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Abstract. We propose a general Bayesian model for image segmentaitbn w
spatial coherence through a Markov Random Field prior. \We sludy variants
of the model and their relationship. In this work we use theldia Distance,
although our formulation admits other metric-divergend@ar main contribu-
tions in this work are the following. We propose a general MiiSed model for
image segmentation. We study a model based on the Matusstaride, whose
solution is found directly in the discrete space with theaad&ge of working in
a continuous space. We show experimentally that this medsrinpetitive with
other models of the state of the art. We propose a novel wagabwlith non-
linearities (irrational) related with the Matusita Distan Finally, we propose an
optimization method that allows us to obtain a hard imagensegation almost
in real time and also prove its convergence.

1 Introduction

Image segmentation is an important field in computer vididras been one of the most
studied tasks in image processing and is considered to hégetiretween low and high
level image processing tasks. The image segmentationgmobtbnsists of obtaining a
partition of the image according to a homogeneous prediBapending on the image
modeling viewpoint, many strategies have been propos#uk image is modeled from
a deterministic point of view, we can find different image reegtation approaches
based on the Mumford-Shah functional,4]. When it is modeled as a grap#][we
find Graph Cut {] and Normalized Cut]. In the context of data clustering, the fuzzy
c-means (FCM) methods are widely usé@ and if the image is modeled as a Markov
Random Field (MRF) several approaches have been repoft€dl (. Among them,
Bayesian formulation, including spatial coherence thibadviRF prior, has shown to
be a powerful framework to design efficient and robust mofielsnage segmentation.

In this work, we formulate the segmentation problem as th@mization of an en-
ergy functional in terms of the likelihood using a Bayesiagularization formulation
based on MRF. Our strategy reduces the probabilistic imegeentation modeling to
the choice of a convenient metric-divergence or a meastwveelea distributions. In this
work we study the Matusita Distance (MD) and the possibditysing it for both hard
and soft segmentation. We also propose a way to deal withahdinearities involved
with MD. We propose an algorithm for solving a particularead a quadratic opti-
mization problem through a sequence of linear programmirgoblems and prove
its convergence.



2 Mathematical Formulation

2.1 Notation

In general, the segmentation problem can be written in t@frasset of sites and a set
of labels. Let. = {r = (n,m):n=1,2,...,N;m=1,2,..., M} be a 2D regular
lattice where|£| = N M represents the number of sites (or pixels) in the image. The
neighborhood of the pixel will be denoted asV,.. Conveniently, we will also denote
(or reindex) pixels(n, m) in the image as the subset of indices= {1,2,...,|L|}
wherer;,i € 7 represents a site in the image. The image is denoteH Byr) is a
scalar (the intensity in case of a gray level image) or a véctdor channels in the case
of a color image). Lef = {1,2,..., K} be a subset of labels. A segmentation of an
image is a mappin@& : £ — K from the set of site€ to the set of label&. That is
to say, it is a partition of in regionsR, C L in such a way thatUycxR, = £ and
(i # jii, € K)=RiNR; =0, whereRy, = {r € L: R(r) = k}.

According to [L1] the observation model at each pixedf the image can be written
asfollows:I(r) = 3, cxc Pr(r) Ik (1) +n(r), wherep(r) € [0, 1] is the component of
a vector measure field at a pixelr, p(r) = (p1(r), p2(r), ..., pk(r)), and represents
the probability that the pixel belongs to the clags (or to the regioriR). Thenpy(r)
must satisfy} ©, _ pr(r) = 1. Moreovery(r) is white noise andy(r) is the intensity
value of the layer;, at the pixelr.

Definition 1. The set of pointg = (z1, z9,...,z,) € R" that satisfyx; > 0,Vi €
{1,2,...,n}and

n

> (@) =1, (1)

=1
will be called positive unitn-hypersurface@nd will be denoted asS’).

For instance, ify = 1 the positive unitn-hypersurface will be nameplositive unit
n-hyperplaner asimplex(S™) and ify = 2 will be calledpositive unit.-hypersphere

2.2 Review

Rivera et al. [ 1] defined a Consistence Condition Qualification (CCQ) thaEaargy
Functional for Gauss-Markov Measure Fields (GMMF) modélsudd satisfy in an
image segmentation problem.

