p̃(0) ≥ 0) then the solutioñp∗ implicitly satisfies the non-negativity constraints and
thenp̃∗ ∈ SK

2 . Finally, the optimum vector measure fieldp∗ is computed by applying
the inverse transformation ofT1 to p̃∗: p∗k(r) = [p̃∗k(r)]2.

2.5 Model for HCC

Based on the formulation defined by Eq. (11) we can think of changing the hypersurface
on which p̃ is located. We study the case whenp̃ ∈ SK (i.e. we change the equality
restrictions expressed in theL2-Norm and use theL1-Norm). Then, we have the fol-
lowing optimization problem:

min
p̃∈SK

U(p̃; ṽ) . (17)

Under no prior knowledge, the above problem satisfies the following proposition:

Proposition 2. If ∀r ∈ L ∃kr ∈ K such thatṽkr
(r) > ṽk(r) ∀k 6= kr then the

constraint quadratic optimization problem defined by Eq. (17) satisfies HCC when no a
priori information is available (i.e.λ = 0).

Observe that if we do not have prior knowledge, then the problem (17) is a linear
programming (LP) problem. As is well-known in LP, under the conditions of the propo-
sition the solution lies on a vertex of the polytope defined bythe constraint and hence
the solution at each pixel isp(r) = ekr

, whereekr
is a vector of the canonical base,

i.e. p̃k(r) = δ(k − kr) andkr = argmaxk∈K v̂k(r), ∀r ∈ L.
On the other hand, if prior energy (i.e.R(p̃) =

∑

r

∑

s∈Nr
1 − p̃(r)T p̃(s) ) is

given, then the optimization problem in (17) becomes a quadratic programming (QP)
problem. In such a case, we still can use the idea explained above, but adapted to the
QP problem (17).

We propose to solve the QP problem using a sequential linear programming (SLP)
strategy. First, let us define the linear functional, at eachstept

U l(p̃; Ṽ
(t)

) =

|L|
∑

i=1

−p̃T (ri)Ṽ
(t)

(ri), (18)



where the components of̃V
(t)

(ri) are defined as̃V
(t)

k (ri)
def
= ṽk(ri)+λ

∑

rj∈Nri
p̃
(t)
k (rj).

Then, we need to solve the following LP subproblem at each step:

min
p̃∈SK

U l(p̃; Ṽ
(t)

) . (19)

Observe that the functional defined in (18) is the linearization around̃p(t) of the QP
problem (17). In practice, we are not going to minimize the problem (19) as a whole,
but instead we are going to reduce the energy minimizing pixel by pixel. So, we need
to redefineṼ (t)

k (ri) as follows:

Ṽ
(t)
k (ri)

def
= ṽk(ri) + λ

(

∑

rj∈Nri
,j<i

p̃
(t+1)
k (rj) +

∑

rj∈Nri
,j>i

p̃
(t)
k (rj)

)

. (20)

Therefore, in the current sitec ∈ I we use the information of the previous stept and the
updated sites in the current stept+1 (i.e. all the sitesi such thati < c), see Eq. (20), as a
Gauss-Seidel scheme, orcoordinate descent method, see [14]. The strategy previously
explained is summarized in the SLP algorithm.

Algorithm 1 SLP Algorithm

Given a starting point̃p(0)

repeat
for i ∈ I do

EvaluateṼ
(t)

(ri) using (20)
Solve (19) to obtainp̃(t+1)(ri)

end for
until Convergence

Proposition 3. The SLP algorithm converges, if at each step the vectorṼ
(t)

(ri) has a
unique maxima component for allri, i ∈ I.

For proof see next Subsection.

