TAREA 2 A ENTREGARSE EL 11 DE OCTUBRE

Esta tarea se calificará sobre 60 puntos.

- 1. (15 puntos) Sea $(\mathfrak{C}, \mathcal{W}, \mathrm{Fib}, \mathrm{Cof})$ una categoría de modelos y sea $\mathfrak{C}_* = 1/\mathfrak{C}$, donde 1 es un objeto final de \mathfrak{C} . Sea $O: \mathfrak{C}_* \to \mathfrak{C}$ el funtor de olvido que envía $1 \to X$ a X. Prueba que $(\mathfrak{C}_*, O^{-1}(\mathcal{W}), O^{-1}(\mathrm{Fib}), O^{-1}(\mathrm{Cof}))$ es una categoría de modelos.
- 2. (10 puntos) Sea \mathcal{C} la categoría con dos objetos y tal que $\mathrm{Mor}_{\mathcal{C}}(x,y)$ tiene un único elemento para cualesquiera x, y. Demuestra que $|N\mathcal{C}_{\bullet}|$ es homeomorfo a S^{∞} .
- 3. (10 puntos) Sea X un complejo de Kan y sea $[f] \in \pi_n(X, x_0)$, donde $x_0 \in X_0$. Demuestra que $[f] = [c_{x_0}]$ si y solo si existe $a \in X_{n+1}$ tal que $d_i(a) = s_0^n x_0$ para $0 \le i \le n$ y $d_{n+1}(a) = f(1_{[n]})$.

4.

- (a) (10 puntos) Sea X es un complejo de Kan y $v \in X_0$. Demuestra que existe un isomorfismo natural $\pi_n(X, v) \cong \pi_n(|X|, v')$ para todo n, donde $v' = [v, v_0]$.
- (b) (10 puntos) Prueba que un morfismo $f: X \to Y$ entre complejos de Kan es una equivalencia débil si y solo si $f_*: \pi_n(X, x_0) \to \pi_n(Y, f_0(x_0))$ es un isomorfismo para todo $n \ge 0$ y para todo $x_0 \in X_0$.
- 5. Sea X un conjunto simplicial. La categoría de símplices de X es la categoría $\Delta \downarrow X$ cuyos objetos son los morfismos $\Delta^n \to X$ y cuyos morfismos están dados por

$$\operatorname{Mor}_{\Delta \downarrow X}(\sigma \colon \Delta^n \to X, \tau \colon \Delta^m \to X) = \{\theta \in \operatorname{Mor}_{\Delta}([n], [m]) \mid \tau \theta_* = \sigma\}$$

Sea $F: \Delta \downarrow X \to \mathrm{sSet}$ el funtor que envía $\sigma: \Delta^n \to X$ a Δ^n y θ a θ_* .

(a) (15 puntos) Demuestra que X es isomorfo al colímite de F y que |X| es homeomorfo al colímite de $|\cdot| \circ F$.

TAREA 2 2

(b) (10 puntos) Demuestra que | | es adjunto por la izquierda de
 $S_{\bullet}($) usando la parte anterior.