Definition 2. (Consistence Condition Qualificatioffyno a priori information about
the vector measure field is available, and also, its Maximum Likelihood (ML) esti-
mator satisfies the conditiomrg maxy, pi(r) = argmaxy 0x(r), Vr € L, wherev
represents the normalized likelihogdhen we say that the vector measure fieliolds
the Consistence Condition Qualification (CCQ).

! The likelihood is defined as, (r) = p(I(r)|pk(r) = ek, Ix).



In this work, we are interested in two particular CCQ casém first CCQ, allows us
to obtain a soft segmentation of the image and from the se€&1@ we can formulate
a functional to obtain a hard segmentation. Now we introdweedefinitions that will
guide our study.

Definition 3. (Equality Consistence Conditior)) no a priori information about the
vector measure fielg is available, and also, its ML estimator satisfies the caondit
pr(r) = vk(r), Vr e L, whereov represents the normalized likelihood, we say that the
vector measure fielg holds the Equality Consistence Condition (ECC).

Definition 4. (Hard Consistence Conditioff)no a priori information about the vector
measure fielgh is available, and also, its ML estimator satisfies the follgyconditions

ky = arg mgxpk(r) =arg m;;ixﬁk(r), Vr e L, (2)
pr:(r) =1, Vre L, 3)

wherev represents the normalized likelihood, then we say that ¢élotov measure field
p holds the Hard Consistence Condition (HCC).

2.3 General model

In the Bayesian regularization formulation, based on MarRandom Field, for in-
stance: GMMF §], HMMF [ 9] and QMMF [L0], the modeling (observation model) be-
gins with some assumptions about the generative model aitibervation (the image).
After some mathematical derivation, an energy functiohat tlepends on the likeli-
hood is obtained. In our formulation, different from the abonodels, we consider
that the vector field is the observation. Using a Bayesian formulation, the pmste
distribution is

P(plv) x P(v|p)P(p) = e~V ®™), (4)

the conditional probability?(v|p) is obtained from

P(vlp) = [] Po(r)lp(r)) = e~ PP,

rel

whereP(v(r)|p(r)) is the observation model arfédl(p) o e~ %) is a Gibbsian dis-
tribution. In our case, we are not interested in the modédldkaerates the data, but in
finding energies that have particular properties, for imstathose which satisfy CCQ,
in particular HCC or ECC. Of course, each particular energgtrhave an underlaying
observation model as in the cases mentioned above but weoaiieterested in this
point. Therefore, we formulate the segmentation problerthasminimization of an
energy functional (the MAP estimation of Ed)(). This problem has the general form:

arg min U(p;v) =D(p;v) + AR(p), (%)
pESﬁ

where the parametex is positive and controls the granularity of regions to be-seg
mented,D(p;v) is the data term and can be related to the likelihood term iaygeBian



formulation,R(p) is the regularization term and represents the prior knogdezbout

the vector measure field. As we have said beford)(p; v) must be chosen in such a
way that enforces CCQ, and in particular we are interestéokitHCC and ECC cases.

In our formulation, we consider that the observations averyby the likelihoodv,
different from (], [9] and [L(] where the image is assumed to be the observation. So,
we regularize directly on the likelihood. Then, the imaggnsentation problem can be
solved by minimizing a metric-divergence between modedseiated to a certain fea-
ture vector §,9]. Under this scheme many functionals can be obtained fansegation
purposes. A particular case of the functional in Ex).i¢ the following

U(p;®) =D(p; v) + AR(p), (6)

that depends on the normalized likeliho@dA natural choice for the data term(p; ©)

in the functional §) is to select a distance between distributions. On the dthed, in

the data term of the potentiab)(we can use other measures, for instance: divergence
measures, inaccuracy measures, metrics and distancegrdiiiem now is what mea-
sure to choose. In the literature we can find a lot of metnejenceSbetween distri-
butions [LZ]. Some of these metric-divergences have a symmetric \erioexample,

the Kullback and Leibler divergence, the main drawback & they are highly non-
linear. This leads us to a highly non-linear optimizationlgem. So, the algorithmic
properties are an important issue in the selection of meliviergences.