2.6 Relation between ECC and HCC proposed models

The models studied in Subsections2.4and2.5can be enclosed in a more general model
by changing the hypersurface on whichp̃ is defined. Now, we study the case in which
p̃ belongs to theγ unit positive hypersurfaceSK

γ

min
p̃∈SK

γ

U(p̃; ṽ) . (21)

This model is a generalization of the models presented in theprevious sections. It es-
tablishes the relation between ECC and HCC models and allowsus to give a proof of



the Algorithm 1 presented in Subsection2.5. Following the same methodology used in
Subsection2.4we obtain the following expression for̃pk(r):

p̃k(r) =
[nk(r)]

1

γ−1

{

∑K
i=1 [ni(r)]

γ

γ−1

}
1

γ

. (22)

Observe that HCC model is the limit case of the problem (21) asγ approaches to1
from the right side. If we make the assumption that for allr ∈ L there existskr such
thatnkr

(r) > ni(r), ∀i 6= kr and we letγ tend to1, then forpk(r) = p̃
γ
k(r) where

k ∈ K we have:

lim
γ→1

p̃
γ
k(r) =δ(kr − k) = pk(r) (23)

wherekr = argmaxi∈K pi(r). This means that forγ = 1 the update procedure for the
vectorp(r) is simply to assignp(r) = ek∗ wherek∗ = arg maxk p̃k(r). The relation
obtained in Eq. (23) is a proof of Proposition3.

3 Experiments

In this section, we make two quantitative comparisons between the proposed methods
and others of the state of the art. Also, we present some experimental results of the
ECC method proposed in Subsection2.4 for interactive image segmentation and for
color image segmentation.

As a comparison measure we use the Jaccard similarity coefficient (or Jaccard in-
dex).

JI1,I2(k) =
PI1∩I2(k)

PI1∪I2(k)
. (24)

The Jaccard coefficient (JC) measures the similarity between two sets. It is defined as
the size of the intersection of the sets divided by the size ofthe union of the sets. In
Eq. (24) PI1∩I2(k) denotes the number of pixels that belong to classk in both the
original image (taken as the ground truth) and the segmentedimage.PI1∪I2(k) denotes
the number of pixels that belong to classk in the original image or in the segmented
image.

For evaluating the robustness, we compare the proposed methods with the following
methods of the state of the art: Graph cut and QMMF. We use the binary image in
Fig. 1 a). When we apply typical noise values to image Fig.1 a), i.e. between 20 and
40 dB of Peak Signal-to-Noise Ratio (PSNR) where a lower level of noise (in dB) is
worse, all the methods obtained a JC equal to 1 for both classes. This means that all the
methods have excellent performance when using typical values of PSNR.

In the next experiments we reduce the PSNR (i.e. we increase the noise level) up to
3 dB, see Fig.1 c)-e). For the image with 10 dB PSNR, Fig.1 c), the proposed methods
presented as good results as those of the state of the art, seethe JC in Table1 and for
segmentation results see Fig.2. In the images with 5 and 3 dB PSNR, see Fig.1 d)-e),



Fig. 1. Binary image with different Peak Signal-to-Noise Ratio, a)Original image, b)
20 dB, c) 10 dB, d) 5 dB, e) 3 dB.

Fig. 2. Segmentation using different methods a) QMMF b) Graph cut c)Hard-
segmentation proposed model, d) Soft-segmentation proposed model. First row cor-
responds to Fig.1 c), second row corresponds to Fig.1 d) and third row corresponds to
Fig. 1 e).

the resulting quality of the hard-segmentation proposed method is reduced compared
with the remainder methods, see Table1 and Fig.2 c). But experimentally, the HCC
proposed model presents competitive results when the PSNR is greater than10 dB, and
is very fast. In an experiment with 1000 runs the reported average time was0.00273
seconds, so it can be used in some real time image processing tasks. On the other hand,
the soft-segmentation proposed method is very robust but itis slower, see the JC of the
experiment in Table1 and the segmentation in Fig.2 d). For this experiment, the ECC
proposed model presents competitive results according to the Jaccard index.



Table 1. Jaccard index results using different segmentation methods. The segmented
images are Fig.1 c)-e) that are obtained from Fig.1 a) after applying the noise levels
10, 5 and 3 dB PSNR respectively.