2.4 Model for ECC

In this section we study the Matusita Distance (MP)J]. Let f, h be discrete proba-
bility distributions, i.e3"% | fi = >°X | g = 1andfi, g; > 0, then the MD is defined
as:

d(fllp) = (7)

This measure has a geometric interpretation and satisi@eaxioms to be a metric.
Henced(f|lh) = 0 <= f = h <= f; = g; * and therefore, MD can be used to
obtain ECC models. Using) in the data term off) we obtain:

K

D(p;®) =) 3 [dp@)[oE)] =" [1=> Vr)u)] - (8)

rcl rel i=1

2 From the mathematical point of view, they are not metricsabse they do not satisfy the
axioms to be a metric, most of them only satisfy the non-rigigatind identity of indiscernible
axioms, i.e.d(a,b) > 0 andd(a,b) = 0iff a = b, wherea, b are elements of a metric space.

® MD is proportional to Hellinger Distance (HD), se&q.

“ Observe thati(f||h) = 0 <= f||h, i.e. the vectorsf,h € R” are parallels, using the
Cauchy-Bunyakovsky-Schwarz inequality. Then, theretexiss R such thatf = \h. Using
the conditiony" /| f; = 3K | g; = 1 we obtain that = 1 and finally f; = g;.



Similarly, the regularization potential is proposed imterof the metric 7):

)= Z Nips)] => > 1—2\/1)1 7)pi(s )

rel seN, reLl seN,

As we can see, both term8)(and @) are non-rational and the minimization @) (
becomes a non-linear system. To deal with this problem, wpgse to minimize the
following functional that is a transformation of the origirenergy functionalg):

U(p;9) = U(Tip; To9) =D(Tip; Tod) + AR(Tip), (10)

where7; : [0,1] — [0, 1] with j € {1, 2} are increasing real functions.

So, instead of computing directly the vector measure fielsle propose to compute
the transformegh = 7;p andv = 72v. To simplify the notation it is understood that
when we applyZ; to a vector, we really mean to appliy on each component of the
vector. Hence, substituting in Ecp)(we have a new functional Q) in terms ofp and
v.

A natural way for selecting; in the case of MD is choosing power functions
7;(.) = (.)™. We study the casé; = 7; andn = 3, that corresponds to a map-
ping of the simplexSX onto the positive unif-hyperspheres. Then, the original
optimization problem is transformed into:

min U(p;d), © € SK . (12)

pESK
The optimization problemi(l) satisfies the following proposition:

Proposition 1. The constraint quadratic optimization problem defined by &d) sat-
isfies ECC when no a priori information is available (iJe= 0).

The proof is straightforward. We can see by using the Cauinyyakovsky-Schwarz
inequality, that the vector measure figidinder no prior knowledge (setting= 0) sat-
isfies the ECC. Otherwise, the above optimization probleengsadratic optimization
problem with quadratic constraints that can be solved bygiie Lagrange multiplier
method. The Lagrangian for the constrained optimizatiablam, without including
the non-negativity constraints, is

K
L(p, ;) )+ > w ([ i) — 1], (12)
i=1

rel
wheren(r), r € L are the Lagrange multipliers.
Now, we obtain the first-order necessary conditions forroality, the Karush-
Kuhn-Tucker (KKT) conditions, se€.[]:
OL(p, ;)
aﬁk( )

ook =Y 1 y=1,Vre’l . (14)

keKx ke

=0,Vr € L,k € K; (13)



From the KKT condition in Eq.13) we obtain

—0k(r) = A Y Pr(s) + 2m(r)pr(r) =0Vr € L . (15)
SEN,

Defining ny(r) = k(1) + AD_,en. Pr(s) and using a Gauss-Seidel scheme in the
equation systeml§), we can compute the vector measure figlthrough an iterative
process. By using the equality constrairité)(and substituting(5) we can compute the
Lagrange multipliersr(r). Substitutingr(r) in Eq. (15) we obtain the vector measure
field p whose components are computed with

pulr) =) (16)
>imani(r)

Note that, if the vector measure fiefalis initialized with non-negative values (i.e.
P > 0) then the solutiorp™ implicitly satisfies the non-negativity constraints and
thenp* € SX. Finally, the optimum vector measure fighd is computed by applying
the inverse transformation @i to p*: p;(r) = [p;(r)]?.

2.5 Model for HCC

Based on the formulation defined by Efj1Y we can think of changing the hypersurface
on whichp is located. We study the case whane SX (i.e. we change the equality
restrictions expressed in thHg-Norm and use thé.;-Norm). Then, we have the fol-
lowing optimization problem:

in U(p;d) - 17
Juin U(p;0) 17

Under no prior knowledge, the above problem satisfies tHeviiadg proposition:

Proposition 2. If Vr € £ 3k, € K such thato, (r) > 0x(r) Vk # k. then the
constraint quadratic optimization problem defined by Hq) Gatisfies HCC when no a
priori information is available (i.eA = 0).

Observe that if we do not have prior knowledge, then the gmohL7) is a linear
programming (LP) problem. As is well-known in LP, under tlmditions of the propo-
sition the solution lies on a vertex of the polytope definedh®y/constraint and hence
the solution at each pixel ig(r) = ey, whereey, is a vector of the canonical base,
i.e.pr(r) = 0(k — k,) andk, = argmaxyei O (r), Vr € L.

On the other hand, if prior energy (iL&(p) = >, > .cn. 1 — B(r)"D(s) ) is
given, then the optimization problem ia®) becomes a quadratic programming (QP)
problem. In such a case, we still can use the idea explainedeabut adapted to the
QP problem 17).

We propose to solve the QP problem using a sequential limegrgmming (SLP)
strategy. First, let us define the linear functional, at estept

|L]
Ul V') =3 =" )V (), (18)

i=1



where the components 8" (;) are defined a¥\ (r;) “< & (r;)+A Y en, ().

Then, we need to solve the following LP subproblem at eaqh ste

. ()
Ulip; V') . 19
min U(p: V) (19)

Observe that the functional defined ih8] is the linearization arounﬁ(t) of the QP
problem (7). In practice, we are not going to minimize the probletf)(as a whole,

but instead we are going to reduce the energy minimizingl jpixgixel. So, we need
to redefine?" (r,) as follows:

7000 " )+ A )+ A ) (20

ri €N, <i riENG,G>1

Therefore, in the current sitec Z we use the information of the previous stegnd the
updated sites in the current stepl1 (i.e. all the siteg such that < ¢), see Eq.Z0), as a
Gauss-Seidel scheme, eoordinate descent methggee [L4]. The strategy previously
explained is summarized in the SLP algorithm.

Algorithm 1 SLP Algorithm

Given a starting poinp‘®’
repeat
for i € 7 do
Evaluatef/(t)(m) using @0)
Solve (19) to obtainp TV (r;)
end for
until Convergence

Proposition 3. The SLP algorithm converges, if at each step the veﬁ’t%}(ri) has a
unigue maxima component for all, : € Z.

For proof see next Subsection.

2.6 Relation between ECC and HCC proposed models

The models studied in Subsectichd and2.5can be enclosed in a more general model
by changing the hypersurface on whighs defined. Now, we study the case in which
p belongs to they unit positive hypersurfacﬁf

min U(p;v) . (21)

5 K
peSE

This model is a generalization of the models presented iptbeous sections. It es-
tablishes the relation between ECC and HCC models and alisws give a proof of



the Algorithm 1 presented in Subsectidrb. Following the same methodology used in
Subsectior?.4 we obtain the following expression fgy, (r):

) [ (r)) 7

pr(r) = I
(T =}

Observe that HCC model is the limit case of the probléf) s~ approaches td
from the right side. If we make the assumption that forralt £ there existg:,. such
thatny, (r) > ni(r), Vi # k, and we lety tend tol, then forp,(r) = p) (r) where
k € K we have:

(22)

iy p(r) =0(k, — k) = pi(r) (23)
wherek, = arg max;ex p;(r). This means that foy = 1 the update procedure for the
vectorp(r) is simply to assigm(r) = ex+ wherek* = arg maxy, pi(r). The relation
obtained in Eq.Z3) is a proof of Propositioi3.