Method
10 dB PSNR 5 dB PSNR 3 dB PSNR

white classblack classwhite classblack classwhite classblack class

QMMF 0.9907 0.9972 0.9707 0.9911 0.9618 0.9885
Graph cut 0.9936 0.9981 0.9759 0.9927 0.9720 0.9916
HCC 0.9907 0.9972 0.9274 0.9773 0.8743 0.9597
ECC 0.9923 0.9977 0.9772 0.9931 0.9631 0.9888

We also evaluate the performance of the ECC proposed method in the interac-
tive color Image Segmentation task based on trimaps. For theexperiments we use
the Lasso benchmark database available online in Ref. [15]. According to the results
reported in Refs. [16,17] our proposal demonstrates a better performance compared
with methods of the state of the art. In Refs. [16,17] the authors compared the follow-
ing methods: GraphCut, Gaussian Markov Measure Fields (GMMF), Random Walker
(RW), Quadratic Markov Measure Fields (QMMF or QMPF) and Entropy Controlled
Quadratic Markov Measure Fields (EC-QMMF or EC-QMPF).

Table2 shows, for each image of Lasso’s benchmark database, a comparison be-
tween the errors obtained by the best method reported in Ref.[17] (EC-QMPF) and our
ECC method. In Table3 we summarize the experimental results reported in [17] and
our results. In the last column of Table3 we show Akaike’s information criterion(AIC).
As we can see, our method presents the best results. We noticethat the improvement of
ECC is marginal compared to the results obtained by EC-QMMF.The main advantage
of our ECC method is that it has 2 free parameters.

Fig. 3 illustrates our method performance in the context of color image segmen-
tation using the quasi-automatic segmentation method. In this experiment, we use the
perceptual color likelihood obtained by Alarcon and Marroquin where the likelihood
field is divided into 11 basic color categories, see [18] for details.

In Fig. 4 we show a possible application of the ECC proposed model for the col-
orization task. In this example we used the scheme for colorization proposed by Dalmau
et al. in [19].

4 Conclusions

We propose a general model for image segmentation in the context of Bayesian for-
mulation with MRF prior. Under this formulation the modeling of image segmentation
is reduced to select an appropriate metric-divergence. If the data term depends on the
likelihood then a more general data term can be convenientlychosen. When the data
term depends on the normalized likelihood, a metric or distance between distributions
should be used. We study two particular cases of the general formulation. As metric-
divergence we use the Matusita Distance. In the first case, HCC-based formulation, we



Table 2. Comparative performance between EC-QMMF and our ECC methodin the
context of interactive image segmentation. For the experiments we use Lasso’s bench-
mark database available online in Ref. [15]. The results of EC-QMMF method are re-
ported in Ref. [17]. The values in the table represent the classification percentage errors
for each method.

FilenameEC-QMMF ECC FilenameQMPF+EC ECC

21077 4.01 4.03 bush 7.86 5.93
20077 4.21 3.60 ceramic 1.73 1.66
37073 1.44 1.62 cross 1.75 1.60
65019 0.27 0.47 doll 1.03 0.52
69020 2.95 4.08 elefant 2.05 1.96
86016 1.99 2.28 flower 0.61 0.44
106024 7.55 7.19 fullmoon 0.27 0.00
124080 3.43 5.57 grave 1.27 1.65
153077 1.65 1.61 llama 4.32 3.82
153093 4.08 4.45 memorial 1.49 1.49
181079 7.41 7.70 music 2.26 2.03
189080 6.22 4.61 person1 1.16 0.25
208001 1.5 1.64 person2 0.71 0.30
209070 2.25 2.27 person3 0.87 0.75
227092 3.46 4.01 person4 3.27 3.59
271008 2.33 2.61 person5 2.48 2.22
304074 10.9 10.81 person6 5.19 4.92
326038 7.53 7.08 person7 0.96 0.59
376043 6.14 6.30 person8 0.93 0.92
388016 1.5 1.16 scissors 2.87 1.88
banana1 3.91 3.31 sheep 4.53 5.64
banana2 1.49 1.09 stone1 0.73 1.67
banana3 1.91 1.75 stone2 0.78 0.48
book 3.52 4.83 teddy 1.91 3.33
bool 1.74 1.65 tennis 7.31 5.60

propose a model for hard segmentation and we show experimentally that it gives com-
petitive results compared to some methods of the state of theart. For this model, we
give a fast algorithm based on a sequential linear programming and also we prove that
under certain conditions the proposed method converges.

We study a second approach that satisfies the ECC condition. This model gives a
soft segmentation method that is more robust to noise. We prove experimentally that
this method gives excellent results and can be used for otherimage processing tasks.
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