3 Experiments

In this section, we make two quantitative comparisons betwhe proposed methods
and others of the state of the art. Also, we present some iexpetal results of the
ECC method proposed in Subsectidr for interactive image segmentation and for
color image segmentation.

As a comparison measure we use the Jaccard similarity deeffi@r Jaccard in-
dex).

:Pllﬁfz (k)
P11U12 (k) .

The Jaccard coefficient (JC) measures the similarity betviwe sets. It is defined as
the size of the intersection of the sets divided by the sizéh@funion of the sets. In
Eqg. @24) P, (k) denotes the number of pixels that belong to class both the
original image (taken as the ground truth) and the segmemizge.P;, ,s, (k) denotes
the number of pixels that belong to classn the original image or in the segmented
image.

For evaluating the robustness, we compare the proposeadsatfith the following
methods of the state of the art: Graph cut and QMMF. We use itlherbimage in
Fig. 1 a). When we apply typical noise values to image Hi@), i.e. between 20 and
40 dB of Peak Signal-to-Noise Ratio (PSNR) where a lowerllefi@oise (in dB) is
worse, all the methods obtained a JC equal to 1 for both da$éés means that all the
methods have excellent performance when using typicabgadfi PSNR.

In the next experiments we reduce the PSNR (i.e. we incrbasadise level) up to
3 dB, see Figl c)-e). For the image with 10 dB PSNR, Figc), the proposed methods
presented as good results as those of the state of the athesd€ in Tablel and for
segmentation results see Fig.In the images with 5 and 3 dB PSNR, see Higl)-e),

I, .1, (k) (24)



a)

Fig. 1. Binary image with different Peak Signal-to-Noise RatioCx)ginal image, b)
20dB, c) 10dB, d) 5dB, e) 3 dB.

a) b) <) d)

Fig.2. Segmentation using different methods a) QMMF b) Graph cuHa)d-
segmentation proposed model, d) Soft-segmentation pecposdel. First row cor-
responds to Figl c), second row corresponds to Figd) and third row corresponds to
Fig.1e).

the resulting quality of the hard-segmentation proposethatkis reduced compared
with the remainder methods, see Talland Fig.2 c). But experimentally, the HCC
proposed model presents competitive results when the PShiRRater thah0 dB, and
is very fast. In an experiment with 1000 runs the reportedayetime wag).00273
seconds, so it can be used in some real time image proceasksy On the other hand,
the soft-segmentation proposed method is very robust musibwer, see the JC of the
experiment in Tabld and the segmentation in Fig.d). For this experiment, the ECC
proposed model presents competitive results accordirfietddccard index.



Table 1. Jaccard index results using different segmentation methblde segmented
images are Figl c)-e) that are obtained from Fid.a) after applying the noise levels
10, 5 and 3 dB PSNR respectively.

Method . 10 dB PSNR . 5dB PSNR . 3dB PSNR
white clasghlack clasgvhite clasgblack claspwhite clasgblack class
QMMF 0.9907 0.9972 0.9707 0.9911 0.9618 0.9885
Graph cut 0.9936 0.9981 0.9759 0.9927 0.9720 0.9916
HCC 0.9907 0.9972 0.9274 0.9773 0.8743 0.9597
ECC 0.9923 0.9977 0.9772 0.9931 0.9631 0.9888

We also evaluate the performance of the ECC proposed methtiteiinterac-
tive color Image Segmentation task based on trimaps. Foexiperiments we use
the Lasso benchmark database available online in Ref. According to the results
reported in Refs.[6,17] our proposal demonstrates a better performance compared
with methods of the state of the art. In Refs6[L 7] the authors compared the follow-
ing methods: GraphCut, Gaussian Markov Measure Fields (EMRandom Walker
(RW), Quadratic Markov Measure Fields (QMMF or QMPF) andrBpy Controlled
Quadratic Markov Measure Fields (EC-QMMF or EC-QMPF).

Table 2 shows, for each image of Lasso’s benchmark database, a csompae-
tween the errors obtained by the best method reported i R{EC-QMPF) and our
ECC method. In Tabl8 we summarize the experimental results reportedLi) fnd
our results. In the last column of Tal8ave show Akaike’s information criterion(AIC).
As we can see, our method presents the best results. We tiatdbe improvement of
ECC is marginal compared to the results obtained by EC-QMME. main advantage
of our ECC method is that it has 2 free parameters.

Fig. 3 illustrates our method performance in the context of caleage segmen-
tation using the quasi-automatic segmentation methocigneixperiment, we use the
perceptual color likelihood obtained by Alarcon and Mariogwhere the likelihood
field is divided into 11 basic color categories, s&d for details.

In Fig. 4 we show a possible application of the ECC proposed modehi®col-
orization task. In this example we used the scheme for aation proposed by Dalmau
etal.in[L9.

4 Conclusions

We propose a general model for image segmentation in thexioot Bayesian for-
mulation with MRF prior. Under this formulation the modejinf image segmentation
is reduced to select an appropriate metric-divergencéeliata term depends on the
likelihood then a more general data term can be conveniehtigen. When the data
term depends on the normalized likelihood, a metric or distebetween distributions
should be used. We study two particular cases of the germmalfation. As metric-
divergence we use the Matusita Distance. In the first cas€-bi&ed formulation, we



Table 2. Comparative performance between EC-QMMF and our ECC méithtite
context of interactive image segmentation. For the expamisiwe use Lasso’s bench-
mark database available online in Ref5]. The results of EC-QMMF method are re-
ported in Ref. [ 7]. The values in the table represent the classification p¢age errors
for each method.

|Filenaméec-QumA| Ecc [[FilenameQmpPr+Ed ECC]
21077 4.01 |4.03||bush 7.86 |5.93
20077 4,21 |3.60|/ceramic | 1.73 |1.66
37073 1.44 |1.62||cross 1.75 |1.60
65019 0.27 |0.47||doll 1.03 |0.52
69020 2.95 |4.08|elefant 2.05 |1.96
86016 1.99 |2.28|/flower 0.61 |0.44
106024 | 7.55 |7.19|/fullmoon| 0.27 |0.00
124080 | 3.43 |5.57||grave 1.27 |1.65
153077 | 1.65 |1.61|/llama 4.32 |3.82
153093 | 4.08 |4.45||memoria] 1.49 |1.49
181079 | 7.41 |7.70||music 2.26 |2.03
189080 | 6.22 |4.61|lpersonl| 1.16 |0.25
208001 15 |1.64|person2| 0.71 |0.3Q
209070 | 2.25 |2.27||person3| 0.87 |0.75
227092 | 3.46 |4.01||persond4| 3.27 |3.59
271008 | 2.33 |2.61||person5| 2.48 |(2.22
304074 | 10.9 (10.81|person6| 5.19 |4.92
326038 | 7.53 |7.08||person7| 0.96 |0.59
376043 | 6.14 |6.30||person8| 0.93 |0.92
388016 1.5 |1.16|scissors| 2.87 |1.88
bananal] 3.91 |3.31||sheep 4.53 |5.64
banana2 1.49 |1.09|stonel 0.73 |1.67
banana3 1.91 |1.75||stone2 0.78 |0.48
book 3.52 | 4.83||teddy 1.91 |(3.33
bool 1.74 | 1.65||tennis 7.31 |5.60

propose a model for hard segmentation and we show expeihethiat it gives com-
petitive results compared to some methods of the state ddrthé&or this model, we
give a fast algorithm based on a sequential linear prograngiemd also we prove that
under certain conditions the proposed method converges.

We study a second approach that satisfies the ECC conditios.nfodel gives a
soft segmentation method that is more robust to noise. Weepegperimentally that
this method gives excellent results and can be used for ottagye processing tasks.
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